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Abstract. Automated process discovery techniques aim at extracting models
from information system logs in order to shed light into the business processes
supported by these systems. Existing techniques in this space are effective when
applied to relatively small or regular logs, but otherwise generate large and
spaghetti-like models. In previous work, trace clustering has been applied in an
attempt to reduce the size and complexity of automatically discovered process
models. The idea is to split the log into clusters and to discover one model per
cluster. The result is a collection of process models — each one representing a
variant of the business process — as opposed to an all-encompassing model. Still,
models produced in this way may exhibit unacceptably high complexity. In this
setting, this paper presents a two-way divide-and-conquer process discovery tech-
nique, wherein the discovered process models are split on the one hand by vari-
ants and on the other hand hierarchically by means of subprocess extraction. The
proposed technique allows users to set a desired bound for the complexity of the
produced models. Experiments on real-life logs show that the technique produces
collections of models that are up to 64% smaller than those extracted under the
same complexity bounds by applying existing trace clustering techniques.

1 Introduction

Process mining is concerned with the extraction of knowledge about business processes
from information system logs [16]. Process mining encompasses a vast array of tech-
niques, including techniques for automated discovery of business process models. Nu-
merous algorithms for automated process discovery have been developed, which strike
various tradeoffs between accuracy and comprehensibility of the discovered models.
One key limitation of the bulk of techniques for automated process discovery is that
they fail to scale to processes with high levels of variance, i.e. high number of distinct
traces. This is mainly because traditional process discovery techniques aim at producing
a single model covering all traces in the log, leading to large and spaghetti-like models
as the variance increases. A common divide-and-conquer approach to address this issue
is by means of trace clustering [2,4,8, 14]. The idea is to slice the log into separate clus-
ters, each one grouping similar traces, and to discover (via standard mining techniques)
one process model per cluster. Accordingly, the output is a collection of process mod-
els, each covering a subset of the traces, as opposed to a single model encompassing



all traces. The underlying assumption is that each model in this collection has lower
complexity than a single all-encompassing model mined from all traces. In this context,
complexity can be measured in terms of size (number of nodes or edges) or in terms
of structural complexity metrics such as control-flow complexity or average connector
degree, which have been shown to be correlated with model comprehensibility [10, 12].

While process discovery techniques based on trace clustering produce smaller indi-
vidual models than single-model techniques, they do not seek to minimize the overall
size of the discovered collection of models. On the contrary, these techniques generally
yield models that share duplicate fragments. This duplication entails that collectively,
a set of models produced via trace clustering can be much larger and not necessarily
easier to comprehend as a whole than a single model mined from all traces.

In this setting, this paper presents a two-way divide-and-conquer process discovery
technique, wherein discovered process models are split on the one hand by variants
via trace clustering (an operation we term “slicing”), but also hierarchically via shared
subprocess extraction and merging (“dicing”). Slicing enables high-complexity mined
models to be split into lower-complexity ones at the expense of duplication. Dicing,
on the other hand, reduces duplication by refactoring shared fragments. By slicing,
mining and dicing recursively, the technique attempts in a best-effort way to produce
a collection of models each with size or structural complexity below a user-specified
threshold, while minimizing the overall size of the discovered collection of models and
without affecting accuracy. The technique is termed SMD (Slice, Mine and Dice) in
reference to the steps performed at each level of the recursion.

SMD can be applied as a post-processing phase on top of any automated discovery
technique based on (hierarchical) trace clustering. The paper reports on experiments
using three real-life logs that put into evidence the improvements achieved by SMD on
top of three existing trace clustering methods.

The rest of the paper is structured as follows. Section 2 provides an overview of
related work on process mining and trace clustering, and introduces techniques for clone
detection and process model merging, upon which SMD builds. Next, Section 3 presents
and illustrates the algorithms behind SMD. Section 4 discusses the experimental setup
and results, and Section 5 draws conclusions and spells out directions for future work.

2 Background and Related Work

SMD builds upon techniques for: (i) automated process discovery; (ii) hierarchical trace
clustering; (iii) clone detection in process models; and (iv) process model merging. This
section introduces these techniques in turn and discusses how they are used by SMD.

