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Abstract

Fractional partial differential equations have been applied to many
problems in physics, finance, and engineering. Numerical methods and
error estimates of these equations are currently a very active area of
research. In this paper we consider a fractional diffusion-wave equation
with damping. We derive the analytical solution for the equation
using the method of separation of variables. An implicit difference
approximation is constructed. Stability and convergence are proved
by the energy method. Finally, two numerical examples are presented
to show the effectiveness of this approximation.

1 Introduction

Fractional differential equations have been widely used in recent years in var-
ious applications in science and engineering (see [4]; [5]; [6], [7]; [8]; [9]). The
fractional diffusion equation and the fractional wave equation are two basic
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examples of these equations. The fractional diffusion equation was intro-
duced in physics by Nigmatullin (see [19]; [20] ) to describe diffusion in media
with fractal geometry, which is a special type of porous media. He pointed
out that many of the universal electromagnetic, acoustic, and mechanical
responses can be more accurately modeled by the fractional diffusion-wave
equation. Gorenflo et al. [21] presented the scale-invariant solutions for the
time-fractional diffusion-wave equation in terms of the generalized Wright
function. Agrawal [22, 23] extended this formulation to a diffusion-wave e-
quation that contains a fourth-order space derivative term. Both semi-infinite
and bounded space domains were considered. Mainardi et al. [24] presented
the fundamental solution (Green function) for the space-time fractional dif-
fusion equation. Agrawal [25] used the method of separation of variables to
identify the eigenfunctions and to reduce the fractional diffusion-wave equa-
tion to a set of infinite equations each of which describes the dynamics of an
eigenfunction. A Laplace transform technique was used to obtain the frac-
tional Green function and a Duhamel integral type expression for the system’s
response. Anh and Leonenko [28] presented the Green functions and spectral
representations of the mean-square solutions of the fractional diffusion-wave
equations with random initial conditions. Orsingher and Zhao [26] discussed
the space-fractional telegraph equation and obtained the Fourier transform
of its fundamental solution. A symmetric process with discontinuous tra-
jectories, whose transition function satisfies the space-fractional telegraph
equation, was presented. Beghin and Orsingher [27] proved that the funda-
mental solution to the Cauchy problem for the fractional telegraph equation
can be expressed as the distribution of the composition of two processes.
Moreover they obtained explicit expressions for the probability distribution
of a telegraph process. Orsingher and Beghin [29] studied the fundamen-
tal solutions to time-fractional telegraph equations and obtained the Fourier
transform of the solutions. Chen et al. [30] discussed and derived the ana-
lytical solution of the time-fractional telegraph equation with three kinds of
nonhomogeneous boundary conditions, namely, the Dirichlet, Neumann and
Robin boundary conditions.

Compared with considerable work on the theoretical analysis, however,
only a few authors researched numerical methods and numerical analysis of
the fractional diffusion-wave equation. Povstenko [31] studied the solution-
s of time-fractional diffusion-wave equation in a half-space in the case of
angular symmetry. William and Kassen [32] studied a generalized Crank-
Nicolson scheme for the time discretization of a fractional wave equation, in
combination with a space discretization by linear finite elements. Sun and
Wu [33] gave a fully discrete difference scheme for the fractional diffusion-
wave equation and proved that the difference scheme is uniquely solvable,
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unconditionally stable and convergent in the L∞- norm.
In this paper, we will consider the fractional diffusion-wave equation with

damping: 0D
α
t u(x, t) + λ∂u(x,t)

∂t
= ∂2u(x,t)

∂x2 + µ s(x, t), 0 < x < L, 0 ≤ t ≤ T,

u(x, 0) = f(x), ∂u(x,0)
∂t

= g(x), 0 ≤ x ≤ L,
u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T,

(1)
where λ > 0 and µ are constants, f(0) = f(L) = 0, f(x) and g(x) are both
real-valued and sufficiently well-behaved functions. Here 0D

α
t u(x, t) is the

Caputo derivative, which is defined as

0D
α
t u(x, t) =


1

Γ(2−α)

∫ t

0
(t− s)1−α ∂2u(x,s)

∂s2
ds, 1 < α < 2,

∂2u(x,t)
∂t2

, α = 2. (2)

When α = 2, Eq. (1) is the telegraph equation which governs electrical
transmission in a telegraph cable:

∂2u(x,t)
∂t2

+ λ∂u(x,t)
∂t

= ∂2u(x,t)
∂x2 + µ s(x, t), 0 < x < L, 0 ≤ t ≤ T,

u(x, 0) = f(x), ∂u(x,0)
∂t

= g(x), 0 ≤ x ≤ L,
u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T.

