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Abstract Trivium is a bit-based stream cipher in the final portfolio of the eSTREAM project. In this paper,
we apply the approach of Berbain et al. to Trivium-like ciphers and perform new algebraic analyses on them,
namely Trivium and its reduced versions: Trivium-N , Bivium-A and Bivium-B. In doing so, we answer an
open question in the literature. We demonstrate a new algebraic attack on Bivium-A. This attack requires
less time and memory than previous techniques which use the F4 algorithm to recover Bivium-A’s initial
state. Though our attacks on Bivium-B, Trivium and Trivium-N are worse than exhaustive keysearch, the
systems of equations which are constructed are smaller and less complex compared to previous algebraic
analysis. Factors which can affect the complexity of our attack on Trivium-like ciphers are discussed in detail.

1 Introduction

Trivium [7] is a bit-based stream cipher designed by De Canniére and Preneel in 2005 and selected in
the final portfolio of the eSTREAM project [12]. Trivium has a 288-bit nonlinear feedback shift register
(NLFSR) and uses an 80-bit key and an 80-bit IV to generate keystream. However, it is more commonly
represented in the literature as based on three non-autonomous binary NLFSRs: A, B, and C, of sizes
93, 84 and 111 bits respectively [4]. Each key-IV pair can be used to generate up to 264 bits of keystream.
In each iteration, Trivium uses nonlinear state-update functions to update three bits of the internal
state. The keystream bit is expressed as a linear combination of the contents of six stages of its internal
state. Trivium’s structural simplicity makes it a popular cipher to cryptanalyse, but to date, there are
no attacks in the public literature which are faster than exhaustive keysearch. To aid the analysis of
Trivium, Bivium-A and Bivium-B were proposed by Raddum [16] in 2006 and Trivium-N was proposed
by Schilling and Raddum [17] in 2011.

Both Bivium-A and Bivium-B have a 177-bit NLFSR and use an 80-bit key and an 80-bit IV to
generate keystream. Bivium-A/B are also more commonly represented in the literature as based on
two non-autonomous binary NLFSRs: A and B, of sizes 93 and 84 bits respectively. In each iteration,
nonlinear state-update functions update two bits of the internal state. For Bivium-A, each keystream
bit is a linear combination of the contents of two stages of its internal state, while for Bivium-B, each
keystream bit is a linear combination of the contents of four stages of its internal state. Trivium-N is a
scaled down version of Trivium, where N is the total internal state size. Trivium-N preserves the full
structure of the original Trivium cipher, but scales down the sizes of the three registers proportionally.

Algebraic attacks [8] are commonly applied when analysing stream ciphers. They have been par-
ticularly effective in attacking keystream generators based on linear feedback shift registers (LFSRs).
However, solving systems of equations produced by stream ciphers which use nonlinear state-update
functions is more complex as the degree of equations increases as more iterations of the state-update
function are applied. This may make the system of equations computationally infeasible to solve. Two
different approaches to reducing the degree of such equations are proposed by Raddum [16] and Berbain
et al. [3].

Raddum proposed using a algebraic relabelling technique, where the state-update bits of Trivium
and Bivium-A/B are represented using new variables, instead of nonlinear combinations of initial state
bits. Using this relabelling technique, the degree of equations added into the system never grows higher
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Parameter Bivium-A Bivium-B Trivium Trivium-N

q 2 2 3 3

q′ 1 1 1 1

j 1 2 3 3

Table 1. Values of q, q′, and j for Trivium-like stream ciphers

than the degree of the nonlinear equation used in a keystream generator’s state-update function. The
tradeoff however, is that the system of equations now contains more variables.

For keystream generators which use a linear output function (which Trivium-like ciphers are examples
of), Berbain et al. [3] presented an approach of expressing new feedback bits of an NLFSR as linear
combinations of keystream bits and internal state bits. By expressing the new feedback bits of an NLFSR
as linear combinations of keystream bits and the previous internal state bits, the equations representing
the feedback bits of an NLFSR will always be linear. Berbain et al. claim that their technique can be
extended to ciphers in which q > 1 bits of internal state are non-linearly updated at each step and
q or more linear combinations of the state are output as keystream. However, the extension of these
techniques to ciphers in which q > 1 bits of internal state are non-linearly updated, while only q′ < q
linear combinations of the state-bits are output has not been demonstrated and is posed as an open
question.

Contributions of paper. In this paper, we answer Berbain et al.’s above-mentioned open question.
Using Trivium-like ciphers as a case-study, we present a new method of representing the feedback bits of
Trivium, Trivium-N and Bivium-A/B as linear combinations of internal state bits and keystream bits.
Trivium-like ciphers make excellent case-studies, as q′ < q in all three cases. To assist us in our analysis,
we introduce a new variable j, which describes the number of registers the keystream generation function
takes inputs from. We show that the value of j has a significant impact on the success of our algebraic
attack on these ciphers. The values of q′, q and j for Bivium-A, Bivium-B, Trivium and Trivium-N are
given in Table 1.

2 Algorithm specifications and current cryptanalysis

In this section, we review the specifications of Trivium and Trivium-N in Section 2.1 and Section 2.2
respectively and Bivium-A/B in Section 2.3. We omit the description of the initialisation process for
the four ciphers, as it has no impact on our analysis. The reader is referred to the specifications of
Trivium [7] and Bivium-A/B [16] for a description of the initialisation process.