2.1 Automated process discovery techniques

Numerous techniques for discovering a single (flat) process model from a process exe-
cution log have been proposed in the literature [16,20]. For example, Weijters et al. [21]
propose the Heuristics Miner, which is based on an analysis of the frequency of depen-
dencies between events in a log. In essence, frequency data is extracted from the log and
used to construct a graph of events, where edges are added based on different heuristics.
Types of splits and joins in the resulting event graph can be determined by analyzing the



frequency of events associated to those splits and joins. This information can be used
to convert the output of the Heuristics Miner into a Petri net. The Heuristics Miner is
robust to noise in the event logs due to the use of frequency-based thresholds, which
makes it suitable for use with real-life event logs. Meantime, van der Werf et al. [17]
proposed a discovery method where relations observed in the logs are translated to an
Integer Linear Programming (ILP) problem. The ILP miner is independent of the num-
ber of events in the log, making it applicable in practical scenarios.

Process discovery techniques can be evaluated along four dimensions: fitness (re-
call), appropriateness (precision), generalization and complexity [16]. Fitness measures
the extent to which the traces in a log can be parsed by the discovered model. Appropri-
ateness is a measure of additional behavior allowed by a discovered model, that is not
found in the log. A model with low appropriateness is one that can parse a proportion-
ally large number of traces that are not in the log from which the model is discovered.
Generalization captures how well the discovered model generalizes the behavior found
in a log. For example, if a model can be discovered using 90% of the traces of the log
and this model can parse the remaining 10% of traces in the logs, it can be said the
model generalizes well the log. The complexity of a model can be measured using sev-
eral metrics proposed in the literature [10]. A simple complexity metric is the size the
model, measured by the total number of nodes in the model (or alternatively number
of edges). Empirical studies, e.g. [10], have shown that process model size is strongly
correlated with model comprehensibility and error probability. Other (structural) com-
plexity metrics correlated with comprehensibility include:

— CFC (Control-Flow Complexity): sum of all connectors weighted by their potential
combinations of states after a split.

— ACD (Average Connector Degree): average number of nodes a connector is con-
nected to.

— CNC (Coefficient of Network Connectivity): ratio between arcs and nodes.

— Density: ratio between the number of arcs and the maximum possible number of
arcs for the same number of nodes.

An extensive empirical evaluation [20] of automated process discovery techniques
has shown that Heuristics Miner offers a good tradeoff between precision and recall
with satisfactory performance. The ILP miner achieves high recall — at the expense of
some penalty on precision — but it does not scale to larger logs due to memory require-
ments. The SMD technique presented in this paper abstracts from the mining algorithm
used to extract a model from a collection of traces. However, due to its scalability, we
specifically use the Heuristics Miner as a basis for the evaluation of SMD .

2.2 Hierarchical trace clustering

Several approaches to trace clustering have been proposed [1,2,4,8, 14,15, 19]. Some
of these techniques produce a flat collection of trace clusters, e.g. [19], though most
produce hierarchical collections of trace clusters from which models can be mined.
Specifically, hierarchical trace clustering methods construct a so-called dendogram. The



dendogram is a tree wherein the root corresponds to the entire log. The root is decom-
posed into N (typically 2) disjoint trace clusters of smaller size, each of which is split
again into N clusters and so on recursively.

A trace cluster is a set of “similar” traces. The notion of trace similarity varies be-
tween approaches and is generally defined with respect to a feature space. For instance,
if traces are seen as strings on the alphabet consisting of the set of activity labels, the
feature space corresponds to the set of all possible permutations of activity labels. With
such a feature space, similarity of traces can be assessed by means of standard string
similarity functions, such as Hamming distance or Levenshtein edit distance. However,
mappings to other feature spaces have been used in the literature, such as the count of
occurrences of activities, the count of motifs over such activities (e.g. n-grams), etc.

In addition to differing by the choice of similarity notion, trace clustering tech-
niques also differ in terms of the underlying clustering technique. Hierarchical cluster-
ing techniques can be divided in two families: agglomerative and divisive clustering. In
agglomerative clustering, pairs of clusters are aggregated according to their proximity
following a bottom-up approach. In divisive clustering, a top-level cluster is divided
into a number of sub-clusters and so on recursively until a stop condition is fulfilled.