(3)

This equation can also be characterized as a wave equation, governing wave
motion in a string, with a damping effect due to the term λ∂u(x,t)

∂t
. That is,

if λ = 0, Eq. (3) reduces to the wave equation, and if λ ̸= 0 there is some
initial directionality to the wave motion, but this effect rapidly disappears
and the motion becomes completely random.

We will present analytical and numerical solutions for Eq. (1). The
analytical solution is expressed through Mittag-Leffler type functions. This
construction renders computation of the analytical solution difficult. This
motivates us to give an implicit difference scheme for this problem. Their
stability and convergence are proved by the energy method.

The structure of the paper is as follows. In Section 2, a method of separat-
ing variables is effectively implemented for solving Eq. (1). In Section 3, we
present an an implicit difference approximation for this equation with initial
and boundary conditions in a finite domain. In Sections 3 and 4, we dis-
cuss the stability and convergence of the difference approximation. Finally,
numerical results are given to evaluate the method in Section 5.
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2 Fundamental solution

For convenience, we introduce the following definitions and theorem, which
are used later on in this paper.

Definition 1 (see [36]) A real or complex-valued function f(x), x > 0, is
said to be in the space Cα, α ∈ R, if there exists a real number p > α such
that

f(x) = xpf1(x) (4)

for a function f1(x) in C ([0,∞]).
Definition 2 (see [37]) A function f(x), x > 0, is said to be in the space

Cm
α , m ∈ N0 = N ∪ {0}, if and only if fm ∈ Cα.
Definition 3 (see [37]) A multivariate Mittag-Leffler function is defined

as

E(a1,··· ,an),b(z1, · · · , zn) :=
∞∑
k=0

∑
l1 + · · ·+ ln = k,
l1 ≥ 0, · · · , ln ≥ 0,

k!
l1!×···×ln!

n∏
i=1

z
li
i

Γ(b+
n∑

i=1
aili)

,
(5)

in which b > 0, ai > 0, |zi| < ∞, i = 1, · · · , n. In particular, if n = 1 a
multivariate Mittag-Leffler function reduces to a Mittag-Leffler function

Ea,b(z1) =
∞∑
k=0

zk

Γ(b+ ka)
, a, b > 0, |z| <∞. (6)

Theorem 1 Let µ > µ1 > · · · > µn ≥ 0, mi−1 < µi ≤ mi, mi ∈ N0, λi ∈
R, i = 1, · · · , n. The initial value problem (Dµ

∗y)(x)−
n∑

i=1

λi(D
µi
∗ y)(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, · · · ,m− 1, m− 1 < µ ≤ m,
(7)

where Dµ
∗ is the Caputo derivative, the function g(x) is assumed to lie in C−1

if µ ∈ N, in C1
−1 if µ /∈ N, and the unknown function y(x), which is to be

determined in the space Cm
−1, has the representation

y(x) = yg(x) +
m−1∑
k=0

ckuk(x), x > 0, (8)

where

yg(x) =

x∫
0

tµ−1E(.),µ(t)g(x− t)dt, (9)
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and

uk(x) =
xk

k!
+

n∑
i=lk+1

λix
k+µ−µiE(.),k+1+µ−µi

(x), k = 0, · · · ,m− 1, (10)

fulfills the initial conditions ulk(0) = δkl, k, l = 0, · · · ,m− 1. Here,

E(.),β(x) = Eµ−µ1,··· .µ−µn,β(λ1x
µ−µ1 , · · · , λnxµ−µn). (11)

The natural numbers lk, k = 0, · · · ,m−1, are determined from the condition{
mlk ≥ k + 1,
mlk+1 ≤ k + 1.

(12)

In the case mi ≤ k, i = 1, · · · ,m − 1,we set lk := 0, and if mi ≥ k + 1, i =
1, · · · ,m− 1,then lk := n.

