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3D Thermal Mapping of Building Interiors using an RGB-D and
Thermal Camera

Stephen Vidas1,2, Peyman Moghadam2 and Michael Bosse2

Abstract— The building sector is the dominant consumer of
energy and therefore a major contributor to anthropomorphic
climate change. The rapid generation of photorealistic, 3D
environment models with incorporated surface temperature
data has the potential to improve thermographic monitoring of
building energy efficiency. In pursuit of this goal, we propose
a system which combines a range sensor with a thermal-
infrared camera. Our proposed system can generate dense 3D
models of environments with both appearance and temperature
information, and is the first such system to be developed using a
low-cost RGB-D camera. The proposed pipeline processes depth
maps successively, forming an ongoing pose estimate of the
depth camera and optimizing a voxel occupancy map. Voxels are
assigned 4 channels representing estimates of their true RGB
and thermal-infrared intensity values. Poses corresponding to
each RGB and thermal-infrared image are estimated through
a combination of timestamp-based interpolation and a pre-
determined knowledge of the extrinsic calibration of the system.
Raycasting is then used to color the voxels to represent both
visual appearance using RGB, and an estimate of the surface
temperature. The output of the system is a dense 3D model
which can simultaneously represent both RGB and thermal-
infrared data using one of two alternative representation
schemes. Experimental results demonstrate that the system is
capable of accurately mapping difficult environments, even in
complete darkness.

I. INTRODUCTION

The building sector has been shown to dominate en-
ergy consumption in developed nations such as the U.S.
[1]. Improving energy efficiency in buildings is critical to
achieving a sustainable future in the face of anthropomorphic
climate change. Conventional thermography for building
energy auditing and non-destructive assessments relies on
2D thermal images, which have significant limitations. For
example, a lack information on the geometry and location
of objects and areas of interest in the scene. As a result,
there is growing interest in moving from 2D towards photo-
realistic 3D representations of environments with integrated
temperature data [2]–[4]. Accurate geometric measurements
are able to be made using these 3D representations of
heat distribution. The combined knowledge of temperature
and geometry then enables quantitative estimates of surface
energy loss through heat radiation. Furthermore, the precise
detection and location of heat sources, thermal bridges and
other phenomena becomes possible [5].
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Fig. 1: Result of a 3D thermal mapping of an underground
hot water system. Data was collected in complete darkness
which is often needed to reduce environmental impacts on
temperature readings, such as from sunlight.

This paper proposes a mobile 3D thermal mapping sys-
tem which incorporates color, thermal-infrared and depth
information simultaneously. The system is targeted towards
the application of continuous and non-destructive monitoring
of building interiors for energy efficiency assessment. The
proposed approach uses only an RGB-D camera and a single
additional thermal-infrared camera, and is capable of forming
dense and high-fidelity 3D models for the purpose of further
analysis, as demonstrated in Figure 1. While previous studies
have explored the area of 3D thermal mapping, each of these
were found to have limitations. These included the inability
to operate at night (often important for energy auditing), or
in confined spaces with obstacles such as stairs.

The method proposed in this paper is the first that is
hand-held, uses readily available hardware, and is capable of
operating at night. The mobility associated with being hand-
held allows seamless mapping between floors and interiors
of a building, however, there is no technical reason that the
device could not be mounted on a robot or wheeled platform.
The capacity to operate in darkness is also important, because
often explicit night-time analysis is required by applications
such as building energy auditing. This is due to the need to
limit the effects of environmental phenomena such as sun-
light on surface temperatures. Data can be captured simply
by moving around an environment with the proposed system
and streaming to a computer in a wearable unit such as a
backpack. Results take the form of a colormapped 3D model
which transforms the 4 dimensions of data (3 color channels
+ thermal-IR) into a single multi-modal representation. This
allows human viewers to easily and simultaneously interpret



the available RGB and thermal data under diverse lighting
conditions.