The techniques of Song et al. [14, 15] and Bose et al. [1,2] both use agglomerative
hierarchical clustering. Song et al. also consider other clustering techniques, such as k-
means and self-organizing maps. The main difference between the approaches of Song
et al. and Bose et al. lie in the underlying feature space. Song et al. map traces into a set
of features such as count of occurrences of individual activities, or count of occurrences
of pairs of activities in immediate succession. On the other hand, Bose et al. evaluate
the occurrence of more complex motifs such as repeats (i.e., n-grams observed at dif-
ferent points in the trace). Meanwhile, the DWS method of Medeiros et al. [4, 8] adopts
divisive hierarchical clustering with k-means for implementing each division step. They
use a similarity measure based on the count of occurrences of n-grams.

The above techniques produce a collection of models by applying single-model
process mining techniques (e.g. Heuristics Miner) to each cluster at the lowest level
of the dendogram. Thus, the output is a flat collection of models of different levels of
complexity. Accordingly, SMD does not take as input the collection of models produced
by these techniques, but instead it takes the dendogram. The dendogram is traversed
top-down to extract models at the required level of complexity.

To the best of our knowledge only two methods have been proposed aimed at min-
ing hierarchies of process models. Bose et al. [3] presents a method that mines a single
root process and a set of subprocesses that correspond to the factorization of motifs ob-
served in the traces (a.k.a. conserved patterns). The method is hence intended to work on
a single process model and not on a collection thereof. Meanwhile, Greco et al. [8] use
trace clustering to mine hierarchies of process models. In these hierarchies, the mod-
els associated to leaf nodes correspond to “concrete” models. In contrast, the models
associated to inner nodes correspond to generalizations, resulting from the abstraction
of pairs of activities observed in models of descendant nodes. Thus the end result is a
generalization-specialization hierarchy of models. In contrast, SMD aims at producing
a collection of process models with (shared) sub-processes, thus the relation between
lower-level and higher-level models is a part-of relation.



2.3 Clone detection in process models

SMD relies on techniques for detecting duplicate fragments (a.k.a. clones) in process
models. The idea is that these clones will be refactored into shared subprocess mod-
els in order to reduce the overall size and possibly also the complexity of discovered
process models. Given that subprocess models must have a clear start point and a clear
end point! we are interested in extracting single-entry, single-exit (SESE) fragments.
Accordingly, SMD makes use of a clone detection technique based on a decomposition
of process models into a tree representing all SESE fragments in the model, namely the
Refined Process Structure Tree (RPST) [18]. Each node in an RPST corresponds to a
SESE fragment in the underlying process model. The root node corresponds to the en-
tire process model. The child nodes of a node N correspond to the SESE fragments that
are contained directly under N. In other words, the parent-child relation in the RPST
corresponds to the containment relation between SESE fragments. A key characteristic
of the RPST is that it can be constructed for any model captured in a graph-oriented
process modeling notation (e.g. BPMN or EPC).

For the purpose of exact clone detection, we make use of the RPSDAG index struc-
ture [6]. Conceptually, an RPSDAG of a collection of models is the union of the RPSTs
of the models in the collection. Hence, a node in the RPSDAG corresponds to a SESE
fragment whereas edges encode the containment relation between SESE fragments.
Importantly, each fragment appears only once in the RPSDAG. If a SESE fragment ap-
pears multiple times in the collection of process models (i.e. it is a clone), it will have
multiple parent fragments in the RPSDAG. This feature allows us to efficiently identify
duplicate clones: a duplicate clone is simply a fragment with multiple parents.

In addition to allowing us to identify exact clones, the RPSDAG provides a basis for
approximate clone detection [7]. Approximate clone detection is achieved by applying
clustering techniques on the collection of SESE fragments of an RPSDAG, using one
minus the graph-edit distance as the similarity measure (as defined in [5]). Two clus-
tering techniques for approximate clone detection based on this principle are presented
in [7]. The first is an adaptation of the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm, the second is an adaptation of the Hierarchical
Agglomerative Clustering (HAC) algorithm. Both of these techniques take as input a
collection of process models and return a set of approximate clone clusters — each clus-
ter representing a set of SESE fragments that are similar within a certain similarity
threshold. To evaluate SMD, we adopted the DBSCAN approach to approximate clone
clustering due to it being more scalable.

