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ABSTRACT  

 

Oxidative stress caused by generation of free radicals and related reactive oxygen species 

(ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse 

health outcomes associated with exposure to particulate matter (PM). Recently, a new 

profluorescent nitroxide molecular probe (BPEAnit) developed at QUT was applied in an 

entirely novel, rapid and non-cell based assay for assessing the oxidative potential of particles 

(i.e. potential of particles to induce oxidative stress). The technique was applied on particles 

produced by several combustion sources, namely cigarette smoke, diesel exhaust and wood 

smoke. One of the main findings from the initial studies undertaken at QUT was that the 

oxidative potential per PM mass significantly varies for different combustion sources as well 

as the type of fuel used and combustion conditions. However, possibly the most important 

finding from our studies was that there was a strong correlation between the organic fraction 

of particles and the oxidative potential measured by the PFN assay, which clearly highlights 

the importance of organic species in particle-induced toxicity. 
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1. INTRODUCTION  1 

 2 

Particulate pollution has been widely recognised as an important risk factor to human health 3 

with $3.7 billion spent on respiratory diseases in Australia alone. Epidemiological studies 4 

have established strong associations between exposure to ambient particulate matter and 5 

increased respiratory and cardiovascular disease morbidity and mortality, particularly among 6 

individuals with pre-existing cardiopulmonary diseases [1]. Recently the International 7 

Agency for Research on Cancer (IARC), which is part of the World Health Organization 8 

(WHO), classified diesel engine exhaust as carcinogenic to humans (Group 1) on the 12th 9 

June 2012, based on sufficient evidence that exposure increases risk for lung cancer. To 10 

develop methods that could help to mitigate the adverse health outcomes induced by PM, it is 11 

important to know the PM properties and the mechanism(s) that are responsible for PM 12 

toxicity. Identification of the PM properties that are the most relevant for promoting adverse 13 

health effects is crucial not only for our mechanistic understanding but also for the 14 

implementation of strategies for improving air quality. Despite the availability of a huge body 15 

of research, the underlying toxicological mechanisms by which particles induce adverse 16 

health effects are not yet entirely understood.  17 

 18 

One of the important aspects of environmental sciences in the last decade was to identify the 19 

physical and chemical characteristics of ambient PM responsible for its health effects and 20 

within that scope, particle size, surface area and chemical components, such as metals and 21 

certain classes of organics (e.g. quinones) have been implicated in PM-induced health effects 22 

and more specifically, in the generation of reactive oxygen species (ROS). 23 

 24 

ROS can be formed endogenously, by the lung tissue cells, during the phagocytic processes 25 

initiated by the presence of PM in the lungs, or by particle-related chemical species that have 26 

the potential to generate ROS. In addition to the particle-induced generation of ROS, several 27 

recent studies have shown that particles may also contain ROS (so called, exogenous ROS). 28 

As such, they present a direct cause of oxidative stress and related adverse health effects and 29 

the hypothesis that particles contain or produce ROS is the driving force for this research 30 

project. 31 

 32 

It is a reasonable assumption that exogenous ROS can cause the same responses (oxidative 33 

stress) in the cell as endogenously formed ROS. Therefore, a rapid screening assay able to 34 



evaluate PM oxidative potential in terms of their inherent ROS, and therefore their ability to 35 

cause oxidative stress, would be beneficial for gaining better understanding about the nature 36 

of the particles most relevant for their negative health impact. Such a screen would also 37 

provide a helpful tool in efforts to further improve air quality and protect public health. To 38 

address this need we have developed a methodology for quantitative detection of the 39 

oxidative capacity of airborne nanoparticles based on in-house developed profluorescent 40 

nitroxide molecules. This methodology has been evaluated on combustion-generated 41 

particles. Correlations between various particle properties and their oxidative capacity, as 42 

measured by our molecular probes, will be discussed. 43 

 44 

2. METHODOLOGY  45 

 46 

Cellular responses to oxidative stress have been widely investigated using various cell 47 

exposure assays ([2-5]. However, in order to provide a rapid screening test for the oxidative 48 

potential of PM, less time-consuming and cheaper, cell-free (or acellular) assays are 49 