Proof. See [37].
In this section, we determine the solution of the following fractional

diffusion-wave equation with damping:

0D
α
t u(x, t) + a∂u(x,t)

∂t
= ∂2u(x,t)

∂x2 + µs(x, t),
0 < x < L, t > 0, 1 < α < 2,

(13)

with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L, (14)

and the nonhomogeneous boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), t > 0, (15)

using the method of separating variables, where f(x), g(x) are continuous
functions satisfying f(0) = µ1(0), f(L) = µ2(0), µ1(t) and µ2(t) are non-zero
smooth functions with first order continuous derivative.

In order to solve the problem with nonhomogeneous boundary, we first-
ly transform the nonhomogeneous boundary condition into a homogeneous
boundary condition. Let

u(x, t) = W (x, t) + V (x, t),

where W (x, t) is a new unknown function and

V (x, t) = µ1(t) +
(µ2(t)− µ1(t))x

L
(16)
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satisfies the boundary conditions

V (0, t) = µ1(t), V (L, t) = µ2(t). (17)

The functionW (x, t) then satisfies the problem with homogeneous boundary
conditions: 0D

α
t W (x, t) + a∂W (x,t)

∂t
= ∂2W (x,t)

∂x2 + µs̃(x, t), 0 < x < L, t > 0.

W (x, 0) = ϕ1(x),
∂W (x,0)

∂t
= ψ1(x), 0 ≤ x ≤ L,

W1(0, t) = W1(L, t) = 0, t ≥ 0,

(18)

in which

s̃(x, t) = −0D
α
t V (x, t)− a(µ

′
1(t) +

µ
′
2(t)−µ

′
1

L
x) + µs(x, t),

ϕ1(x) = f(x)− µ1(0)− 1
L
[µ2(0)− µ1(0)]x,

ψ1(x) = g(x)− µ
′
1(0)− 1

L
[µ

′
2(0)− µ

′
1(0)]x.

(19)

We solve the corresponding homogeneous equation (18) (s̃(x, t) being re-
placed by 0) with the boundary conditions by the method of separation of
variables.

If we let W (x, t) = X(x)T (t) and substitute W (x, t) by it in (18), we
obtain an ordinary linear differential equation for X(x):

X
′′
(x) + λX(x) = 0, X(0) = X(L) = 0, (20)

and a fractional ordinary linear differential equation with the Caputo deriva-
tive for T (t):

0D
α
t T (t) + aT

′
(t) + λT (t) = 0, (21)

where the parameter λ is a positive constant. The Sturm-Liouville problem
given by (20) has eigenvalues

λn =
n2π2

L2
, n = 1, 2, · · ·

and corresponding eigenfunctions

Xn(x) = sin
nπx

L
, n = 1, 2, · · · .

Now we seek a solution of the nonhomogeneous problem (18) of the form

W (x, t) =
∞∑
n=1

Bn(t) sin
nπx

L
. (22)
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We assume that the series can be differentiated term by term. In order to
determine Bn(t), we expand s̃(x, t) as a Fourier series by the eigenfunctions
{sin nπx

L
} :

s̃(x, t) =
∞∑
n=1

s̃n(t) sin
nπx

L
, (23)

where

s̃n(t) =
2

L

∫ L

0

s̃(x, t) sin
nπx

L
dx. (24)

Substituting (22), (23) into (18) yields

∞∑
n=1

sin nπx
L 0

Dα
t Bn(t) + a

∞∑
n=1

sin nπx
L
B

′
n(t) = −n2π2k

L2

∞∑
n=1

sin nπx
L
Bn(t)

+
∞∑
n=1

s̃n(t) sin
nπx
L
.

(25)

By equating the coefficients of both sides we get

0D
α
t Bn(t) + aB

′

n(t) +
n2π2k

L2
Bn(t) = s̃n(t). (26)

Since W (x, t) satisfies the initial conditions in (18), we must have
∞∑
n=0

Bn(0) sin
nπx
L

= ϕ1(x), 0 < x < L,

∞∑
n=0

B
′
n(0) sin

nπx
L

= ψ1(x), 0 < x < L,
(27)

which yields 
Bn(0) =

2
L

L∫
0

ϕ1(x) sin
nπx
L
dx, n = 1, 2, · · · ,

B
′
n(0) =

2
L

L∫
0

ψ1(x) sin
nπx
L
dx, n = 1, 2, · · · .