Our major contributions are:
• Geometric and temporal calibration of the dual camera

(thermal and RGB-D) setup
• Accurate ray-casting through an interpolated pose-

estimation scheme
• Simultaneous representation of multiple modalities

(RGB and thermal-IR) through a dense 3D model
Our current hand-held 3D thermal mapping prototype

(shown in Figure 2) comprises of a low-cost RGB-D camera
(Microsoft Kinect) rigidly attached to a thermal-infrared
camera (Thermoteknix Miricle 307K). Like any other multi-
modal sensor configuration, the first key step is to geomet-
rically and temporally calibrate the sensors with respect to
each other, a process which is discussed in detail in Section
III. Our past work formed the basis for the problems of both
the intrinsic calibraton of the thermal-infrared camera [6],
and the extrinsic calibration of the multiple-modality, multi-
sensor configuration [7]. We were also required to analyze
timing irregularities associated with both the cameras, and a
novel technique was developed to smooth capture times and
temporally calibrate the cameras.

The KinectFusion algorithm [8] was used to obtain an
estimate of the pose of the RGB-D camera for each captured
frame, and to optimize a voxel occupancy map. In Section
IV we outline how we extended this to obtain estimates
of the pose of the thermal camera. This required a good
understanding of the temporal differences between cameras
and an effective temporal calibration. A combination of
cubic spline interpolation and a knowledge of the extrinsic
calibration between cameras was used. This enabled accurate
raycasting using all of the available image data.

In Section V we describe our raycasting technique to as-
sign values from estimated camera poses. We also show how
to get more accurate temperature estimates by considering
the mechanical properties of the thermal-infrared sensor.

Finally, two novel methods for the simultaneous represen-
tation of the thermal and visible-spectrum data on the dense
3D model are demonstrated. To the best of our knowledge,
this is the first time that the visible and thermal-infrared
modalities have been fused for the purpose of 3D mapping.
Our proposed representations to allow a human viewer to
visualize information from both modalities on the same
model, are introduced in Section VI.

Our evaluation in Section VII demonstrates that the system
is highly capable of generating precise models with incorpo-
rated temperature data, even in difficult circumstances such
as complete darkness or cluttered environments.

The data captured for this research will be made publicly
available and can be found along with demonstration videos
online.3

II. STATE OF THE ART

Several previous studies have explored the potential of 3D
thermal mapping for applications like building inspection and

3http://www.youtube.com/user/AutonomousSystemsLab

Fig. 2: The sensor configuration prototype: comprised of a
Microsoft Kinect and Thermoteknix Miricle 307K thermal
camera.

auditing [2]–[4]. These studies were motivated by many of
the limitations of performing such tasks with conventional
thermographic images. A key limitation is the lack of a
holistic and geometrically accurate model of the environment
which could be used for automatic offline analysis. Also,
an immersive 3D environment provides an opportunity for
a user to investigate and detect anomalies in context, rather
than simply within a sequence of 2D images.

The ThermalMapper project [2] involves a mobile,
wheeled robot with a terrestrial laser scanner and thermal-
infrared camera, and is capable of projecting thermal data
onto a 3D model as it explores an environment. The system
implements a “stop and go” approach for performing scans,
as opposed to a continuous scanning approach as proposed
in our paper. Results from the automated ThermalMapper
system are in the form of dense 3D point clouds that can be
visualized in either thermal-infrared or RGB. Because the
system is mounted on a wheeled robot, it is not capable of
traversing up stairs or exploring difficult terrain or confined
spaces. There is also a significant cost difference with
our approach, as the 3D LiDAR and robotic platform is
considerably more expensive than a single RGB-D camera.

An approach using only a single RGB camera together
with the thermal-infrared camera was explored by [3]. Their
technique uses a Structure from Motion (SfM) and Multi-
View Stereo (MVS) pipeline to solve for the geometry of
the cameras and form a dense, colored point cloud with
thermal data optionally overlayed. However, it is vulnerable
to many of the typical failure conditions of SfM to which
our approach is immune, such as lack of visual texture or
low levels of lighting. This prevents the effectiveness of
the approach for many inspection tasks, which are often
best conducted in darkness to explore differences in energy
usage between night and day. In addition, it is not capable
of generating dense 3D models which can enable detailed
quantitative analysis. Single-camera SfM systems also have
no global scale, so the true dimensions of the model cannot
be determined without a reference of known size.