necessary.  50 

The only analytical approach that permits the direct detection and quantification of radical 51 

species is electron paramagnetic resonance (EPR). This method allows the quantification as 52 

well as specific identification of the free radical species generated when specific spin traps or 53 

probes are used in the combination with specific reagents. Apart from the complexity and 54 

high price of the instrument, a potential pitfall of EPR-based measurements of ROS 55 

formation by nanoparticles may result from chemical or physical interference with spin-56 

trapping agents, and could be checked by the analysis of specific ROS donor systems (e.g. 57 

xanthine /xanthine oxidase, H2O2/Fe) spiked with nanoparticles [6]. Several cell-free 58 

approaches have been used to explore oxidative potential of PM in a quantitative manner. 59 

They all have certain limitations, do not provide directly comparable results and, to date, 60 

none of these assays has been acknowledged as the best acellular assay and none have yet 61 

been widely adopted for investigation of potential PM toxicity.  62 

A number of assays are available such as DTT[7], POHPAA[8], DCFH[9], DHR-6G[10] 63 

assays as well as the ascorbate depletion test[11].  64 

However, DTT is reactive towards limited number of species, it requires an additional step 65 

that may be a potential source of an experimental error and also the usage of this probe 66 

requires an incubation time of up to 90 mins [7]. On the other hand, DCFH is prone to 67 

autooxidation and thus brings into question the suitability of this assay. Also, DHR-6G is air 68 



sensitive and photo-sensitive which limits its performance as either oxygen or light can 69 

produce significant background fluorescence  70 

Out of all of the assays the fluorescence-based ones have been most commonly used in the 71 

quantification of PM-related ROS, primarily due to the high sensitivity of fluorescence 72 

detection. They are based on non-fluorescent or weakly fluorescent molecules that yield 73 

fluorescent products upon reacting with ROS. 74 

 75 

Nitroxides are well-known as effective quenchers of excited states of fluorescent moieties. 76 

During the past seven years numerous nitroxides have been synthesized at QUT [12]. These 77 

nitroxides possess fluorophore covalently bound within the structure whereas most of the 78 

other nitroxide-fluorophore adducts used by other researchers have labile covalent linkages 79 

that are prone to hydrolysis and resulting separation of the nitroxide from the fluorophore. 80 

This important feature makes the QUT probes superior to previously synthesized nitroxides 81 

because of their enhanced chemical and thermal stability. All these nitroxide containing 82 

fluorophores display substantial fluorescence suppression. Also, they have the same 83 

excitation and emission maxima as the fluorophore itself. Some of these nitroxides, 84 

synthesized at QUT are shown in the Figure 1 together with their excitation and emission 85 

wavelengths. These molecules react with radicals, leading either to reduction of the 86 

nitroxides to the hydroxylamines or oxidation to oxoammonium cation. The measure of the 87 

number of radicals trapped by the nitroxides or other redox reactions that occur is the 88 

intensity of the fluorescence emission. These nitroxides are classified as profluorescent 89 

according to the fact that they are initially weakly fluorescent, but can be transformed into a 90 

fluorescent form after a simple chemical reaction. Taking into account the above, these 91 

molecules can serve as powerful optical sensors applicable as detectors of free radicals and 92 

dynamic fluorescent indicators of the overall redox environment in cellular systems (redox 93 

active agents). 94 

 95 

Figure 1. 96 

 97 

A number of profluorescent nitroxide probes were evaluated [13]  for their ability to detect 98 

and quantify ROS associated with combustion generated particles. Out of all of the evaluated 99 

probes 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was chosen as the most 100 

appropriate for use with combustion generated particles [14]. The excitation and emission 101 



wavelength of the BPEAnit are long enough to avoid overlapping with the background 102 

fluorescence coming from optically active compounds which may be present in PM. 103 

 104 

BPEAnit has been applied in situ to assess the oxidative potential of cigarette smoke [14], 105 

diesel particle matter (DPM) [15-17] and wood smoke [18].  Samples were collected by 106 

bubbling aerosol through an impinger containing 20 mL of 4 μM BPEAnit solution (using 107 