(28)

For each value of n, (26) and (28) make up a fractional initial value problem.
According to Theorem 1, the fractional initial value problem has the solution

Bn(t) =
t∫
0

τ 2α−1E(2α−1,2α),2α(−aτ 2α−1, −π2n2

L2 τ 2α)s̃n(t− τ)dτ

+Bn(0)u0(t) +B
′
n(0)u1(t),

(29)
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in which

u0(t) = 1− π2n2

L2
t2αE(2α−1,2α),1+2α(−at2α−1,−π

2n2

L2
t2α), (30)

u1(t) = t− at2αE(2α−1,2α),1+2α(−at2α−1,−π2n2

L2 t
2α)

−π2n2

L2 t
1+2αE(2α−1,2α),2+2α(−at2α−1,−π2n2

L2 t
2α),

(31)

where the multivariate Mittag-Leffler function is given in Definition 3. Hence
we get the solution of the initial-boundary value problem (18) in the form

W (x, t) =
∞∑
n=1

Bn(t) sin
nπx
L

=
∞∑
n=1

[
t∫
0

τ 2α−1E(α,2α),2α(−aτα,−π2n2

L2 τ
2α)s̃n(t− τ)dτ

+Bn(0)u0(t) + B
′
n(0)u1(t)] sin

nπx
L
,

(32)

where the functions u0(t) and u1(t) are given in (30) and (31), respectively.
Therefore, we obtain the solution of problem (13)-(15) as

u(x, t) =
∞∑
n=1

[
t∫
0

τ 2α−1E(2α−1,2α),2α(−aτ 2α−1,−π2n2

L2 τ
2α)s̃n(t− τ)dτ

+Bn(0)u0(t) + B
′
n(0)u1(t)] sin

nπx
L

+ µ1(t) +
(µ2(t)−µ1(t))x

L
.

(33)

The convergence of the series (32) and (33) and the finiteness of the integrals
in these equations were discussed in [38].

3 An implicit finite difference approximation

scheme

Let us consider an interval [0, L], and define h = L
M

to be the grid size in the
x-direction. For a positive integer M , we denote xi = ih, 0 ≤ i ≤ M . We
define tn = nτ(n > 0) to be the integration time in 0 ≤ t ≤ T and τ to be
the grid step in time. Define unj = u(jh, nτ). Suppose un = (un1 , · · · , unM) is
an M - dimensional vector. For convenience, let us introduce the notations

(1) ∇tu
n
i = uni − un−1

i ; (2) ∇xu
n
i = uni − uni−1;

(3) δ2xu
n
i = uni+1 − 2uni + uni−1; (4) ∥ un ∥∞= max

0≤i≤M
|uni |;

(5) ∥ un ∥2= (h
M−1∑
j=1

(unj )
2)

1
2 ; (6) ∥ un ∥1= [h

M−1∑
i=1

(
un
i −un−1

i

h
)2]1/2.

In order to construct the implicit finite difference approximation scheme,
we firstly discretize the Caputo derivative 0D

α
t u(x, t).
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Lemma 1 Suppose the third order partial derivative of u(x, t) with re-
spect to x exists in the interval [0, tn]. Let

0D̃
α
t u(x, t)|tnxi

=
1

τΓ(2− α)
[a0u

′

t(xi, tn)−
n−1∑
k=1

(an−k−1 − an−k)u
′

t(xi, tk)

−an−1u
′

t(xi, t0)]

Then (see [33])

0D
α
t u(x, t)|tnxi

=0 D̃
α
t u(x, t)|tnxi

+O(τ 3−α),

with ak =
τ2−α

2−α
[(k + 1)2−α − k2−α].

In order to discretize Eq. (1) at the points (xi,
tn+tn−1

2
) we firstly introduce

the following lemma.
Lemma 2 If the second-order partial derivatives of the function u(x, t)

with respect to the variables t and x are continuous, and (xi, tn) are mesh
points, then

(1) u(xi,
tn+tn−1

2
) = u(xi,tn)+u(xi,tn−1)

2
+O(τ 2),

(2) u
′
t(xi,

tn+tn−1

2
) = u(xi,tn)−u(xi,tn−1)

τ
+O(τ 2),

Proof. (1) Using Taylor’s theorem

u(xi, tn) = u(xi,
tn+tn−1

2
) + u

′
t(xi,

tn+tn−1

2
) τ
2
+ 1

2!
u

′′
tt(xi,

tn+tn−1

2
)( τ

2
)2

+ 1
3!
u

′′′
ttt(xi,

tn+tn−1

2
)( τ

2
)3 +O(τ 4),

(34)

u(xi, tn−1) = u(xi,
tn+tn−1

2
) + u

′
t(xi,

tn+tn−1

2
)(− τ

2
) + 1

2!
u

′′
tt(xi,

tn+tn−1

2
)(− τ

2
)2

+ 1
3!
u

′′′
ttt(xi,

tn+tn−1

2
)(− τ

2
)3 +O(τ 4),

(35)
Adding (34) and (35) yields

u(xi, tn) + u(xi, tn−1) = 2u(xi,
tn + tn−1

2
) +O(τ 2),

i.e.

u(xi,
tn + tn−1

2
) =

u(xi, tn) + u(xi, tn−1)

2
+O(τ 2).