2.1 Trivium

Let Ai denote the stages for register A and Ai(t) represent the contents of Ai at time t, for 0 ≤ i ≤ 92.
Similar notations are used for registers B and C. The state-update functions of Trivium are as follows:

Ai(t+ 1) =

{
A24(t) ⊕ C45(t) ⊕ C0(t) ⊕ C1(t)C2(t) i = 92,

Ai+1(t) 0 ≤ i ≤ 91.

Bi(t+ 1) =

{
B6(t) ⊕A27(t) ⊕A0(t) ⊕A1(t)A2(t) i = 83,

Bi+1(t) 0 ≤ i ≤ 82.

Ci(t+ 1) =

{
C24(t) ⊕B15(t) ⊕B0(t) ⊕B1(t)B2(t) i = 110,

Ci+1(t) 0 ≤ i ≤ 109.

At time t, Trivium’s output function generates a keystream bit as follows:

z(t) = A27(t) ⊕A0(t) ⊕B15(t) ⊕B0(t) ⊕ C45(t) ⊕ C0(t) , t ≥ 0
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We extend this representation of Trivium and consider the keystream as a sequence related to the
three underlying register sequences. The initial bits in sequence A produced by register A are Ai, for
0 ≤ i ≤ 92. Similarly, the initial bits in sequence B produced by register B are Bi, for 0 ≤ i ≤ 83, and
the initial bits in sequence C produced by register C are Ci, for 0 ≤ i ≤ 110. The values of these initial
elements for all three sequences are determined by the initialisation process.
The new sequence bits Aα+92, Bα+83 and Cα+110 produced after α iterations of Trivium’s state-update
function can be calculated as follows:

Aα+92 = Aα+23 ⊕ Cα+44 ⊕ Cα−1 ⊕ CαCα+1 , α ≥ 1 (1)

Bα+83 = Bα+5 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 , α ≥ 1 (2)

Cα+110 = Cα+23 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 , α ≥ 1 (3)

The keystream bit can be written as a linear combination of two bits each from sequences A, B and C
as follows:

zα−1 = Aα+26 ⊕Aα−1 ⊕Bα+14 ⊕Bα−1 ⊕ Cα+44 ⊕ Cα−1 , α ≥ 1 (4)

Note that the sequence-based approach is analogous to the relabelling approach of Raddum [16]. In the
sequence-based approach, the equations representing sequence bits Aα+92, Bα+83 and Cα+110 for α ≥ 1
are the same equations which represent the feedback bits of Trivium in Raddum’s approach. In this
paper, we use these sequence equations in our algebraic analysis.

2.2 Trivium-N

Trivium-N ’s NLFSRs A and B have a state size 93 × β bits and 84 × β bits respectively, rounded to
the nearest integers, where β = N

288 . The size of C will be the integer which, when summed with the
size of A and B, gives N . For example, for N = 40, β = 40

288 ≈ 0.1389 and the sizes of registers A, B
and C are 13, 12 and 15 bits respectively. The stages used in the state-update function and keystream
generation functions in Trivium-N are also scaled down by a factor of β, rounded to the nearest integer.
For example, if 24 is used as a tap position in Trivium, the corresponding tap position for Trivium-40 will
be 24 × 0.1389 = 3.3336 ≈ 3. The tap positions 1 and 2 are unchanged to ensure that the state-update
functions remain nonlinear. The state-update functions for Trivium-40 are as follows:

Ai(t+ 1) =

{
A3(t) ⊕ C6(t) ⊕ C0(t) ⊕ C1(t)C2(t) i = 12,

Ai+1(t) 0 ≤ i ≤ 11.

Bi(t+ 1) =

{
B1(t) ⊕A4(t) ⊕A0(t) ⊕A1(t)A2(t) i = 11,

Bi+1(t) 0 ≤ i ≤ 10.

Ci(t+ 1) =

{
C3(t) ⊕B2(t) ⊕B0(t) ⊕B1(t)B2(t) i = 14,

Ci+1(t) 0 ≤ i ≤ 13.

The keystream equation for Trivium-40 is:

z(t) = A4(t) ⊕A0(t) ⊕B2(t) ⊕B0(t) ⊕ C6(t) ⊕ C0(t) , t ≥ 0

Table 2 shows the size of registers A, B and C, along with the keysize for various Trivium-N ciphers
analysed in this paper.