AR grade dimethylsulphoxide as a solvent) followed by fluorescence measurements with a 108 

spectrofluorometer (Ocean Optics). The amount of BPEAnit reacting with the combustion 109 

aerosol was calculated from a standard curve obtained by plotting known concentrations of 110 

the methyl adduct of BPEAnit (BPEAnit-Me; fluorescent) against the fluorescence intensity 111 

at 485 nm.  For each setting and particulate source, two samples were taken. The first one 112 

was the result from the exposure of BPEA solution to the particle-free gas phase, which was 113 

done by placing HEPA-filter between an impinger and an aerosol source. Test sample was 114 

collected upon exposure to both the particle and the gas phase, demonstrating the effect of the 115 

particle-related ROS. Based on the difference in fluorescence signals at 485 nm between the 116 

test and HEPA-filtered control sample, the amount of particle-associated ROS emitted for 117 

each test sample was calculated and normalised to the particle mass to give ROS 118 

concentrations (nmol/mg). 119 

 120 

3. RESULTS AND DISCUSSION  121 

 122 

To investigate the use of the profluorescent nitroxide BPEAnit to detect ROS present in 123 

combustion-generated particles using fluorescence spectroscopy initial experiments were 124 

conducted with cigarette smoke.  As one of the most common combustion-generated aerosols 125 

and due to its easy generation, it was taken as a model aerosol. Sampling mainstream 126 

cigarette smoke gave a linear increase of fluorescence intensity with increasing number of 127 

puffs with this pattern being reproducible, although values varied with each individual 128 

cigarette. Sampling much lower concentrations of particles as produced by sidestream 129 

cigarette smoke generated in a test chamber also gave increased fluorescence intensity with 130 

increased sampling time. Since the increase of signal was well above the detection limit, we 131 

have clearly shown the capability of this approach to be successful in determining the levels 132 

and potential toxicological impact of ROS in general studies where near ambient 133 

concentrations of particles are observed. By being able to omit the derivatisation step, and by 134 



undertaking fluorescence measurements immediately after the sampling, we demonstrated the 135 

potential for these probes for the future development of real time ROS detectors. 136 

 137 

The BPEAnit was used to further study the potential toxicological impact of particles 138 

produced during biomass combustion by an automatic pellet boiler and a traditional logwood 139 

stove under various combustion conditions [18]. The fluorescence of BPEAnit was measured 140 

for particles produced during various combustion phases, at the beginning of burning (cold 141 

start), stable combustion after refilling with the fuel (warm start) and poor burning 142 

conditions. For particles produced by the logwood stove under cold-start conditions 143 

significantly higher amounts of reactive species per unit of particulate mass were observed 144 

compared to emissions produced during a warm start. In addition, sampling of logwood 145 

burning emissions after removing all the semivolatile species resulted in an 80-100% 146 

reduction of the fluorescence signal of BPEAnit probe, indicating that the majority of 147 

reactive species were semivolatile. A significant reduction in PM oxidative potential after 148 

thermal conditioning was also observed by Biswas and co-workers [19] who used a 149 

dithiothreitol (DTT) assay to measure the oxidative potential of particulate matter produced 150 

by heavy–duty vehicles. As a further support of the role of organic species in particle induced 151 

oxidative stress, we observed strong correlations (r = 0.85 and 0.99) between the amount of 152 

ROS and the mass fraction of organic species in the PM during cold-start stable combustion 153 

and warm-start combustion (Figure 2).  154 

 155 

Figure 2. 156 

  157 

The profluorescent nitroxide probe was also applied to study the oxidative potential of DPM. 158 

Emissions from various alternative fuels and diesel engine technologies were investigated. 159 

Fuels investigated included ethanol [20], Fischer-Tropsch diesel (gas to liquid) [16] and 160 

various biodiesel stocks (soy, canola, tallow) in various blend percentages [15]. A similar 161 

picture as with the wood combustion also emerged with a good correlation between the 162 

particle volatile organic content and ROS concentration being observed.  163 

Particles from sidestream cigarette smoke were shown to have 4-9 and 30-80 times less ROS 164 

per unit of mass than particles produced during warm- start and cold-start logwood 165 

combustion, respectively. This finding sheds a new light on logwood smoke particles and 166 

draws attention to the importance of expanding the knowledge on the toxicological properties 167 



of wood smoke particles. Diesel exhaust particles generated under full engine load were 168 

found to have similar ROS concentrations as sidestream cigarette smoke particle 169 