The use of a combined LiDAR and thermal imaging

http://www.youtube.com/user/AutonomousSystemsLab


(a) Original image (b) Undistorted image

Fig. 3: Comparison of a thermal-infrared image before and
after the correction of lens distortion using the planar mask.

system for 3D thermal mapping has also been proposed [4].
Thermal stereo solutions have been explored [9], but have
so far been limited to small-scale reconstructions and suffer
from the additional cost of a second thermal camera rather
than a much cheaper RGB-D camera. Other approaches for
performing 3D thermal mapping have largely been limited
to combing thermal imagery with existing 3D models [10],
[11].

III. CALIBRATION

A. Intrinsic Calibration

Raw images captured from the thermal-infrared camera
have a significant amount of lens distortion. A common
method for geometric camera calibration uses a checkerboard
to estimate the intrinsic parameters of the camera. However,
checkerboard patterns are not clearly visible in the thermal-
infrared modality, and thus the approach requires modifica-
tion. Our previous work adapted Zhang’s calibration method
[12] for the thermal-infrared modality [6].4 Our method
involves using a 2-dimensional thermal mask held in front
of a backdrop with a significantly different level of thermal
radiation. An MSER-based [13] detection algorithm is then
used to find the mask in the image, and subsequently locate
the corners to subpixel accuracy and optimize a distortion
model. It should be noted that spatially remapping the image
to correct for lens distortion has the effect of reducing the
amount of noise, since non-uniformities (a unique problem
of thermal-infrared sensors) are more intense at greater
distances from the center of the image. Figure 3 demonstrates
the effectiveness of this approach for correcting the thermal-
infrared images.

B. Temporal Calibration

The Kinect does not support hardware synchronization,
so there is no guarantee that pairs of depth and RGB frames
are taken at identical times. Experiments demonstrated that
the RGB and depth streams are captured at slightly different
frame rates, resulting in a continuous drift between the two
streams. The delay between two RGB and depth frames can
differ by up to 17ms, at an approximate framerate of 30Hz.

The Kinect has internal clocks which run at 60MHz and
generate frame timestamps. We use these timestamps to

4http://code.google.com/p/thermalvis-ros-pkg/
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Fig. 4: Interpolated x-position of blob centroids for each
camera for a small section of the 5 minute calibration
sequence. A slight but consistent lag in the thermal camera
timestamps can be observed.

synchronize the RGB and Depth frames. The difference
between the RGB internal clock Cc and the depth internal
clock Cd frames can be used to recover the offset of clock
Cd(t) relative to clock Cc(t) at each time stamp t.

In order to temporally calibrate the thermal camera and
Kinect (i.e. to determine the offset between the sensor
capture times), we designed an experiment by capturing
a series of random cyclic motions while the platform is
pointing at a hot, bright object in front of a relatively uniform
background. In our case we used a computer monitor that
had been powered for at least 10 minutes (in order to warm
up), displaying a full-screen red image. Then, we use blob
detection to detect and track the region of interest in both
the RGB and thermal images. The x-position of the centroid
of the blob in each modality generates two signals. Since the
two cameras capture images at different frequencies, and the
blob may not have been tracked successfully in all frames,
the signals are resampled to the same rate using cubic spline
interpolation. The two reprocessed and interpolated signals
are shown in Figure 4.

The shift between the two signals can then be easily found
using cross-correlation. However, such temporal alignment is
bounded by the sampling frequency of the two signals. To
get higher accuracy, we fit a parabola to the cross-correlation
result and the maximum is used to further optimize the
estimate of the latency between the thermal-infrared camera
and the Kinect.

The temporal calibration method is based on the as-
sumption that the thermal image timestamps are noise free.
However, under realistic conditions the delay between image
capture and arrival at the host computer is unpredictable
due to non-deterministic buffering which may occur on
the sensor, the bus or the host interface. As a result, the
timestamps assigned to the image at the host computer are
not linearly related to the true capture times. We use a
modified implementation of the convex hull algorithm [14]
to correct the timestamps.

First, we find the lower boundary of the convex hull
of the measurement timestamps. Then, the algorithm fits a
straight line to each consecutive point of the convex hull

http://code.google.com/p/thermalvis-ros-pkg/
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Fig. 5: The convex hull fitted to the thermal camera times-
tamp signal, with the linear trend subtracted for visualization
purposes. The blue line represents the convex hull of the
signal minus the linear trend (in green), and the red line
represents the smoothed signal (again, minus the linear
trend).

and calculates the residual between the hypothesis line and
the points on the lower boundary of the convex hull. The
straight line with the minimum residual error will be the
optimal straight line representing the smoothed timestamp
signal. This is illustrated in Figure 5.