Current algebraic cryptanalysis of Trivium and Trivium-N . After observing 288 bits of key-
stream, Raddum’s [16] system of equations for Trivium consisted of 954 equations in 954 variables.
Applying techniques from graph theory to this system of equations, Raddum estimated that the initial
state of Trivium can be recovered in about 2164 operations. Simonetti et al. [19] attempted to solve
Raddum’s system of equations for Trivium using the F4 algorithm [13] implemented in Magma [6]
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N A B C Key size N A B C Key size

40 13 12 15 11 60 19 17 24 17

50 16 15 19 14 70 23 20 27 19

Table 2. Size of registers and keysizes for various Trivium-N

and reported that the computation did not finish. Borghoff et al. [5] investigated the use of heuristic
optimization methods such as hill climbing algorithms as a technique for solving Raddum’s system
of equations, but again, the estimated complexity is worse than exhaustive keysearch. Schilling and
Raddum [17,18] analysed Trivium and Trivium-N using an algebraic technique called the Compressed
Right Hand Side representation combined with Binary Decision Diagrams (BDD) [1]. The number of
paths in the BDD ranged from 293.77 for N = 40 to 2160.49 for N = 70. As these numbers do not take
into account the complexity of finding the correct path in the BDD which solves the equations, their
approach is clearly worse than exhaustive keysearch. Other forms of algebraic attacks include attacks
using SAT-solvers [15] and cube attacks [2,9,14]. However, none of the attacks are better than exhaustive
keysearch for the original Trivium proposal.

2.3 Bivium-A/B specifications

Let Ai denote the stages for register A and Ai(t) represent the contents of Ai at time t, for 0 ≤ i ≤ 92.
A similar notation is used for register B. The state-update functions of both Bivium-A and Bivium-B
are as follows:

Ai(t+ 1) =

{
A24(t) ⊕B15(t) ⊕B0(t) ⊕ (B1(t)B2(t)), i = 92,

Ai+1(t), 0 ≤ i ≤ 91.

Bi(t+ 1) =

{
B6(t) ⊕A27(t) ⊕A0(t) ⊕ (A1(t)A2(t)), i = 83,

Bi+1(t), 0 ≤ i ≤ 82.

Bivium-A’s output function generates a keystream bit as follows:

z(t) = B15(t) ⊕B0(t) , t ≥ 0

Similarly, the output function of Bivium-B is as follows:

z(t) = A27(t) ⊕A0(t) ⊕B15(t) ⊕B0(t) , t ≥ 0

We extend this representation of Bivium-A/B in a similar way to our treatment of Trivium by considering
the keystream as a sequence related to the two underlying register sequences. Using this approach, the
new sequence bits Aα+92, Bα+83 produced after α iterations of Bivium-A/B’s state-update function can
be calculated as follows:

Aα+92 = Aα+23 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 , α ≥ 1 (5)

Bα+83 = Bα+5 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 , α ≥ 1 (6)

The keystream bit for Bivium-A can be written as a linear combination of two bits from sequence A as
follows:

zα−1 = Bα+14 ⊕Bα−1 , α ≥ 1 (7)

The keystream bit for Bivium-B can be written as a linear combination of two bits each from sequences
A and B as follows: zα−1 = Aα+26 ⊕Aα−1 ⊕Bα+14 ⊕Bα−1, for α ≥ 1.
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Current algebraic cryptanalysis. There are several attacks on Bivium-A and Bivium-B which are
faster than exhaustive keysearch. Raddum [16] used his relabelling approach and formed a system of
equations for Bivium-A/B which consists of 399 equations in 399 variables. Combining techniques from
graph theory with these system of equations, he was able to recover the initial state of Bivium-A in
about a day. He estimated that the complexity of recovering the initial state of Bivium-B will take about
256 seconds. Eibach et al. [11] also identified factors which can have an impact on the computation of a
Gröbner basis on Bivium-B, and proposed an optimised Gröbner Basis attack. They estimate that by
guessing 42 internal state bits, an optimised Gröbner Basis attack on Bivium-B can recover the initial
state in about 239.12 seconds. Other forms of algebraic analysis on Bivium-A/B use Boolean Satisfiability
(SAT) solvers [10,15] to recover the initial state. By guessing certain bits of initial state, these attacks
using SAT solvers are faster than exhaustive keysearch.

3 New analysis of Trivium-like ciphers

In this section, we apply Berbain et al.’s approach to the analysis of the three Trivium-like ciphers:
Bivium-A in Section 3.1, Trivium in Section 3.2 and Trivium-N in Section 3.3. As the analysis of
Trivium can easily be applied to Bivium-B, the reader is referred to Appendix A for our analysis of
Bivium-B. We note however, that although the system of equations for Bivium-B using our approach is
less complex than Raddum’s approach, it is still worse than exhaustive keysearch.

3.1 New analysis of Bivium-A

Bivium-A’s keystream bit zα−1 depends on two sequence bits produced by register B, Bα+14 and Bα−1,
for α ≥ 1. The keystream bit z69 can be calculated as: z69 = B84 ⊕ B69. Applying Berbain at al.’s
technique to the equation for z69, we can determine the equation for calculating the sequence bit B84:

B84 = z69 ⊕B69 (8)

The equations representing the sequence bits Bα+83 for α ≥ 1 can then be written as follows: Bα+83 =
zα+68 ⊕Bα+68, for α ≥ 1. In this section, we analyse two different approaches for recovering the initial
state of Bivium-A. Both these approaches use a divide-and-conquer approach to form two systems of
equations.

First approach. We use a divide-and-conquer approach to recover the initial state of Bivium-A. This
involves forming two systems of equations and solving them sequentially. The first system of equation
recovers the sequence produced by register B, while the second system of equation recovers the sequence
produced by register A.