2.4 Process model merging

Approximate clone detection allows us to identify clusters of similar SESE fragments
in a collection of process models. Having done so, we can replace each of the identified
approximate clones with references to a single subprocess model representing the union

! Note that top-level process models may have multiple start and end events, but subprocess
models must have a single start and end event in order to comply with the call-and-return
semantics of subprocess invocation.



of these similar fragments, so as to reduce the overall size of the collection of process
models. It can be argued that this single subprocess should represent the collective
behavior of all the SESE fragments in a cluster, otherwise some behavior would be
lost when replacing the approximate clones with the single shared subprocess.

The technique for process model merging presented in [13] allows us to achieve
this property. This technique takes as input a collection of process models (or SESE
fragments) and returns a single merged process model, such that the set of traces of
the merged model is the union of the traces of the input models. Thus, applying this
technique on fragments of automatically discovered process models does not affect the
fitness, appropriateness or generalization of the particular discovery technique used.
An experimental evaluation reported in [13] shows that, if the input process models (or
fragments) are similar, the size of the merged process model is significantly lower than
the sum of the sizes of the input models. Also, the more similar the merged models are,
the more significant is the size reduction achieved during merging.

This merging technique is applicable to any graph-oriented process modeling lan-
guage that includes the three connectors XOR, AND and OR (e.g EPCs and BPMN).

3 The SMD Technique

The idea of SMD is to traverse the dendrogram produced by hierarchical trace clustering
in a top-down manner (breadth-first), attempting at each level of the traversal to produce
models of complexity below a certain user-defined threshold. This threshold can be
placed on the size of a model or on its structural complexity measured in terms of CFC,
density or other complexity metrics. For example, the user can specify an upper-bound
of 50 for the number of nodes in a model or a maximum control flow complexity of 20
per model. At each level of the traversal, the algorithm applies subprocess extraction
and merging in order to reduce duplication. The traversal stops at a given cluster d in
the dendrogram — meaning that its child clusters are not visited — if a single model can
be mined from d that after subprocess extraction meets the complexity threshold, or if
d is a leaf of the dendrogram, in which case the model mined from d is returned.

The detailed description of SMD is given in Algorithm 1. Hereafter we illustrate
this algorithm by means of the example dendrogram shown in Fig. 1 and we use size
12 as the complexity threshold. Observe that the root cluster L1 of the dendrogram is
the log used as input to generate the dendrogram. As we traverse the dendrogram D,
we mark the current position of the dendrogram with the clusters from which process
models need to be mined. At the beginning, the root cluster is the only marked cluster
(line 2). While there are marked trace clusters, we perform the following operations
(lines 3—16). First, we mine a set of process models from marked trace clusters in D
(line 4). As only L1 is marked at the beginning, a single process model m1 is mined.
Let us assume that the model mined from L1 is that shown in Fig. 2. If we reach a leaf
trace cluster of D at any stage, we cannot simplify the process model mined from that
trace cluster anymore by traversing D. Thus, when a leaf of D is reached, we add the
process model mined from that leaf to the set of leaf level process models M; (line 5).
As L1 is not a leaf, we do not update M; at this stage. We then unmark all the clusters in
M; to avoid mining a process model again from these clusters, in next iterations of the



Algorithm 1: Discover process model collection

Input: Dendrogram D, complexity threshold &
Output: Set of root process models M, set of subprocesses S

1 Initialize M; with @

2 Mark the root trace cluster of D

3 while there are marked trace clusters in D do

4 Mine a set of process models M from all marked trace clusters in D
5

6

7

Add to M, the set of models from M mined from marked leaves of D
Unmark all trace clusters used to mine models in M;
Invoke Algorithm 2 to extract subprocesses from M U M; and obtain a simplified set
of root process models M; and a set of subprocesses S
8 Let M, be the process models in M; that do not satisfy k
9 Let S, be the subprocesses in S that do not satisfy k
10 Let P be the process models of My containing subprocesses in S,
11 Add all models in P to M,
12 Remove M; from M,
13 if M. is empty then Unmark all trace clusters in D
14 foreach model m. in M. do
15 Get the trace cluster d used to mine m,
16 L Mark child trace clusters of d in D and unmark d

17  return M, and S

while cycle (line 6). Then we extract subprocesses using Algorithm 2 (line 7) from the
union of all mined models so far and all models mined from leaves M;. In our example,
we extract subprocesses only from m1, as M; is empty.