C. Extrinsic Calibration

In order to be able to integrate information from alter-
native sensing modalities, it is required to represent them
in a common geometric reference frame. The process of
determining the relative translation and rotation between
different sensors’ coordinate systems is called extrinsic cal-
ibration. Conventional extrinsic calibration techniques are
based on observing a planar checkerboard pattern from all
sensing modalities [15], [16]. However, accurately detecting
a checkerboard pattern accurately with a low-resolution
thermal-infrared imaging system is difficult. In addition, the
procedure of extrinsic calibration using checkerboards is
a labour intensive process, requiring the placement of an
artificial target in the scene at several poses with respect to
the sensors.

We present a new technique for estimating the extrinsic
parameters of a thermal camera rigidly attached to the Kinect
sensor with no requirement of artificial targets [7]. The only
assumptions are that both the Kinect and the thermal-infrared
cameras share similiar fields of view, and that there are
non-colinear straight lines detectable in both the thermal
image and the range data. This is so that the 3D linear
features extracted from the range data are associated with
the 2D linear features in the thermal image, and constrain
the geometric alginment. The backgrounds of the images are
unimportant.

For our experiment, we used a powered computer monitor
which produced distinctive linear features in both modalities
because of its shape and temperature. First, a set of natural
2D and 3D lines (plane intersections and boundary lines)
are extracted from the thermal-infrared image and Kinect
range data respectively. Next, given a set of matched 2D-3D

Fig. 6: The relationship of the poses of the two cameras at
unsynchronized time instances.

lines, we use an iterative non-linear optimization solution
to minimize the distance between the 2D-3D line pairs. A
minimum number of three distinct lines are required for the
optimization to converge. Finally, the estimated six degrees-
of-freedom (6DoF) transformation is used to register the
thermal-infrared camera coordinate system with respect to
the Kinect coordinate system.

IV. GEOMETRY ESTIMATION

The KinectFusion algorithm [8] can retrieve poses for each
RGB-D frame. We use these poses as a basis for estimating
the 3D pose of the thermal-infrared camera for each thermal
frame. The following process is used which is also illustrated
in Figure 6:

1) Four neighbouring RGB-D frames are selected: the two
immediately preceding the thermal frame and the two
immediately following (times t0, t1, t2 and t3).

2) A cubic spline is fitted to the four poses corresponding
to these RGB-D frames, representing the 3D path of the
camera throughout this interval.

3) The pose of the range sensor (R) for the exact time of
the thermal frame (tx) is estimated using the spline.

4) The pose of the thermal camera (T) for the time instance
tx is calculated using the 6DoF transform relating the
two cameras (determined through extrinsic calibration).

V. TEMPERATURE ASSIGNMENT

The output of the KinectFusion algorithm includes an
uncolored 3D voxel occupancy map, which is converted to
a dense 3D model using the marching cubes algorithm, and
then simplified using a quadric-based edge collapse strategy.
Raycasting is performed for each valid frame from both
the thermal and RGB camera, in order to assign RGB and
thermal values to each vertex in the model.

Assignment of thermal values requires greater care, be-
cause of the nature of the sensor. Many thermal-infrared
cameras require regular intensity calibrations to correct for a
gradual decrease in measured signal accuracy during opera-
tion. These operations are known as NUCs (Non-Uniformity
Corrections) and involve a mechanical shutter operation
which temporarily blocks the imaging sensor with a sheet of
material of uniform temperature. This causes an interruption
to data streaming of up to one second, but is necessary to



ensure that the pixel values continue to represent an accurate
estimate of thermal radiance (and therefore temperature) of
the scene. NUCs are generally triggered by either an increase
in equivalent thermal noise, or the passage of a specified
period of time - whichever comes first. The more frequently
NUCs can be performed, the more accurate the thermal-
infrared image will be. An additional factor that can affect
the accuracy of the recorded thermal value is the incident
angle between the sensor and the radiation emitted from the
surface. It is best practice to minimize this angle if at all
possible.