We start to form the first system of equations with 84 variables. For the first 69 iterations, we add
two equations and one variable into the system of equations: one equation representing the keystream,
and one equation and variable representing the sequence bit for register B. A set of these equations are:

zα−1 ⊕Bα−1 ⊕Bα+14 = 0 , α ≥ 1 (9)

Bα+83 ⊕ zα+68 ⊕Bα+68 = 0 , α ≥ 1 (10)

where Equation 9 is a keystream equation for Bivium-A and Equation 10 the new equation representing
Bivium-A’s sequence bit Bα+83 derived from our new analysis. After the first 69 iterations, we do not
need to add subsequent keystream equations, as these would have already been added into the system
of equations and are redundant. To illustrate this, consider the equation describing the sequence bit
B84: B84 = z69 ⊕B69. When we try to add the equation describing z69 at the 70’th iteration into the
system of equations, we have

z69 ⊕B69 ⊕B84 = 0

z69 ⊕B69 ⊕ z69 ⊕B69 = 0 (11)
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Equation 11 cancels out and does not allow us to represent a sequence bit in terms of a linear
combination of keystream bits and other sequence bits. For the last 39 iterations, we only add the
equations representing the sequence bits for B and would have generated enough sequence bits for
register B to have generated 177 bits of keystream, the same amount of keystream which needed to
be observed to construct Raddum’s fully-determined system of equations. This gives us a final system
of equations after 108 iterations consisting of 192 variables in 177 equations. Solving this system of
equations using the F4 algorithm gives us 215 possible solutions.

For each of these 215 possible solutions, we form the second system of equations to recover the
initial state of A, substituting the sequence bits of B recovered in the first system of equations into the
second system of equations. We start to form the second system of equations with 93 variables. At each
iteration, we add two equations and one variable: one equation and variable relating the sequence bits
of register A with the sequence bits of A and B, and one equation relating the sequence bit of register
B with the sequence of A and B. It is not necessary to add the keystream equations into this system of
equations, as these would have already been solved in the first system of equations. A set of equations
added in this system of equations consists of:

Aα+92 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 ⊕Aα+23 = 0 , α ≥ 1

Bα+83 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 ⊕Bα+5 = 0 , α ≥ 1

After 108 iterations, we have a system of equations consisting of 201 variables in 216 equations. Solving
this system of equations can recover the sequence of A. An attacker can then use this initial state to
generate some keystream, and check if the keystream generated matches that which was captured. If it
is, the attacker can be confident they have recovered the correct initial state.

During the construction of the first system of equations, it is necessary to generate a system of
equations beyond 69 sets of equations, even though adding any further variables and equations does not
reduce the number of solutions obtained when the first system of equations are solved. To illustrate this,
let us assume we had only generated 69 new equations representing the new sequence bits Bi+83, for
0 ≤ i ≤ 68 and obtain a system of equations consisting of 153 variables in 138 equations. During the
construction of the second system of equations, we also add 69 sets of equations. This will result in a
second system of equations consisting of 162 variables in 138 equations. Solving the second system of
equations will give us 224 possible solutions. Combined with the number of solutions in the first system
of equations, this gives us a total number of 215 × 224 = 239 possible solutions. While this is still better
than exhaustive keysearch, it is clearly more than the 215 possible solutions we have to originally try in
our proposed first approach.

Second approach. In our first approach, the second system of equations consists of 201 variables in
216 equations. As there are more equations than variables, some equations can be removed from the
system and may not increase the number of expected solutions. In this section, we investigate the effect
that removing these equations and variables has on the system of equations obtained.

The construction of the second system of equations requires adding two new variables and one
equation at each iteration. The set of equations due to be added on the 93rd iteration is:

A185 ⊕B107 ⊕B92 ⊕B93B94 ⊕A116 = 0

B176 ⊕A119 ⊕A92 ⊕A93A94 ⊕B98 = 0

At this point we obtain a system of equations consisting of 186 variables in 186 equations. To build this
second system of equations, we need 84 + 93 = 177 variables in register B to form the second system of
equations. This means adding 177 − 84 = 93 sets of equations into our first system of equations. We
use the same construction method used in forming the first system of equations for our first approach
to form the system of equations in our second approach. This first system of equations consist of 177
variables in 162 equations. As each equation contains one keystream variable, only 162 keystream bits
are needed to solve the first system of equation. This is less than the 177 keystreams bits needed to
uniquely define the initial state. Therefore the second approach will not be effective at recovering the
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initial state and we do not consider this approach in our analysis of Trivium-like ciphers any further. In
the remainder of this paper, our approach on Bivium-A refers to the first approach presented earlier.

Comparison of attacks. Details of the systems of equations formed for using Raddum’s approach
and our approach are shown in Table 3. The linear equation column lists the number of linear equations
in the respective system of equations, while the quadratic column entry lists the number of quadratic
equations for the respective system of equations. The total equation column lists the total number
of equations for the respective system equations, while the K.S. column lists the length of keystream
needed to solve the relevant system of equations. The variable column lists the number of variables in
the respective system of equations. Finally, the expected solution (Expected solns) column lists the
expected number of solutions obtained by solving the respective system of equations.

