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Featureless Visual Processing for SLAM in Changing 
Outdoor Environments* 

Michael Milford, Ashley George 

Abstract. Vision-based SLAM is mostly a solved problem providing clear, 
sharp images can be obtained. However, in outdoor environments a number of 
factors such as rough terrain, high speeds and hardware limitations can result in 
these conditions not being met. High speed transit on rough terrain can lead to 
image blur and under/over exposure, problems that cannot easily be dealt with 
using low cost hardware. Furthermore, recently there has been a growth in in-
terest in lifelong autonomy for robots, which brings with it the challenge in out-
door environments of dealing with a moving sun and lack of constant artificial 
lighting. In this paper, we present a lightweight approach to visual localization 
and visual odometry that addresses the challenges posed by perceptual change 
and low cost cameras. The approach combines low resolution imagery with the 
SLAM algorithm, RatSLAM. We test the system using a cheap consumer cam-
era mounted on a small vehicle in a mixed urban and vegetated environment, at 
times ranging from dawn to dusk and in conditions ranging from sunny weather 
to rain. We first show that the system is able to provide reliable mapping and 
recall over the course of the day and incrementally incorporate new visual 
scenes from different times into an existing map. We then restrict the system to 
only learning visual scenes at one time of day, and show that the system is still 
able to localize and map at other times of day. The results demonstrate the vi-
ability of the approach in situations where image quality is poor and environ-
mental or hardware factors preclude the use of visual features. 

1 Introduction 

Visual mapping and navigation on robots has advanced rapidly in the last decade. 
There are now many vision-based techniques including FAB-MAP [1], MonoSLAM 
[2],  FrameSLAM [3], V-GPS [4], Mini-SLAM [5]  and others [6-10] that are com-
petitive with or superior to range sensor-based algorithms, with routes as long as 1000 
km being mapped [1]. The majority of these systems have been developed and dem-
onstrated largely under certain conditions: high quality imaging sensors have been 
used, on relatively stable vehicle platforms and in bright illumination conditions, 
minimizing problems such as motion blur and changes in appearance. However, these 
are restrictive constraints, especially as robots are expected to operate over longer 
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periods of time and with lower hardware costs. Many growing fields such as envi-
ronmental monitoring could benefit greatly from the availability of a small, low cost 
robot platform with an all-day, all weather mapping and navigation capability that is 
not reliant on GPS or environmental beacons. Towards that aim, in this paper we seek 
to address two of the major challenges facing visual mapping systems: 

1. The difficulty of obtaining high quality images required by feature-based tech-
niques, when using low cost hardware at speed on off-road terrain and in poor 
lighting. 

2. The problem of achieving reliable place recognition in an outdoor environment 
over the course of a day and during all types of weather. 

Figure 1 illustrates these two challenges using camera images. Large changes in il-
lumination (compare Figure panels 1a and 1d) or changes in the weather (see rain 
drops on lens in Figure 1c) can radically alter the types of features detectable by a 
state of the art algorithm such as Scale-Invariant Feature Transforms (SIFT) [11] and 
Speeded Up Robust Features (SURF) [12]. Furthermore, in poor lighting with low 
cost hardware and on off-road terrain, image blur is hard to avoid (Figure 1c, also 
Figure 8-4). Motion blur affects both the place recognition and odometry components 
of a mapping system, while change in appearance over the course of a day primarily 
affects place recognition. 

 

Fig. 1. Visual change in an environment over the course of a day and in varying 
weather – (a) dawn, (b) morning, (c) rain and (d) dusk. As well as changing illumina-
tion other challenges are present such as motion blur from the jerky motion of the 
platform when travelling off-road. 

To some degree these problems can be reduced by using more capable sensing 
equipment and implementing techniques such as high dynamic range [13]. However, 
high dynamic range techniques degrade in viability as the speed of the platform in-
creases. Without active illumination of an environment, even long exposure images 
can look very different to an image obtained in sunlight during the day. Motion esti-
mation from motion blurred images can be achieved by tracking edges, but is more 
difficult to incorporate into a mapping process [14]. More capable sensors and lenses 
are expensive, usually bulkier and heavier to accommodate larger imaging sensors 
and lenses, and require more power. While this approach is viable on large expensive 
platforms where the sensor cost is relatively small, there is an increasing interest in 
cheap robot platforms for large scale operations such as ecology monitoring. On these 
platforms size and cost considerations make such an approach unfeasible. Ultimately, 



even with sophisticated hardware, there are physical limits to optics which are 
unlikely to be solved in the near future.  