 170 

Figure 3. 171 

 172 

These studies also provided an opportunity to look into the correlation between the physical 173 

properties of DPM and oxidative capacity of particles measured as the concentration of ROS. 174 

Toxicological studies, such as [21], have pointed to the particle surface area as a potential 175 

metric for assessing the health effects of PM.  The surface area of a particle provides a 176 

measure of the ability of toxic compounds (such as PAHs or ROS) to adsorb or condense 177 

upon it. Polycyclic Hydrocarbons (PAHs) are the principal pollutants from incomplete 178 

combustion, and are of special interest due to their toxicity, carcinogenicity, and ubiquitous 179 

presence in the environment [22]. Therefore, a particle’s surface area can be viewed as a 180 

“transport vector” for many compounds deleterious to human health and requires more 181 

detailed analysis. 182 

In addition, it is of urging interest to introduce an effective automated real-time particle-183 

bound ROS sampling system that will allow routine evaluation of health effects and 184 

monitoring of the pollution. Following this, improvement in the sampling methodology 185 

coupled with the usage of a very sensitive probe such as BPEA nitroxide can provide good 186 

ROS monitor. As previously used technique, liquid impingement, has relatively low and size-187 

dependent collection efficiency for particles smaller than 500 nm, we are implementing the 188 

usage of particle into liquid sampler (PILS) to overcome this drawback. PILS grows 189 

submicron particles in a condensation growth chamber and subsequently collects them using 190 

a wetted cyclone [23]. BPEA nitroxide is used to collect particles. This approach makes ROS 191 

measurements more efficient, less time consuming and less labor intensive and it is currently 192 

being tested. 193 

 194 

4. CONCLUSIONS  195 

 196 

An in-house developed methodology for detection of PM–derived ROS by using a 197 

profluorescent nitroxide probe (BPEAnit) has been developed and provided a good basis for 198 

employing the new probe for the assessment of the oxidative potential arising from particles 199 

generated by other combustion sources. Considering that for all three aerosol sources (i.e. 200 

cigarette smoke, diesel exhaust and wood smoke) the same assay was applied a direct 201 



comparison of the oxidative potential measured for all three sources of particles is possible. s. 202 

What is even more important is that a good correlation was observed between the 203 

semivolatile organic content of combustion particles (both for wood burning and DPM) and 204 

their oxidative capacity as measured through the ROS concentration. This highlights the 205 

importance of semivolatiles in the oxidative potential of the particulate matter. This has far 206 

reaching consequences on how we regulate particle emissions from combustion sources such 207 

as diesel vehicles. For example, the new standards for diesel vehicle engine emissions 208 

(EURO 5/6) are based on measurements of particle number emissions and not particle mass 209 

emissions. The introduction of particle number based standards as opposed to mass based 210 

standards were introduced as the number much better reflects the nanoparticle component of 211 

DPM than simple mass based measurements. To achieve reproducible particle number 212 

measurements, the standards introduce thermal conditioning of the exhaust prior to sampling. 213 

This results in the removal of any semi-volatile organic components from the exhaust 214 

particles. If the semi-volatile organic component is responsible for the oxidative capacity of 215 

particles, and therefore drives their toxicity, the validity of the new diesel vehicle emission 216 

standards has to be brought into question.  217 

 218 
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Figure 1 Structures of some of the profluorescent nitroxides synthesised at QUT together 

with the excitation and emission wavelengths of the fluorophores. 
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Figure 2 Correlation between the amount of ROS and the amount of organics for stable phase 

of cold-start (A), and warm-start (B) logwood burning. 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 The amount of ROS for stable phase of cold-start (A), and warm-start (B) logwood 
burning, side stream tobacco smoke and different operating conditions for ethanol blended 
diesel 
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