For Raddum’s technique, we need to solve a single system of equations consisting of 399 variables in
399 equations and require 177 bits of keystream to solve. Of these 399 equations, 177 are linear and 222
are quadratic. Our approach requires solving two systems of equations sequentially. The first system of
equations has 192 variables in 177 linear equations and requires 177 bits of keystream to solve, while the
second system has 108 linear and 108 quadratic equations and does not require any further keystream
bits to solve. As we are solving two systems of equations separately, the complexity of our attacks is
more likely less compared to Raddum’s technique. We evaluate these findings in our experimental results,
as is shown in Table 4. For the purposes of comparison, we attempted, via computer experiments, to

Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
Solns

Raddum 177 222 399 177 399 1

Our approach (Step 1) 177 0 177 177 192 215

Our approach (Step 2) 108 108 216 0 201 1

Table 3. Details for the system of equations in Bivium-A for both approaches

recover the initial state of Bivium-A using two different approaches: Raddum’s system of equations and
our approach. The time and memory complexities of the two approaches were compared. We solve the
system of equations in these techniques using the F4 algorithm implemented in Magma. In both cases,
the keystream were generated using the same initial state. We then attempted to solve the system of
equations in two ways: (1) without guessing any bits, solve the system of equations for Bivium-A and
(2) load 15 correct initial state bits of Register B, and solve the system of equations for Bivium-A.

The maximum amount of memory set in our experiments is 87 040 MB (85 GB). Table 4 lists the
time and memory requirements needed for Magma to solve the system of equations. A Did Not Finish
(DNF) entry signifies that Magma was not able to solve the system of equations using the allocated
amount of memory. Magma was not able to solve Raddum’s system of equations despite the allocation
of 87 040 MB of RAM for the experiments when we did not guess any bits in the system of equations,
whereas the attack using our approach was able to obtain a solution in 13.9 hours using 135.56 MB of
RAM. If 15 correct bits of B were loaded into register B, Raddum’s and our approach were able to
recover the initial state within nine seconds using at most 13.34 MB of RAM. However, our approach
required only 3.29 seconds to obtain a solution, whereas needed for Raddum’s approach needed 8.95
seconds. Note that it is difficult to directly compare the effectiveness of our approach against the attacks
by others [15,16] as those attacks were implemented on different software and hardware platforms, which
may have an effect on the time and memory required to recover the initial state of Bivium-A.
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No Guessing Load correct 15 bits into register B

Time Memory (MB) K.S (bits) Time Memory (MB) K.S (bits)

Raddum [16] DNF 87 040 177 8.95 s 13.34 177

Our approach 13.9 hrs 135.56 177 3.29 s 13.31 177

Table 4. Time, memory, and data complexities for recovering initial state of Bivium-A

3.2 New algebraic analysis on Trivium

The keystream generation function of Trivium takes as input one linear combination of six sequence
bits: two sequence bits from A, B and C respectively. The 67’th and 70’th keystream bits are:

z66 = A93 ⊕A66 ⊕B81 ⊕B66 ⊕ C111 ⊕ C66 (12)

z69 = A96 ⊕A69 ⊕B84 ⊕B69 ⊕ C113 ⊕ C68 (13)

Using Berbain et al.’s approach to reorder Equations 12 and 13, we can determine the equation describing
the sequence bits for registers A, B and C:

Aα+92 = zα+65 ⊕Aα+65 ⊕Bα+80 ⊕Bα+65 ⊕ Cα+110 ⊕ Cα+65 , α ≥ 1

Bα+83 = zα+68 ⊕Aα+95 ⊕Aα+68 ⊕Bα+68 ⊕ Cα+112 ⊕ Cα+67 , α ≥ 1

Cα+110 = zα+65 ⊕Aα+92 ⊕Aα+65 ⊕Bα+80 ⊕Bα+65 ⊕ Cα+65 , α ≥ 1

However, we can not use all three sets of equations simultaneously since they are actually equivalent.
For example, calculating B84 requires knowledge of the sequence bit A96. The equation representing A96

is:

A96 = z69 ⊕A69 ⊕B84 ⊕B69 ⊕ C114 ⊕ C69 (14)

If we substitute Equation 14 into the equation representing the sequence bit B84, we get

B84 = z69 ⊕ z69 ⊕A69 ⊕B84 ⊕B69 ⊕ C114 ⊕ C69 ⊕A69 ⊕B69 ⊕ C114 ⊕ C69 = B84

This does not allow us to express B84 in terms of the sequence bits and keystream. Therefore, our
technique only allows us to express the sequence bits for a single register in terms of internal state and
keystream bits. Therefore, the divide-and-conquer approach used in our analysis of Bivium-A cannot be
applied here.