In Algorithm 2, we first construct the RPSDAG from the set of process models in
input (line 3). Then we identify sets of exact clones using the technique in [6] (line 4).
For each set of exact clones, we create a single subprocess and replace the occurrence
of these clones in their process models with a subprocess activity pointing to the sub-
process just created (lines 6-7). Once exact clones have been factored out, we identify
clusters of approximate clones using the technique in [7] (line 8). For each fragment
cluster, we merge all approximate clones in that cluster into a configurable fragment
(line 11) using the technique in [13]. If this fragment satisfies the threshold, we embed
it into a subprocess (line 14) and replace all occurrences of the corresponding approxi-
mate clones with a subprocess activity pointing to this subprocess (lines 15-16).

A cluster of approximate clones may contain the parent or the child of a fragment
contained in another cluster. As a fragment that has been used to extract a subprocess
does no longer exist, we need to also remove its parent and child fragments occurring
in other clusters (lines 17-18). We use the RPSDAG to identify these containment rela-
tionships efficiently. One or more fragment clusters may be affected by this operation.
Thus, we have to order the processing of the approximate clones clusters based on some
benefit-cost-ratio (BCR), so as to prioritize those clusters that maximize the number of
process models satisfying the threshold after approximate clones extraction (line 10). If
we set our threshold on size, we can use the BCR defined in [7], which is the ratio be-



Algorithm 2: Extract subprocesses

Input: Set of process models M, complexity threshold k
Output: Set of root process models M, set of subprocesses S

Initialize My with M

Initialize S with &

Let F§ be the set of SESE fragments of M

Let F, in F; be the set of exact clones

AddF,to S

foreach fragment f in F, do

Replace all occurrences of f in models of M, U S with a subprocess activity pointing

Ltof
8 Apply approximate clone detection on F; \ F, to identify fragment clusters C
9 while C is not empty do

10 Retrieve the cluster ¢ with highest BCR from C

NN R W N -

1 Merge fragments in ¢ to obtain a merged fragment f;,

12 Remove ¢ from C

13 if f,, satisfies k then

14 Add fj, to S

15 foreach fragment f in c do

16 Replace all occurrences of f in models of M with a subprocess activity
pointing to f,,

17 Remove all ascendant and descendant fragments of f from all clusters in C

18 Remove all clusters that are left with less than 2 fragments from C

19 return M and S

Fig. 1. A possible dendrogram generated by hierarchical trace clustering.

tween overall size reduction (benefit) and distance between approximate clones within
a cluster (cost). Similar BCRs can be defined on other complexity metrics.

Coming back to our example, we can see there are two exact clones (f6 and f8)
and two approximate clones (f4 and f9) in m1, as highlighted in Fig. 2. After applying
Algorithm 2 we obtain the process model collection in Fig. 3, where we have two sub-
processes (s1 and s2) with s2 being a configurable model. In particular, we can observe
that s2 has two configurable gateways — the XOR-split and the XOR-join represented



with a thicker border — so that the selection of outgoing edges of the XOR-split (in-
coming edges of the XOR-join) is constrained by the annotated fragment identifiers. In
addition, s2 has an annotated activity to keep track of the original labels for that activity
in f4 and f9. For example, if we want to replay the behavior of f4, only the top and
bottom branches of this merged model will be available with the bottom branch bearing
activity “Perform external procurements”.

Once subprocesses have been extracted, we add all models that have to be further
simplified to set M, (lines 8—12 of Algorithm 1). M, contains all non-leaf models not
satisfying the threshold and all non-leaf models containing subprocesses not satisfying
the threshold. Algorithm 1 terminates if M, is empty (line 13). Otherwise, for each
model in M., we mark the respective cluster (lines 14—16) and reiterate the while loop.

In our example, the size of m1 after subprocess extraction is 19, which does not
satisfy the threshold 12. Thus, we discard m1 and mine two process models m2 and m3
from L2 and L3, which are shown in Fig. 4. m2 and m3 contain two exact clones (f24
and f31) and two approximate clones (f22 and f34). Now we apply Algorithm 2 on
m2 and m3 and obtain the process model collection shown in Fig. 5. The sizes of m2
and m3 after subprocess extraction are 14 and 11 respectively. Thus, m3 satisfies our
threshold while m2 has to be further simplified. We then discard m2 and mine two fresh
models m4 and mS5 from L4 and L5 and so on.
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Fig. 2. Process model m1 with similar fragments