Therefore several strategies are employed in order to more
accurately assign thermal values to the model:

• The frequency of NUCs is increased to occur approxi-
mately each minute.

• Frames retrieved from the camera during a NUC are
ignored.

• Only rays which have an incident angle of less than 30
degrees are considered for temperature assignment.

VI. MULTI-MODAL REPRESENTATION

Thermal-infrared image data is typically visualized as a
colormapped 2D image with a colorbar to help the viewer
associate pixel RGB values with approximate temperature
estimates. Using a colormap to represent the range of intensi-
ties allows a human viewer to discern more discrete intensity
levels than if the image were rendered in grayscale [17].

While these schemes can be extended to the 3D voxel
case, a problem remains when attempting to visualize RGB
and thermal-IR data simultaneously. This is because there
are now 4 dimensions (red, green, blue and thermal-IR) but
only 3 channels available (red, green and blue) for visual-
ization. The significant difference in wavelengths between
visible light and thermal-infared radiation results in a large
amount of complementary information between modalities
that would be useful if able to be viewed simultaneously. For
example, in an electrical maintainence context, visualizing
a model in the thermal-infrared modality would enable the
viewer to determine which of many electrical connections
were heating up abnormally due to faulty connections. How-
ever, without seeing the visible data, there may be no way
to retrieve information associated with a text or color-based
label, which may be critical for energy auditing applications
where particular appliances or connections must be easily
identified by a user.

In this paper, two alternative 4D-3D representation
schemes are proposed that attempt to incorporate both
visible-spectrum and thermal-infrared data in the same
model. These are Intensity-Hue (I-H) Mapping and Thermal
Highlighting. Each of these schemes is designed to have
specific advantages for specific circumstances. Both schemes
are used in conjunction with a colormap which is used
to assign RGB values for each level of thermal-infrared
intensity.

I-H Mapping first converts both the colormapped thermal
value and the visible-spectrum RGB value into HSL space.
For the fused value, the hue is from the colormapped thermal

representation, while the luminance is from the visible spec-
trum. In the experiments, luminance is remapped from (0,1)
to (0.2,0.8) so that very dark or light regions do not obscure
the hue representing the temperature. Saturation is set to its
maximum value for all voxels. The effect of this combination
is that the relative temperatures can be interpreted almost as
easily as with a thermal-only colorization, but the texture and
lighting conditions from the visibile spectrum can also be
seen. This is useful for reading text and identifying patterns
that are not able to be discerned from thermal-infrared alone.

Thermal Highlighting uses a weighting scheme to vary
the bias of fused voxels towards either the thermal or
visible modalities. For average thermal-infrared intensities,
representing the average surface temperature of the scene, the
RGB value from the visible-spectrum is used. As the thermal-
infrared intensity deviates increasingly from the mean, the
bias is shifted towards the colormapped thermal value. This
serves the purpose of highlighting the “hottest” and “coldest”
surfaces with strong colors that make them highly salient
to a human viewer, whilst still retaining visible-spectrum
color and texture data for the majority of the scene. This
color scheme provides a solution for when color information
is useful, but the detection of extreme temperatures in the
environment is most critical. The implementation of the
weighting scheme as applied to each voxel is shown in
Equation 1:

frgb = vrgb – w(traw,Traw)
(
trgb – vrgb

)
(1)

where, traw is the original monochromatic thermal value,
and Traw is the distribution of all values for all voxels. The
weighting function w() is then used to bias the final color frgb
towards either the RGB value vrgb or the colormapped ther-
mal value trgb. For our experiments, the weighting function
smoothly transitions from 0 to 1 as a thermal value departs
from the mean thermal value to the minimum or maximum.

Figure 7 shows these two alternative schemes in com-
parison with a thermal-infrared only model and an RGB
only model. The effectiveness of these schemes is discussed
further in the next section.

VII. EVALUATION

From Figure 7 it is seen that the thermal-only visualization
(Figure 7a) clearly shows temperature variation over the
scene, including hot spots such as computers, monitors and
power supplies. However, the RGB only visualization (Figure
7b) reveals many details that are hidden to thermal-infrared,
such as text displayed on the computer monitors, a logo
on the small black box to the left, and the details of this
very paper which can be seen on the table. In practical
inspection applications, these potentially identifying details
(as well as colors) may be needed in the visual representation
simultaneously along with the temperature information.