In this paper, we describe research towards enabling any-time vision-based SLAM 
for outdoor robots in changing environments equipped with cheap consumer-grade 
cameras. The focus is on scenarios where, due to the combination of cost limitations, 
illumination changes and challenging terrain, the ability to reliably recognize tradi-
tional visual features is limited. We present a lightweight visual recognition algorithm 
based on patch normalization techniques that provides a high degree of invariance to 
changes in environment conditions such as lighting. A patch tracking algorithm pro-
vides visual odometry information, while the pose and visual filtering is provided by 
the biologically inspired RatSLAM system. We demonstrate the system working at 
real-time speed in a mixed off-road and urban environment at four different times of 
day with different environmental conditions – at dawn, during the morning, during a 
rain shower, and in fading light at dusk. The visual recognition algorithm is able to 
consistently recognize familiar places despite the changes in conditions. The visual 
odometry system is able to provide “good enough” motion information to perform 
reliable mapping and localization over all the datasets when combined with the visual 
loop closures. We also demonstrate the system is able to map and localize off all the 
datasets even when restricted to learning visual templates only at one time of day, 
showing that a single exposure to the environment is enough to enable navigation at 
the other times of day. 

The work presented here builds on previous research including mapping of a sub-
urban road network at different times of day [15, 16] and sequence-based localization 
on road networks [17, 18]. Unlike the highly constrained nature of a road network, 
this system is applied in a mixed urban and vegetated environment with off-road ar-
eas. The degree of perceptual change encountered in the datasets presented here is 
qualitatively larger than in [15]. We present a featureless approach to visual matching, 
rather than the feature and intensity profile-based techniques used in [15]. In contrast 
to [17, 18], which were localization only studies, we implement a full SLAM solution 
that calculates and uses motion information to build a map and localize within that 
map. 

2 Approach 

In this section we describe the visual recognition and visual odometry algorithms, and 
give a brief overview of the RatSLAM system. 

2.1 RatSLAM System 

Processing of the data output by the visual recognition and visual odometry algo-
rithms is performed by the RatSLAM system. RatSLAM is a robot SLAM system 
based on models of the navigation processes thought to occur in the rodent brain, 
specifically the rodent hippocampus [19]. RatSLAM has been demonstrated mapping 



a large road network in static conditions [20] and a smaller road network with mod-
erately varying illumination [15].  

The RatSLAM system consists of three modules, shown in Figure 2. The local 
view cells encode visual scenes in the environment, with cells incrementally recruited 
to represent new distinct visual scenes as they are encountered. The pose cells are a 
network of highly interconnected neural units connected by both excitatory (positive 
or reinforcing) and inhibitory (negative) connections. They encode an internal repre-
sentation of the robot’s pose state, and filter both the place recognition and self-
motion information provided by the visual recognition and visual odometry processes. 
Finally, the experience map is a graphical map made up of nodes called experiences 
that encode distinct places in the environment, and connected by transitions that en-
code odometry information. A graph relaxation algorithm [20] is run continuously on 
the experience map, resulting in the continuous map evolution seen in the video ac-
companying the paper and also shown in Figures 9 and 11. Further information on the 
RatSLAM system can be found in [20, 21].  

 

Fig. 2. The RatSLAM system. The local view cells encode distinct visual scenes, 
while the pose cells encode an internal representation of the robot’s pose and perform 
filtering of place recognition estimates and self-motion information. The experience 
map is a graphical map formed by the combination of the output from the local view 
cells, pose cells and self-motion information. 

2.2 Patch-Based Visual Odometry 

The visual odometry system is a modified version of the system deployed on a quad 
rotor in [22]. The system tracks movement of two image patches to calculate transla-
tional speed and yaw of the platform, as shown in Figure 3a. The primary assump-
tions are that of a non-holonomic platform at a consistent height above the ground 
surface. Frame to frame motion of the top patch provides the yaw information and 
bottom patch motion provides the translational speed. The odometry gain was cali-
brated by running the car along a known length of ground and calculating the required 
gain constant, given in Table 2. Patch comparisons were performed by calculating the 



mean of the intensity difference between each pixel in the patch compared to the cor-
responding pixel in the previous image. Further implementation details are provided 
in [22]. 

 

Fig. 3. (a) Patch-based visual odometry and (b) patch-normalized template matching. 