(2) Subtracting (34) from (35) we derive

u(xi, tn)− u(xi, tn−1) = u
′

t(xi,
tn + tn−1

2
)τ +O(τ 3).

Therefore

u
′

t(xi,
tn + tn−1

2
) =

u(xi, tn)− u(xi, tn−1)

τ
+O(τ 2).
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Thus we prove Lemma 2.
Applying Lemma 2 we have

u
′
t(xi,tn)+u

′
t(xi,tn−1)

2
= u

′
t(xi,

tn+tn−1

2
) +O(τ 2)

= u(xi,tn)−u(xi,tn−1)
τ

+O(τ 2)

=
▽tun

i

τ
+O(τ 2).

(36)

From Lemma 1 and Lemma 2 and [33], we easily get

0D
α
t u(x, t)|

tn+tn−1
2

xi

=0 D̃
α
t u(x, t)|

tn+tn−1
2

xi +O(τ 3−α)

= 1
τΓ(2−α)

[a0
▽tun

i

τ
−

n−1∑
k=1

(an−k−1 − an−k)
▽tuk

i

τ
− an−1u

′
t(xi, t0)] +O(τ 3−α).

(37)
According to Taylor’s theorem,

∂2u(xi, tn)

∂x2
=
δ2xu

n
i

h2
+O(h2),

∂2u(xi, tn−1)

∂x2
=
δ2xu

n−1
i

h2
+O(h2),

and using Lemma 2 we obtain

∂2u(xi,
tn+tn−1

2
)

∂x2 = [∂
2u(xi,tn)
∂x2 + ∂2u(xi,tn−1)

∂x2 ]/2 +O(τ 2)

=
δ2xu

n
i +δ2xu

n−1
i

2h2 +O(τ 2) +O(h2).
(38)

It follows from Lemma 2 that

u
′

t(xi,
tn + tn−1

2
) =

▽tu
n
i

τ
+O(τ 2). (39)

Using subsequently (37), (38) and (39), we derive the expression of Eq (1)
at mesh points (xi,

tn+tn−1

2
) :

1
τΓ(2−α)

[a0
▽tun

i

τ
−

n−1∑
k=1

(an−k−1 − an−k)
▽tuk

i

τ
− an−1gi] + λ

▽tun
i

τ

=
δ2xu

n
i +δ2xu

n−1
i

2h2 + µ s(xi,
tn+tn−1

2
) +Rn

i ,

(40)

with initial and boundary conditions

u0i = f(xi), 0 ≤ i ≤M,
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un0 = unM = 0, n ≥ 1.

Here Rn
i = C(τ 3−α + h2) is the local truncation error, C is a constant. In

this way, we get the implicit finite difference scheme for Eq. (1) at the points
(xi,

tn+tn−1

2
) as

1
τΓ(2−α)

[a0
▽tun

i

τ
−

n−1∑
k=1

(an−k−1 − an−k)
▽tuk

i

τ
− an−1gi] + λ

▽tun
i

τ

=
δ2xu

n
i +δ2xu

n−1
i

2h2 + µ s(xi,
tn+tn−1

2
)

(41)

with initial and boundary conditions

u0i = f(xi), 0 ≤ i ≤M,

un0 = unM = 0, n ≥ 1.

Lemma 3 Let uni (0 ≤ i ≤ M,n ≥ 1) be the numerical solution of the
difference scheme (41), then the difference scheme (41) is uniquely solvable.