The proposed I-H Fusion scheme in Figure 7c can be
seen to effectively preserve the representation of the surface
temperatures using the same false colormapping as the
thermal only scheme, whilst simultaneously allowing written
and textural information to be perceived clearly. If color
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Fig. 7: Demonstration of alternative fusion schemes for texturing a 3D model with RGB and thermal data simultaneously.

information must be preserved, the Thermal Highlighting
scheme in Figure 7d is able to do so, whilst still enabling
the user to identify hot and cold spots easily.

For the field experiments, data were captured using ROS
Electric on an Ubuntu 11.10 installation. Camera specifica-
tions are summarized in Table I.

TABLE I: Sensor specifications

Sensor Thermal Camera RGB-D Camera
Make Thermoteknix Microsoft
Model Miricle 307K Kinect
FOV 60◦ 57◦

Resolution 640×480 640×480
Framerate 25 FPS 30 FPS

Wavelength 6 – 14µm -
Range -20 – 150 ◦K -
NEDT 85mK -

We acquired 7 data sequences from 3 different environ-
ments for the evaluation. For all environments, one illumi-
nated and one dark sequence were captured. For environment
3, an additional sequence was captured with the maximum
duration between NUCs reduced from 45 seconds to 10 sec-
onds. The following is a description of the 3 environments:

1) A large room containing various HVAC-related equip-
ment (Figure 8)

2) An underground hot water system (Figure 9)
3) A reverse cycle air-conditioning unit (Figure 10)
For environment 1, we focussed on investigating the

performance of the system under different lighting condi-
tions. From the results in Figure 8, it can be seen that the
appearance of the thermal-only model is virtually identical
regardless of the lighting conditions. Temperature readings
are also consistent, being unaffected by the presence or lack
of visible-spectrum illumination. However, it should be noted
that visualizing the model using I-H Mapping without light-
ing offers no benefit over the thermal-only representation.
The utility of the thermal-highlighting representation scheme
is demonstrated by its ability to draw attention to hot and
cold patches on the surfaces in the scene.

For environment 2, we investigated the geometric char-
acteristics of the model. The camera path shown in Figure
9 includes a pose-axis for a set of arbitrary keyframes,
with red, green and blue representing the x, y and z axes
respectively for the corresponding camera coordinate frame.
The geometric measurements extracted from this model were
found to correspond well with physical measurements. The
ability to accurately measure distances between points in 3D
space using the 3D thermal model has many applications.
For example, in the context of industrial plant monitoring,
the distance between a faulty component with an abnormally
high temperature and a vulnerable component nearby can be
closely tracked. In addition, estimates of energy loss can be
made by calculating the surface area of a hot patch.

For environment 3, we explored the usefulness of the I-
H Mapping method for visualizing 4 dimensions (red, green,
blue and thermal-infrared) in a colorized 3D model. A major
advantage of our approach is the ability to read text-based
labels whilst still simultaneously visualizing the thermal data.
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Fig. 8: Experiment 1: Demonstration of illumination invariance and incorporation of visible-spectrum RGB.
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Fig. 9: Experiment 2: Demonstration of the geometric integrity of the model.
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Fig. 10: Experiment 3: Demonstration of the effectiveness of fused representation for scene investigation.



This is shown in Figure 10.
Many of the major limitations of our system are those

common to RGB-D based camera systems, such as a diffi-
culty in functioning outdoors under strong sunlight, and the
requirement that all surfaces must be within several meters
range of the sensor. In addition, accurate thermal-infrared
values cannot be obtained from surfaces which have atypical
thermal emissivity, such as many polished metals, and glass.

VIII. CONCLUSION

We have presented a highly mobile system capable of
producing high-fidelity 3D models incorporating both color
and surface temperature data. The system is the first of its
kind in that it is hand-held, comprised of readily available
hardware and can perform 3D thermal mapping in total
darkness.

The cost of the system is limited simply by the cost of
a single thermal camera and a single RGB-D camera. Data
acquisition can be done quickly as the system functions in
continuous operation, with a computer stored in a wearable
unit such as a backpack. Being lightweight and hand-held,
the system can be used to map environments not easily
accessed by a wheeled platform such as staircases and clut-
tered areas. The operation of the system and interpretation of
results can be done by an inexperienced operator with only
brief, informal instruction.