2.3 Patch-Normalized Visual Template Learning and Recognition 

The visual place recognition process is illustrated in Figure 3b. Camera images are 
captured and the bottom half removed. While the ground is useful for patch-based 
visual odometry, its proximity means that its appearance, when using a “whole of 
image” based recognition process, is sensitive to slight changes in vehicle pose when 
closing the loop, which tends to make place recognition brittle. 

Once cropped, the image is resolution reduced to 48×24 pixels. Patch normaliza-
tion is applied to the image in discrete square patches (rather than continuously over 
the image). Patch normalized pixel intensities, I', are given by: 
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where s is the area in pixels of the template sub frame. If the minimum difference 
across all existing templates and relative offsets is larger than a threshold Dt, a new 
template is learned. Otherwise an existing template is matched, leading to activation 



of pose cells associated with that visual scene and a possible loop closure event. The 
range of horizontal offsets provides (assuming the majority of objects in the image are 
relatively distal) some invariance to camera pose. This invariance enables loop clo-
sure even when routes are repeated at slightly different lateral offsets or at different 
orientations. This capability is important for off-road motion (in contrast to movement 
along a road network) where repeated paths vary due to environmental change or 
variation in the path executed by the human or autonomous navigation system. 

3 Experimental Setup 

This section describes the testing platform, camera, environment and datasets used for 
this work. 

3.1 Testing Platform and Camera 

The testing platform was a Team Losi Mini-LST2 remote control car with a Contour+ 
camera mounted facing forwards. The camera has a fisheye wide-angle lens (2.8mm 
focal length, approximately 170º field of view) and logged GPS data. Figure 4a shows 
the platform, while Figure 4b shows an autonomous version under development. Due 
to the risk of water damage during the rain dataset and extreme nature of some of the 
off-road terrain (small logs, deep leaf litter) the non-autonomous platform was used. 
The video feed and GPS coordinates were logged onboard and processed offline. To 
reduce the effect of vibration and jerkiness due to the rough terrain and small size of 
the vehicle, videos were run through a stabilizing filter (VirtualDub Deshaker filter, 
available at [23], default values used). The use of a stabilizer introduces a one frame 
lag between image capture and the image being available to the localization and odo-
metry routines, equivalent to 33 milliseconds at real-time speed. 

3.2 Testing Environment and Datasets 

Experiments were run over a one-week period in an area including the Queensland 
University of Technology campus and the City Botanic Gardens in Brisbane, Austral-
ia (Figure 4c). The testing area measures approximately 200m × 200m and contains a 
mixture of open grass, pathways, gravel baths, shrubbery, garden beds and buildings. 
The car was remotely driven by an operator following the vehicle. 

A set of four datasets were gathered under a range of environmental conditions and 
at different times of the day (Table 1). Each dataset repeated the same route, although 
minor deviations were inevitable due to pedestrian traffic, construction work and the 
difficulty of the terrain in sections. A single traverse of the route was approximately 
1310 meters in length (calculated by tracing the route on an aerial map) and took an 
average of approximately 15 minutes to complete. The car was jammed twice by 
branches and leaf litter and was stopped temporarily to remove the obstructing ob-
jects. These sections of video were cut, resulting in several discontinuous jumps in the 
footage. Frames were logged at 30 frames per second, with every frame processed by 



the visual odometry system but only every 5th frame processed by the visual template 
system, due to the high degree of overlap between neighboring frames. The 4 datasets 
are available online1.   

 

Fig. 4. (a) Testing platform, a small but capable off-road enthusiast hobby car with 
mounted consumer camera, and (b) an autonomous version under development. (c) 
The vehicle path, with order indicated by the letter sequence. The numbers show the 
sample frame match locations from Figure 8. Aerial photos from Google Maps. 

 

Fig. 5. GPS was unreliable especially under tree cover and around buildings. 

An attempt was made to use GPS tracking (CEP 10 m) as a ground truth measure. 
However, due to the heavily vegetated and urban canyon nature of much of the envi-
ronment, the quality of the GPS tracking was too poor to be useful (far worse than 
specifications), as shown in Figure 5. 
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Table 1. Dataset descriptions. Times in Australian Eastern Standard Time (AEST). 

Dataset Name Time and Comments 

Dawn 
5:45 am. Sun just above local horizon, most areas in shade, exces-

sive sun flare in sections. 

Morning 
10:00 am. Sun high up in sky, large ground areas in bright sun-

light. 

Rain 10:30 am. Rain drops on lens, wet ground, overcast and dark. 

Dusk 
6:45 pm. Sun setting, extremely dark in heavily vegetated areas, 

significant motion blur and lack of ground texture. 