Proof. Eq. (41) can be written as

− 1
2h2u

n
i+1 + ( τ−α

Γ(3−α)
+ λ

τ
+ 1

h2 )u
n
i − 1

2h2u
n
i−1

= 1
2h2u

n−1
i+1 + ( τ−α

Γ(3−α)
+ λ

τ
− 1

h2 − τ−α

Γ(3−α)
an−1)u

n−1
i + 1

2h2u
n−1
i−1

−
n−2∑
k=1

τ−α

Γ(3−α)
(ak − ak+1)u

k
i +

an−1

τΓ(2−α)
gi + µs(xi,

tn+tn−1

2
),

i = 1, · · · ,M − 1.

(42)

These equations, together with the boundary conditions un0 = unM = 0, result
in a linear system of equations whose coefficient matrix is strictly diagonal-
ly dominant and irreducible. Hence the difference scheme (41) is uniquely
solvable.

4 Stability analysis

Theorem 2 Let uni (0 ≤ i ≤M,n ≥ 1) denote the exact solution for the im-
plicit finite difference scheme (41), then the implicit finite difference scheme
(41) is unconditionally stable.
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Proof. Multiplying Eq. (41) by hτ ▽t u
n
i and summing for i from 1 to

M − 1 and for n from 1 to N we obtain

1
τΓ(2−α)

M−1∑
i=1

N∑
n=1

[a0
▽tun

i

τ
−

n−1∑
k=1

(an−k−1 − an−k)
▽tuk

i

τ
− an−1gi]hτ ▽t u

n
i

+λ
M−1∑
i=1

N∑
n=1

▽tun
i

τ
· hτ ▽t u

n
i

=
N∑

n=1

M−1∑
i=1

δ2xu
n
i +δ2xu

n−1
i

2h2 hτ ▽t u
n
i +

N∑
n=1

M−1∑
i=1

µs(xi,
tn+tn−1

2
)hτ ▽t u

n
i .

(43)

From [33] we have

τ
N∑

n=1

M−1∑
i=1

δ2xu
n
i +δ2xu

n−1
i

2h2 h▽t u
n
i

= −1
2

N∑
n=1

[h
M∑
i=1

(
un
i −un−1

i

h
)2 − h

M∑
i=1

(
un−1
i −un−1

i

h
)2]

= −1
2
(∥ uN ∥1 − ∥ u0 ∥1).

(44)
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Since

1
τΓ(2−α)

M−1∑
i=1

N∑
n=1

[a0
▽tun

i

τ
−

n−1∑
k=1

(an−k−1 − an−k)
▽tuk

i

τ
− an−1gi] · hτ ▽t u

n
i

≥ h
τΓ(2−α)

M−1∑
i=1

[
N∑

n=1

a0(▽tu
n
i )

2 − 1
2

N∑
n=2

n−1∑
k=1

(an−k−1 − an−k)((▽tu
k
i )

2

+(▽tu
n
i )

2)− 1
2

N∑
n=1

an−1(giτ)
2 − 1

2

N∑
n=1

an−1(▽tu
n
i )

2]

= h
τΓ(2−α)

M−1∑
i=1

[
N∑

n=1

a0(▽tu
n
i )

2 − 1
2

N−1∑
k=1

N∑
n=k+1

(an−k−1 − an−k)(▽tu
k
i )

2

−1
2

N∑
n=2

(a0 − an−1)(▽tu
n
i )

2 − 1
2

N∑
n=1

an−1(giτ)
2 − 1

2

N∑
n=1

an−1(▽tu
n
i )

2]

= h
τΓ(2−α)

M−1∑
i=1

[
N∑

n=1

a0(▽tu
n
i )

2 − 1
2

N−1∑
k=1

(a0 − aN−k)(▽tu
k
i )

2

−1
2

N∑
n=2

(a0 − an−1)(▽tu
n
i )

2 − 1
2

N∑
n=1

an−1(giτ)
2 − 1

2

N∑
n=1

an−1(▽tu
n
i )

2]

= h
τΓ(2−α)

M−1∑
i=1

[
N∑

n=1

a0(▽tu
n
i )

2 − 1
2

N∑
k=1

(a0 − aN−k)(▽tu
k
i )

2

−1
2

N∑
n=1

(a0 − an−1)(▽tu
n
i )

2 − 1
2

N∑
n=1

an−1(giτ)
2 − 1

2

N∑
n=1

an−1(▽tu
n
i )

2]

= h
2τΓ(2−α)

M−1∑
i=1

[
N∑

n=1

aN−n(▽tu
n
i )

2 −
N∑

n=1

an−1(giτ)
2)]

≥ h
2τΓ(2−α)