In the following analysis, we express the sequence bits Ai, for i ≥ 93 using our approach, and the
sequence bits of Bi, for i ≥ 84 and Ci, for i ≥ 111 using the sequence update function described in
Section 2.1. This new system of equations starts off with 288 variables. For each of the first 66 iterations,
we add three new variables and four new equations to the system of equations. A set of these equations
consists of:

Aα+92 ⊕ zα+65 ⊕Aα+65 ⊕Bα+80 ⊕Bα+65 ⊕ Cα+110 ⊕ Cα+65 = 0, , α ≥ 1

Bα+83 ⊕Bα+5 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 = 0 , α ≥ 1

Cα+110 ⊕ Cα+23 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 = 0 , α ≥ 1

zα−1 ⊕Aα+26 ⊕Aα−1 ⊕Bα+14 ⊕Bα−1 ⊕ Cα+44 ⊕ Cα−1 = 0 , α ≥ 1

After 66 iterations, similar to Bivium-A and Bivium-B, adding the keystream equations into the system
of equations are redundant, and we can stop adding variables and equations into the system. This gives
us a final system of equations consisting of 486 variables in 264 equations. The comparison of both
systems of equations is shown in Table 5. Column headings are the same as Table 3. Our system of
equations has less quadratic equations compared to Raddum’s technique. Raddum’s technique has 666
quadratic equations, compared to 132 quadratic equations in ours. The drawback of our system of
equations however, is that our system of equations have a greater excess of variables over equations
to Raddum’s technique. In Raddum’s technique, solving a system consisting of 954 variables in 954
equations should yield a unique solution. In contrast, solving our system of equations consisting of 486
variables in 264 equations using the F4 algorithm will yield 2222 possible solutions, which is worse than
exhaustive keysearch. Reasons for this will be discussed in Section 4.4.
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Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
solns

Raddum 288 666 954 288 954 1

Our approach 132 132 264 132 486 2222

Table 5. Details for the system of equations in Trivium

3.3 New analysis on Trivium-N

We constructed the system of equations for certain Trivium-N ciphers, where N ranged from 40–70
and calculated the complexity of an attack using our approach. The details of the system of equations
constructed using our approach, along with the number of paths in the BDD constructed by Schilling
and Raddum [17] is shown in Table 6. Comparing the number of solutions for various Trivium-N ciphers

Cipher Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
solns

Paths in
BDD [17]

Trivium-40 18 18 36 18 67 231 293.77

Trivium-50 22 22 44 22 83 239 2115.60

Trivium-60 26 26 52 26 99 247 2140.35

Trivium-70 32 32 64 32 118 254 2160.49

Table 6. Details for the system of equations in Trivium-N

in Table 6 against the number of paths in the BDD for the same Trivium-N ciphers in Schilling and
Raddum’s paper, we see that our approach’s system of equation is less complex. For example, for N = 70,
we have a system of equation consisting of 64 equations in 118 variables, which when solved, can give
254 possible solutions, whereas Trivium-70’s system of equations using Schilling and Raddum’s approach
has 2160.49 paths in its BDD. However, our approach is still worse than exhaustive keysearch for all
Trivium-N ciphers analysed. In a subsequent paper, Schilling and Raddum [18] improved on their earlier
results. For N = 40, they note that the maximum number of nodes in the BDD for N = 40 is 223.69.
However, there is insufficient detail in their description to determine the time complexity of computing
the solution using the BDD.

4 Discussion

In Section 3, we investigated the possibility of recovering the initial state of Trivium-like ciphers using
the approach of Berbain et al. They left the application of their technique to keystream generators
which updated q > 1 bits of internal state at each iteration and only output q′ < q linear combinations
of the state-bits as an open question. In this paper, we answer this open question. In this section, we
will show that it may be possible to recover the initial states of some Trivium-like ciphers faster than
exhaustive keysearch using our analysis. This depends on three factors:

– The relationship between j (the number of registers the keystream generation function takes as
input to generate keystream) and q (the number of registers whose internal state is updated at each
iteration).

– The largest index among the stages in a register used as input to the output function and whose
sequence bits are expressed using Berbain et al.’s approach.

– The size of each register in Trivium-like ciphers.

4.1 Case when j < q

In the case of Bivium-A, where j < q, it was shown that it is possible to recover the initial state of the
cipher using the F4 algorithm with a complexity that is less than recovering the same initial state using
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Raddum’s relabelling technique in conjunction with the F4 algorithm. It is shown through computer
simulations that the recovery of Bivium-A’s initial state using our approach can be significantly faster
than Raddum’s technique if the same amount of keystream is used in both attacks. The complexity
of our new approach can be calculated as follows: Let Tf denote the total time taken needed for the
F4 algorithm to solve both systems of equations; with T1 and T2 denoting the time needed for the F4
algorithm to solve the first and second system of equations respectively, and NA denoting the number of
solutions obtained in solving the first system of equations. The complexity of recovering the initial state
of Trivium-like ciphers where j < q is:

Tf = T1 + (NA × T2) (15)

4.2 Case when j = q

For Bivium-B, Trivium and Trivium-N , j = q. In this case it is not possible to use a divide-and-conquer
approach to recover the initial state of the keystream generators. To recover the initial state of these
ciphers using our approach requires us to solve a single system of equations. However when j = q,
using our approach to build this system of equations is problematic. Since a keystream equation is
essentially being used to represent a sequence bit, our approach does not allow us to add an additional
(keystream) equation after a certain number of iterations. After this point, the numbers of variables and
equations added into the system of equations at each iteration are the same, as was demonstrated in our
analysis of Bivium-B, Trivium and Trivium-N . If the numbers of variables are greater than the number
of equations prior to the point at which the keystream equation becomes redundant, this system will
always have more variables than equations. Adding further equations does not allow us to reduce the
number of solutions obtained when the system of equations is solved and also adds to the complexity of
solving these equations. In Bivium-B, Trivium and Trivium-N , trying all possible solutions obtained
to determine which is the correct initial state when the system of equations is solved is worse than
exhaustive keysearch. The complexity of recovering the initial state of Trivium-like ciphers where j = q
is Tf = Ts +NA, where Ts is the time taken to solve the system of equations and NA is the number of
solutions obtained when the system of equations is solved.