Table 2. Parameters. 

Parameter Value Description 

r 32 pixels Odometry patch size 

ς 0.375 °/pixel Yaw gain constant 

ν 0.0125 m/pixel Translational speed constant 

ρ 10 pixels Odometry patch offset range 

s 48×24 pixels Template sub frame size 

Dt 0.06 Template learning threshold 

σ 4 pixels Template offset range 

4 Results 

In this section we present the visual odometry, place recognition and mapping results 
as well as computational statistics. 

4.1 Visual Odometry 

Figure 6 shows the trajectory output by the patch-based visual odometry system for 
all four datasets, for the common starting pose of (x,y,θ) = (0 m, 0 m, 0 degrees). Al-
though the trajectories clearly do not match on a global scale, subsections of the route 
are similar for all four datasets, such as the small loop (sequence EFGEF) in Figure 4. 
The differences in the odometry-only trajectories were primarily caused by underes-
timation of yaw angles and translational speeds in the rain dataset, probably due to 
reflections in the water lying on the ground, and underestimation of the translational 
speed in the dusk dataset, due to the poor illumination and consequent lack of ground 
textures. The differences in translational speed calculations are most easily seen by 
looking at the length of the first section of each trajectory starting at (0,0) leading up 
to the first right turn. 

4.2 Visual Place Recognition 

Figure 7 displays a graph of the active (recognized or just learnt) visual template ver-
sus frame number over all four datasets in the order they were processed, starting with 



the dawn dataset. The area of the graph below the dashed line is the area in which 
visual templates learned during the first dawn traverse of the environment were rec-
ognized during the subsequent datasets. The system was able to recognize places from 
the dawn dataset at regular intervals throughout the other three datasets. However, the 
graph also shows additional templates representative of the subsequent datasets being 
learnt in parallel and bound to those locations in the map. Learning of new templates 
was due to the zigzag nature of much of the robot’s movement through the environ-
ment, resulting in different image sequences each time a section was traversed.  

 

Fig. 6. Vehicle trajectories calculated by the patch-based visual odometry system for 
the four datasets. 

 

Fig. 7. Visual template learning and recognition over the four datasets. 

4.3 Matched Frames 

Figure 8 shows a selection of ten pairs of frames that were matched by the visual 
template system for locations throughout the entire route. The original video frames 
are shown for clarity purposes, although the actual processed images were 48×24 
pixel patch-normalized images. The corresponding locations are shown in Figure 4. 



The visual system was able to match frames with significantly varying appearance 
due to (1, 3) sun flare, (2) obscuring leaf litter, (4) motion blur, (5-7) major shadow 
change, (3, 6, 9-10) large overall illumination change and (10) water on the camera 
lens. The frames also show the challenge faced by the visual odometry system due to 
jerky vehicle motion (4) and lack of ground texture in low light (1, 3, 6-10). 

 

Fig. 8. Matched visual templates over the four datasets. Corresponding locations are 
shown in Figure 4. 

 

Fig. 9. Experience map evolution over time. Experience maps are from after the (a) 
dawn, (b) morning, (c) rain and (d) dusk datasets. 

4.4 Experience Maps 

The final test of the system was to create a map of all four datasets. Figure 9 shows 
the evolution of the experience map after running through each dataset in order. The 
map is topologically correct after the dawn and morning datasets, although globally it 



is warped. The map shrinks slightly, primarily due to the underreporting of transla-
tional velocity in the dusk dataset and to a lesser extent the rain dataset. However, the 
constant loop closure within and across datasets ensures the map topology remains 
correct. The final map layout, although not metrically precise, has the correct topolo-
gy. A video of the experience map and frame matching processes is available online2. 

4.5 SLAM with Only Visual Templates from a Single Time 

To test the ability of the system to map and localize with only the visual templates 
learned at one particular time of day, we conducted an additional experiment where 
template learning was disabled after the first dawn dataset. From that point onwards 
the visual template system either recognized a familiar template or reported no match, 
but did not learn any additional templates (Figure 10). Figure 11 shows the evolution 
of the experience map under these conditions. There are three locations where place 
recognition failed briefly, all at places where the vehicle was turning corners and 
actual physical paths varied significantly. Although successful loop closures were 
achieved surrounding these points, the variation in visual odometry meant that the 
graph relaxation process was not able to draw these trajectories together to correctly 
overlap. The local topology in these areas is incomplete but correct, meaning naviga-
tion could still be achieved but might be suboptimal. 