M−1∑
i=1

[aN−1

N∑
n=1

(▽tu
n
i )

2 − (Nτ)2−α

2−α
(giτ)

2]

= h
2τΓ(2−α)

M−1∑
i=1

[t1−α
N τ

N∑
n=1

(▽tu
n
i )

2 − (Nτ)2−α

2−α
(giτ)

2],

(45)
the left-hand side of (43) is bounded below by

1
τΓ(2−α)

M−1∑
i=1

N∑
n=1

[a0
▽tun

i

τ
−

n−1∑
k=1

(an−k−1 − an−k)
▽tuk

i

τ
− an−1gi]h▽t u

n
i

+λ
M−1∑
i=1

N∑
n=1

▽tun
i

τ
· hτ ▽t u

n
i

≥ h
2τΓ(2−α)

M−1∑
i=1

[t1−α
N−1τ

N∑
n=1

(▽tu
n
i )

2 − (Nτ)2−α

2−α
(giτ)

2] + λh
M−1∑
i=1

N∑
n=1

(▽tu
n
i )

2

=
t1−α
N h+2λΓ(2−α)h

2Γ(2−α)

M−1∑
i=1

N∑
n=1

(▽tu
n
i )

2 − t2−α
N h

2τΓ(3−α)

M−1∑
i=1

(giτ)
2.

(46)
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The second term on the right-hand side of (43) is bounded above by

N∑
n=1

M−1∑
i=1

µ · h · τ · s(xi, tn+tn−1

2
)▽t u

n
i

= hτ
N∑

n=1

M−1∑
i=1

2µ
√

τΓ(2−α)

2(t1−α
N +2λΓ(2−α))

s(xi,
tn+tn−1

2
) ·

√
t1−α
N +2λΓ(2−α)

2τΓ(2−α)
▽t u

n
i

≤ hτ
N∑

n=1

M−1∑
i=1

µ2τΓ(2−α)

2(t1−α
N +2λΓ(2−α))

(s(xi,
tn+tn−1

2
))2

+
N∑

n=1

M−1∑
i=1

t1−α
N h+2λΓ(2−α)h

2Γ(2−α)
· (▽tu

n
i )

2.

(47)
Subtracting (47) from (43) yields

−1
2
(∥ uN ∥21 − ∥ u0 ∥21) + hτ

N∑
n=1

M−1∑
i=1

µ2τΓ(2−α)

2(t1−α
N +2λΓ(2−α))

(s(xi,
tn+tn−1

2
))2

≥ − t2−α
N h

2τΓ(3−α)

M−1∑
i=1

(giτ)
2,

(48)

that is,

∥ uN ∥21 ≤ ∥ u0 ∥21 +h
N∑

n=1

M−1∑
i=1

µ2τ2Γ(2−α)

t1−α
N +2λΓ(2−α)

(s(xi,
tn+tn−1

2
))2

+
t2−α
N h

2τΓ(3−α)

M−1∑
i=1

(giτ)
2.

(49)

So we can define the energy norm as ∥ un ∥E=∥ un ∥1=

√
h

M∑
i=1

(
un
i −un−1

i

h
)2.

Considering the formula (see [34])

∥ un ∥∞≤
√
L

2
∥ un ∥E,

we can directly obtain that the implicit finite difference (41) is uncondition-
ally stable.

5 Convergence analysis

We denote the exact solution of the partial differential equation (1) by
u(xi, tn), the exact solution of the finite difference equation (41) by uni , and
the error by eni = u(xi, tn) − uni , e

n = (en1 , · · · , enM−1). Subtracting (41) from
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(40) we obtain
1

τΓ(2−α)
[a0

▽teni
τ

−
n−1∑
k=1

(an−k−1 − an−k)
▽teki
τ

] + λ
τ
▽t e

n
i

=
δ2xe

n
i +δ2xe

n−1
i

2h2 +Rn
i , 1 ≤ i ≤M − 1, n ≥ 1,

e0i = 0, 0 ≤ i ≤M,
en0 = enM = 0, n ≥ 1.

(50)
From (49) we get

∥ en ∥21≤ h
n∑

k=1

M−1∑
i=1

τ 2Γ(2− α)

t1−α
n + 2λΓ(2− α)

(Rk
i )

2.