The output of our proposed system could see immediate
applications in areas which would benefit from rapid 3D
visualization or analysis of surface temperature information.
These include fire management and response, as well as
within electrical and structural building inspection. We pre-
dict a particularly strong growth in demand for this tech-
nology in the area of building energy audits for improving
energy efficiency, based on the recent increase in literature
regarding these techniques.

Planned future work includes conducting a user study for
an objective understanding of the effectiveness of different
4D-3D representations, and exploring the potential of adap-
tive visualization schemes. In addition, the system will be
improved to operate in more extended environments in real-
time.

ACKNOWLEDGMENT

The authors would like to thank undergraduate student
intern Obadiah Lam for the development of a multispectral
visualization software package which was used for experi-
mentation and to generate several of the images used in the
paper.

REFERENCES

[1] U.S. Energy Information Administration, “Annual energy review,” Free
Pr, USA, Tech. Rep., 2010. 1

[2] D. Borrmann, A. Nuchter, M. Dakulovic, I. Maurovic, I. Petrovic,
D. Osmankovic, and J. Velagic, “The project ThermalMapper thermal
3D mapping of indoor environments for saving energy,” in Proceed-
ings of the 10th International IFAC Symposium on Robot Control
(SYROCO), vol. 10, 2012. 1, 2

[3] Y. Ham and M. Golparvar-Fard, “Rapid 3D energy performance
modeling of existing buildings using thermal and digital imagery,”
in Construction Research Congress. ASCE, 2012. 1, 2

[4] Y. Cho and C. Wang, “3D thermal modeling for existing buildings
using hybrid LIDAR system,” in Computing in Civil Engineering.
ASCE, 2011. 1, 2, 3

[5] J. Wardlaw, M. Gryka, F. Wanner, G. Brostow, and J. Kautz, “A new
approach to thermal imaging visualisation, EngD Group Project,”
2010. 1

[6] S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and
T. Wark, “A mask-based approach for the geometric calibration of
thermal-infrared cameras,” IEEE Transactions on Instrumentation and
Measurement, 2012. 2, 3

[7] P. Moghadam, M. Bosse, and R. Zlot, “Line-based extrinsic calibra-
tion of range and image sensors,” in The 2013 IEEE International
Conference on Robotics and Automation, 2013. 2, 4

[8] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux,
S. Hodges, P. Kohli, J. Shotton, A. J. Davison, and A. Fitzgibbon,
“KinectFusion: real-time dynamic 3D surface reconstruction and
interaction,” in ACM SIGGRAPH 2011 Talks, 2011, p. 23. 2, 4

[9] S. Prakash, P. Y. Lee, and T. Caelli, “3D mapping of surface tem-
perature using thermal stereo,” in Control, Automation, Robotics and
Vision, 2006. ICARCV’06. 9th International Conference on, 2006, p.
14. 3

[10] L. Hoegner and U. Stilla, “Texture extraction for building models
from IR sequences of urban areas,” in Urban Remote Sensing Joint
Event, 2007, 2007, p. 16. 3

[11] D. Iwaszczuk, L. Hoegner, and U. Stilla, “Matching of 3D building
models with IR images for texture extraction,” in Urban Remote
Sensing Event (JURSE), 2011 Joint, 2011, p. 2528. 3

[12] Z. Zhang, “A flexible new technique for camera calibration,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, p. 13301334, 2000. 3

[13] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline
stereo from maximally stable extremal regions,” Image and Vision
Computing, pp. 761–767, 2004. 3

[14] L. Zhang, Z. Liu, and C. Honghui Xia, “Clock synchronization
algorithms for network measurements,” in INFOCOM 2002. Twenty-
First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 1, 2002, p.
160169. 3

[15] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and
laser range finder (improves camera calibration),” in Intelligent
Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, vol. 3, 2004, p. 23012306. 4

[16] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a
laser rangefinder to a camera,” Carnegie Mellon University Robotics
Institute,” Research Showcase, 2005. 4

[17] A. Toet, “Natural colour mapping for multiband nightvision imagery,”
Information Fusion, vol. 4, no. 3, p. 155166, 2003. 5