The complexity of Algorithm 1 depends on four external algorithms which are used
to 1) discover process models from the clusters of the dendrogram (line 4), ii) detect ex-
act clones (line 4 of Algorithm 2), iii) detect approximate clones (line 8 of Algorithm 2)
and iv) merge approximate clones (line 11 of Algorithm 2). Let ¢y, ¢3, ¢3 and c4 be the
respective costs of these algorithms. The complexity of exact clone detection is deter-
mined by the insertion of fragments into the RPSDAG, which dominates the complexity
of deleting fragments [6]. The complexity of approximate clone detection is dominated
by that of computing the graph-edit distance between fragments [7]. Let F be the set of
all SESE fragments of the process models that can be discovered from all trace clusters
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Fig. 3. Process model m1 and subprocess s1 after subprocess extraction
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Fig. 4. Process models m2 and m3 mined from trace clusters L2 and L3

of dendrogram D, i.e. F is the union of all F;. In the worst case, we need to discover
a process model from each cluster of the dendrogram, which is O(|D|c;); insert all
fragments in the RPSDAG, which is O(|F|c;); compute the graph-edit distance of all
pairs of fragments, which is O(|F|?c3); and merge |F|/2 fragments, which is O(|F|cs).
Thus, the worst-case complexity of Algorithm 1 is O(|D|cy + |F|(c2 +c4) +|F|?¢c3). ¢1
depends on the specific discovery technique used. For example, the Heuristic Miner is
quadratic on the number of event classes in the log. Theoretically, ¢; is factorial in the
number of nodes with the same label inside a single SESE fragment, though in practice
this number is often very small or equal to zero thanks to various optimizations of exact
clone detection [6]. Thus in practice c; is linear on |F| [6]. c3 is cubic on the size n of
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Fig. 5. Process models and subprocesses after subprocess extraction from m2 and m3

the largest fragment if using a greedy algorithm [5], as in the experiments reported in
this paper. Finally, c4 is O(nlog(n)).

4 Evaluation

We implemented the SMD technique on the Apromore [9] platform.”> We then used
this tool to evaluate the technique on two event logs extracted from a large insurance
company and on the log of the BPI challenge 20123 (hereafter called BPI Log). The
first log of the insurance company was taken from a motor insurance claims handling
process for windscreen claims (called Motor Log). The second log was taken from a
commercial insurance claims handling process (called Commercial Log). We extracted
completed traces from the first two months of each log, leading to a total of 4,300 to
5,300 traces. As we can see from Tab. 1, the three logs exhibit different characteristics
despite the similar number of traces. In particular, there is a substantial difference in
duplication ratio (i.e. the ratio between events and event classes).

Using these logs, we measured the reductions in overall size and number of mod-
els achieved by SMD on top of three hierarchical trace clustering techniques: Song et
al. [14, 15], Bose et al. [1, 2] and the DWS technique by Medeiros et al. [4, 8]. These
techniques were integrated in our tool. In particular, we used the DWS technique with
K=2 and adapted it to split clusters until the process models mined from all trace clus-
ters have complexity lower than or equal to the threshold, so that irrelevant clusters
are not generated. For consistency, we used the Heuristics Miner [21] to discover pro-
cess models from the clusters retrieved by all three techniques. For clone detection we

2 The tool is available at www . apromore.org/plat form/tools
3http://www.win.tue.nl/bpi2012/doku.php?id=challenge
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Log Traces|Events|Event classes|Duplication ratio
Motor 4,293 (33,202 292 114
Commercial| 4,852 [54,134 81 668

BPI 5,312 191,949 36 2,554

Table 1. Characteristics of event logs used in the experiments.

used the implementation described in [6] while for approximate clone clustering, we
used the implementation of the DBSCAN algorithm described in [7] with graph-edit
distance threshold of 0.4. These implementations, as well as that of the technique for
merging process models described in [13], were also integrated into our tool.

In this evaluation, we set the user-defined complexity threshold on the process
model size, as it has been shown that size has the largest impact on perceived pro-
cess model complexity [10]. There is an implicit limit on the minimum size each mined
process model can have. This limit, which is a lower-bound for the user-defined thresh-
old, depends on the number and size of the clones we can identify in the process model
collection mined from the dendrogram of the trace clusters. The risk of choosing a
threshold lower than this limit is that we may end up with a proliferation of process
models, many of which still with size above the threshold. This high number of models
is due to the fact that the technique would explore the dendrogram as deep as possible.
To discover this implicit limit we would need to run SMD using a size threshold of 1,
so as to fully explore the dendrogram, and measure the size of the largest process model
we obtain. This would be inefficient. However, we empirically found out that a good
approximation of this implicit limit, which can be computed in a matter of seconds, is
given by the size of the largest process model that can be mined from a single trace.