Because Rk
i = C(h2 + τ 3−α), we get

∥ en ∥21 ≤ hτ2Γ(2−α)

t1−α
n +2λΓ(2−α)

n∑
k=1

M−1∑
i=1

(Rk
i )

2

≤ hτΓ(2−α)

t1−α
n +2λΓ(2−α)

n(M − 1) | C |2 (h2 + τ 3−α)2

= |C|2nτΓ(2−α)h(M−1)

t1−α
n +2λΓ(2−α)

(h2 + τ 3−α)2

≤ | C |2 Γ(2− α)tαnL(h
2 + τ 3−α)2

≤ | C |2 Γ(2− α)LTα(h2 + τ 3−α)2.

(51)

Furthermore

∥ en ∥∞≤
√
L

2
∥ en ∥1;

thus

∥ en ∥∞≤
| C | L

√
Γ(2− α)Tα

2
(h2 + τ 3−α).

So as h→ 0, τ → 0 we have ∥ en ∥∞→ 0. This proves that the finite difference
scheme is convergent.

6 Numerical results

Example 1. In order to show the approximation order of Eq. (1), we con-
struct an example with an analytic solution. Consider the following fractional
wave equation with damping (α = 1.7, λ = 1.0) 0D

1.7
t u(x, t) + ∂u(x,t)

∂t
= ∂2u(x,t)

∂x2 + s(x, t), 0 < x < 2, t ≥ 0,

u(x, 0) = 0, ∂u(x,0)
∂t

= 0, 0 ≤ x ≤ 2,
u(0, t) = u(2, t) = 0, t ≥ 0,

(52)
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Table 1: Comparison of maximum errors (MERR) and error rate (ER) at
time t = 1.0, α = 1.7

h τ MERR ER
0.1 0.05 4.43333328E-003 -
0.05 0.025 1.86513124E-003 2.3770
0.025 0.0125 7.73686093E-004 2.4107
0.0125 0.00625 3.18271105E-004 2.4309
0.00625 0.003125 1.30274618E-004 2.4438
0.003125 0.0015625 5.31628461E-005 2.4505

where

s(x, t) =
2x(2− x)

Γ(1.3)
t0.3 + 2t x(2− x) + 2t2.

The exact solution of the equation is u(x, t) = t2x(2− x).
At the mesh points, we denote u(xi, tn) and uni as exact solution and

numerical solution of Eq. (52) respectively. Let the maximum error En =
max
0≤i≤M

| u(xi, tn) − uni |, and the error rate R ≈ log2(
En

E2n ).Table 1 shows

the numerical errors at α = 1.7, t = 1 between the exact solution and the
numerical solutions obtained. It can be seen that

R =
error1
error2

≈ (
τ1
τ2
)1.3 = 21.3.

Thus we obtain that the order of convergence of the numerical method is
O(h2 + τ 3−α) = O(h2 + τ 1.3). These results are in good agreement with our
theoretical analysis.

Example 2. We consider the following fractional wave equation with
damping: 0D

1.7
t u(x, t) + ∂u(x,t)

∂t
= ∂2u(x,t)

∂x2 + sin(x), 0 < x < 2, t ≥ 0,

u(x, 0) = 0, ∂u(x,0)
∂t

= 0, 0 ≤ x ≤ 2,
u(0, t) = u(2, t) = 0, t ≥ 0,

(53)

The evolution results for α = 1.7, 0 ≤ t ≤ 1.0, 0 ≤ x ≤ 2; 1.1 ≤ α ≤
2, 0 ≤ t ≤ 1.0, x = 1.8, and 1.1 ≤ α ≤ 2, t = 1.0, 0 ≤ x ≤ 2 are shown in
Figures 1, 2, and 3, respectively. Figures 1-3 show that the system exhibits
diffusion-wave behaviors. From Figure 3, it can be seen that the solution
continuously depends on the time fractional derivative.
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Figure 1: The numerical approximation when α = 1.7.
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Figure 2: The numerical approximation u(x, t) for various α when x = 1.8.
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Figure 3: The numerical approximation u(x, t) for various α when t = 1.0.

7 Conclusions

In this paper, a fractional diffusion-wave equation with damping has been
described and demonstrated. We derive the analytical solution of the equa-
tion using the method of separation of variables. The analytical solution
is expressed through Mittag-Leffler type functions. An implicit difference
approximation is constructed. Stability and convergence are proved by the
energy method. Two numerical examples are presented to show the effective-
ness of the difference method. The energy method and analytical techniques
can also be extended to other fractional partial differential equations.
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