 

Fig. 10. Visual template recognition performance with learning only enabled for the 
dawn dataset. Non-matches where a template would normally be learned appear as 
number zero templates. 

 

Fig. 11. Experience map evolution with template learning disabled after the first data-
set. Map shown after the (a) dawn, (b) morning, (c) rain and (d) dusk datasets. 
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4.6 Compute and Storage 

To demonstrate the feasibility of real-time performance on low cost hardware, we 
present some pertinent computational statistics. The primary storage requirements 
come from the visual template library. Over all four datasets, a total of 3353 templates 
were learned, taking up 5.8 MB of storage. Compute wise, the system performs all 
computation on a fixed time basis, except for visual template comparison and expe-
rience map graph relaxation which are both order O(N) (experience map graph relaxa-
tion approximates to order O(N) in a typical sparsely interconnected map). Each of 
these two processes was run on a separate CPU on a standard desktop PC. At the end 
of the dusk dataset when the system was at maximum load the visual template system 
was performing 104 million pixel to pixel comparisons per second of data, which ran 
at real-time speed in unoptimized Matlab code. Experience map graph relaxation is 
performed with leftover compute cycles. At the end of the experiment, an average of 
156 global graph relaxation iterations were performed per second of real-time. This 
figure can be compared with the 8 iterations per second performed at the end of a 
previous indoor mapping experiment [24], which was still sufficient to maintain a 
map that was used for robot navigation. A low power onboard CPU (such as the 
1 GHz processor on the robot shown in Fig. 4b) should be capable of running the 
entire system in real-time for an environment of this size. The RatSLAM system used 
as the mapping backend has had lightweight versions implemented on a Lego Mind-
storms NXT [25] and a small mobile robot called the iRat [26], demonstrating the 
feasibility of running the system on a cheap platform. 

5 Discussion 

This paper presents a study into the feasibility of using a lightweight, “whole of im-
age” approach to vision-based SLAM on small, low cost vehicles expected to operate 
in a wide range of environments and in highly varied conditions. The visual 
processing techniques require no prior training3, and are demonstrated to enable topo-
logical mapping in a varied vegetated and urban environment. Furthermore, the re-
sults demonstrate the viability of the approach in a wide range of conditions such as 
varying time of day and weather. Lastly, the techniques are able to create and consis-
tently localize within a topological map even when it is not possible to obtain high 
quality visual odometry, such as during the rain and dusk datasets, and when tradi-
tional visual features are not available in blurred or very dark images. Here we discuss 
the limitations of the presented approach and areas for future work. 

We used a forward facing camera only, and hence had no ability to close the loop 
when retracing a route in the opposite direction. However, past work has demon-
strated that such a forward facing system can be adapted to utilize omnidirectional 
imagery [24, 27]. The ability of the system to function with low resolution imagery 
would also be likely to enable the combination of cheap and compact panoramic im-
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aging rigs with a low cost camera (the mirror could be mass produced with loose 
specifications). In contrast, much current robot research makes use of high end pano-
ramic imaging setups such as the Point Grey Ladybug 2 (~10000 USD). Alterna-
tively, two perspective cameras mounted in opposite directions along the primary 
vehicle axis would provide forward-backwards recognition capability. 

The visual template system is not suited to open-field operation in large open envi-
ronments where movement is unrestricted and paths are not necessarily repeated. 
However, this restriction is also present in many vision-based SLAM systems devel-
oped to date. One common approach to overcoming this limitation is to combine a 
SLAM system with absolute positioning information provided by GPS, when avail-
able. It is interesting to note that GPS availability and visual SLAM viability tend to 
be complementary, at least in the system presented in this paper. In the mixed urban 
and vegetated environment, when GPS was unavailable the vehicle was usually trav-
elling along urban canyons or off-road paths where paths are constrained, situations in 
which the presented approach works well. 

Future work will pursue a number of research directions beyond those mentioned 
above. The first will be to pursue optimization of the template matching algorithm, 
which is predicted to be the computationally limiting factor as environments get lar-
ger. Secondly, we will investigate how best to add a feature-based mapping technique 
such as FAB-MAP; FAB-MAP will provide a higher degree of pose invariance when 
features are detectable, while the visual template method will bind together map loca-
tions where features are not reliably detected. Lastly, the quality of the maps exceeds 
that of those used successfully for robot navigation previously [24], suggesting navi-
gation using these maps is feasible. We will investigate combining state of the art 
local obstacle avoidance techniques with RatSLAM navigation algorithms [24] in 
order to enable navigation under challenging and changing environmental conditions. 
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