4.3 Determining NA

In our analyses of Trivium-like ciphers, the number of solutions obtained when solving a particular
system of equations is found by counting the number of equations and variables added at each iteration.
This set of solutions can be generalised. To do this, we need to examine the state-update function and
output function used in Trivium-like ciphers. Let SR be the total size of the registers whose sequence
bit(s) is not written in terms of keystream and internal state bits and whose stages are used during the
construction for a particular system of equations. For Trivium-like ciphers where j < q, this system of
equations is the first system of equations. For Trivium-like ciphers where j = q, this system of equation
is the sole system of equations obtained when we perform an algebraic analysis on them. For the register
whose sequence bit is written in terms of keystream and internal state bits, let Dl denote the largest
index among the stages used as input to the output function. The size of the set of solutions, NA

obtained when the system of equations is solved is:

NA = 2SR × 2Dl (16)

To illustrate this, consider the system of equations for Trivium constructed using our approach and
analysed in Section 3.2. For Trivium, SR will be the combined size of registers B and C, SR = 84+111 =
195 and Dl is the index of the largest stage of register A (A27) whose contents is used as input to
Trivium’s output function and whose sequence bits are expressed using Berbain et al.’s approach. That
is, Dl = 27. The total set of solutions obtained when the respective values for SR and Dl are substituted
into Equation 16 is 2195 × 227 = 2222. This is the same size as the set of solutions obtained in our
previous analysis in Section 3.2.

A summary of the results of our analyses of certain Trivium-like ciphers with regards to the number
of equations, variables, and solutions obtained when their system of equations are formed and solved
using our approach, and their relationship with SR and Dl, is given in Table 7.
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Cipher Parameters Step 1 Step 2

SR Dl Eqn Var Soln (NA) Eqn Var Soln

Bivium-A 0 15 177 192 215 216 201 1

Bivium-B 84 27 198 309 2111 N.A N.A N.A

Trivium 195 27 264 486 2222 N.A N.A N.A

Trivium-50 34 5 44 83 239 N.A N.A N.A

Table 7. Details on systems of equations in our approaches for certain Trivium-like ciphers

4.4 Relationship between inputs to output function and NA

Our new attack on Bivium-A can be prevented by making changes to the keystream output function.
Recall the keystream generation equation for Bivium-A shown in Equation 7 and the equation representing
the sequence bit B84, shown in Equation 8. As was discussed in our previous analyses of Bivium-A
in Section 3.1, the number of solutions obtained when the first system of equations is solved has an
important effect on the effectiveness of our attack. If the number of solutions obtained is less than
the total number of possible keys, it may be possible to recover the initial state of the cipher faster
than exhaustive keysearch, otherwise it will be worse than exhaustive keysearch. In our approach, a
keystream equation is used to represent a feedback bit, preventing us from adding keystream equation at
some future point due to it being redundant. In Equation 16, we showed how it is possible to calculate
the size of the set of solutions when a system of equations is solved for Trivium-like ciphers. To make
an attack on such a cipher worse than exhaustive keysearch we need to modify the output function
of Trivium-like ciphers such that this happens early on in the first system of equations. For example,
suppose the output function of Bivium-A was, instead:

zα−1 = Bα−1 ⊕Bα+82 , α ≥ 1

The sequence bit B84, rewritten in terms of linear combinations of keystream and internal state bits
is now B84 = z1 ⊕ B1. We start to form the first system of equations with 84 variables. For the first
iteration, two equations and one variable are added. From this point onwards, the number of variables
will always be 83 more than the number of equations. If this system of equations is solved, it will give
283 possible solutions. Equation 16 can also be used to determine the size of NA. In this example, the
value Dl = 83 and SR = 0, as the contents of register A are not used during the construction of the
first system of equations. Therefore, substituting the values of Dl and SR into Equation 16 will also
yield NA = 2SR × 2Dl = 20 × 283 = 283. Since the set of solutions for the first system of equations is
already larger than the number of all possible keys, it is not worthwhile to generate and solve the second
system of equations. In general, for Trivium-like ciphers where j < q, if Dl > 80, the number of solutions
obtained when the first system of equations is solved will be more than the total possible number of
secret keys and the complexity of the entire attack will be worse than exhaustive keysearch. It should
also be noted that Equation 16 only gives an indication of how large the set of solutions will be when
the system of equations is solved. It does not take into account the complexity of solving the system
of equations. As was shown in Equation 15, the time T1 and T2 needs to be taken in account when
calculating the total time complexity Tf of solving the system of equation. If Tf has a complexity which
is worse than exhaustive keysearch, the cipher is still considered secure against our algebraic analyses.

Conversely, assume Dl is a small value. We use Trivium to illustrate how this change reduces the
number of solutions obtained when the system of equations was solved. Assume that the output function
for Trivium is instead:

zα−1 = Aα ⊕Aα−1 ⊕Bα+14 ⊕Bα−1 ⊕ Cα+44 ⊕ Cα−1 , α ≥ 1

We use our approach to represent the new sequence bit equations for register A. In this case, Dl = 1
and SR = 111 + 84 = 195. Substituting these values into Equation 16 gives the following value
NA = 2SR × 2Dl = 2195 × 21 = 2196. Recall from Section 3.2 that the size of the set of solutions when
the system of equations formed using our approach is solved was 2222. By changing the inputs to the



12

output function, the size of the set of solutions obtained is 2196, a decrease by a factor of 226 in the
number of possible solutions. However, examining all 2196 candidate solutions to determine the correct
initial state is worse than exhaustive keysearch.

For Trivium-like ciphers where j = q, Equation 16 allows us to determine the number of solutions
obtained when the system of equations is solved. For Trivium, the size of each register is greater than
80 bits. Therefore, changing the position of the stages used as input to the output function such that Dl

is as small as possible may not be sufficient for our algebraic analysis to succeed, as 2SR will always be
larger than the number of possible secret keys. Similar to the case when j < q, Equation 16 does not
take into account the complexity of solving the system of equations. Here the time Ts needs to be taken
in account when calculating the total time complexity Tf of solving the system of equation.

4.5 Relationship between size of registers and NA

The size of the registers used in the formation of the first system of equations can have an effect on the
number of solutions obtained for the first system of equations. For example, suppose that Trivium’s
three registers, A, B, and C had lengths 198, 45 and 45 bits, where the output function used is the same
as the original Trivium proposal. During the construction of the system of equations, we rewrite the
feedback bits of register A in terms of sequence bits and keystream bits. Therefore, Dl = 27. For this
particular case, SR = 45 + 45, and NA = 290 × 227 = 2117. Recall from Section 3.2 that the expected
size of the set of solutions obtained when the original system of equations using our approach is solved
was 2222. By changing the size of the registers, the expected size of the set of solutions obtained is 2117,
a 2105 factor decrease in the number of possible solutions. However, going through all 2117 possible
solutions to determine which is the correct initial state remains worse than exhaustive keysearch.

5 Conclusion

This paper analysed Trivium-like ciphers using the approach of Berbain et al. Our analysis answers
their open question regarding the possibility of extending the technique to keystream generators which
update q > 1 bits of internal state at each iteration but only output q′ < q linear combinations of the
state bits. We have also presented an alternative approach of representing the output sequence from a
register in Trivium-like ciphers as a linear combination of initial state bits and keystream bits.

In particular, we demonstrated a new algebraic attack on Bivium-A. Our approach requires less time
and memory than previous techniques which use the F4 algorithm to recover Bivium-A’s initial state.
However, applying the new approach to Bivium-B, Trivium-N and Trivium is worse than exhaustive
key search. We also demonstrated that if j < q, it may be possible to mount a divide-and-conquer
algebraic attack which can recover the initial state of the keystream generator, with less complexity
than exhaustive keysearch over the entire keyspace.

For Trivium-like ciphers, we showed that the size of the registers used in the construction of the
first system of equations, and the selection of stages used as input to the output function can affect the
number of solutions. For Bivium-A, changing the value of Dl can change the complexity of our algebraic
attack. This can be worse than exhaustive keysearch. In the case of Bivium-B, Trivium and Trivium-N ,
even if the value of Dl is small, the complexity of our algebraic attack is still worse than exhaustive
keysearch as the value of SR is larger than the keysize.
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A Analysis of Bivium-B

In our analysis of Bivium-B, we express the sequence bits of register A using our approach and the
sequence bits produced by register B using the equation described in Equation 6. We add three equations
and two variables at each iteration into the system of equations for the first 66 iterations. A set of these
equations consists of:

Aα+92 ⊕ zα+65 ⊕Aα+65 ⊕Bα+80 ⊕Bα+65 = 0, , α ≥ 1

Bα+83 ⊕Bα+5 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 = 0 , α ≥ 1

zα−1 ⊕Aα+26 ⊕Aα−1 ⊕Bα+14 ⊕Bα−1 = 0 , α ≥ 1

Similar to our approach used in solving Bivium-A in Section 3.1, we can only add equations
describing keystream equations up to z65 as the equations describing the keystream equations from z66
are redundant. Therefore, after 66 iterations, we have formed our system of equations for Bivium-B.
This system consist of 198 equations in 309 variables. Solving this system of equations using the F4
algorithm will give 2111 possible solutions, which is worse than exhaustive keysearch. The comparison of
both systems of equations is shown in Table 8. Column headings are the same as Table 3. Our system of
equations has less quadratic equations compared to Raddum’s technique: Raddum’s technique gives
222 quadratic equations, compared to 66 quadratic equations in ours. The drawback of our system of
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Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
solns

Raddum 177 222 399 177 399 1

Our approach 132 66 198 132 309 2111

Table 8. Details for the system of equations in Bivium-B

equations however, is that we have a greater excess of variables over equations. In Raddum’s technique,
solving a system consisting of 399 variables in 399 equations will yield a unique solution. In contrast,
solving the system of equations in our approach, which consists of 309 variables in 288 equations,
using the F4 algorithm will yield 2111 possible solutions (initial states), which is worse than exhaustive
keysearch.