We set the size threshold to this approximate implicit limit, which is 37 for the
Motor log, 34 for the Commercial log and 56 for the BPI log.* The results of the ex-
periments are shown in Fig. 6 (Motor Log), Fig. 7 (Commercial Log) and Fig. 8 (BPI
Log), where “S”, “B” and “M” stand for the technique by Song et al., Bose et al. and
Medeiros et al., respectively, while “SMDgs”, “SMLp” and “SMDy,” indicate their re-
spective SMD extensions.

As we can observe from the histograms, SMD consistently yields a significant re-
duction in the overall size across all three logs and all three trace clustering techniques
used. This reduction ranges from 14.2% (with SMD,, on the Motor log) to 63.9% (with
SMD,, on the BPI log), as evidenced by Tab. 2. In particular, we can observe that de-
spite the technique of Medeiros et al. always produces the lowest overall size while that
of Bose et al. produces the highest one among the trace clustering techniques, these
differences are thinned out by SMD. This is because SMD compensates for the redun-
dancies between clusters that may be introduced by a trace clustering technique as the
number of clusters increases.

Similarly, we can observe significant reductions in the number of models, ranging
from 22% (with SMDy; on the Commercial log) to 65.8% (with SMD,; on the BPI
log) if considering root models only (see Tab. 2). Adding subprocesses to the count, the

41t turns out that these values correspond to the actual implicit size limits of the three logs.
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Fig. 6. Overall size and number of models obtained from the Motor log.
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Fig. 7. Overall size and number of models obtained from the Commercial log.
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Fig. 8. Overall size and number of models obtained from the BPI log.

extent of this reduction is clearly diminished (there is even a slight increase of 1.6% in
the total number of models in the case of SMDg on the Motor log). These results should
be interpreted as an indication that SMD can often achieve the complexity threshold
with less process models (particularly less root process models) compared to the three
baseline trace clustering techniques used in the experiments.

From Tab. 2 we can also observe that the extent of the improvement, both for size
and models number, increases with the increase of the log’s duplication ratio (from the
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Motor log to the BPI log — see Tab. 1). This is confirmed by the strong correlation
between the duplication ratio and the percentage of size savings produced by SMD
(0.99), and the strong correlation between the duplication ratio and the percentage of
models number savings (0.95). Thus, we can conclude that the amount of improvement
achieved by SMD depends on the amount of duplication in the log.

Further, the average size and structural complexity of individual models reported
in Tab. 3, indicate that SMD achieves the size threshold on individual models without
affecting structural complexity. The table shows that the average values for structural
complexity measures remain largely unchanged after applying SMD (the increase in
density is due to the inverse correlation of density and size). It is also worth noting
that in most cases, the average model size is reduced after applying SMD (up to 30.6%
savings in the case of the BPI log).

Log Method |Size savings (% )|(Root) models number savings (%)
Motor SMDg 21.6 (22.6) -1.6

SMDgp 19.1 (354)12.2

SMDy, 14.2 (25.0) 15.1
Commercial|SMDyg 25.5 (27.8) 4.0

SMDg 25.2 (28.7) 6.7

SMDy, 19.4 (22.0)9.2
BPI SMDg 60.0 (63.2) 43.1

SMDgp 61.8 (66.3) 45.0

SMDy, 63.9 (65.8) 55.5

Table 2. Savings in the overall size and number of models yielded by SMD.

In most of the experiments, SMD took more time than the corresponding baseline
trace clustering technique. This is attributable to the reliance on graph-edit distance for
process model comparison. In the worst case, SMD took double the time required by
the baseline (e.g., 58 mins instead 28 mins of Medeiros et al. on the Commercial log).
However, in other cases, SMD took less time than the baseline (e.g., 17 mins instead
of 22 mins of Bose et al. on the BPI log). This is because if SMD mines less models
relative to its baseline trace clustering technique, the time saved by the mining steps can
compensate for the time taken to compute graph-edit distances.

5 Conclusion

SMD advances the state-of-the-art in automated process discovery along two directions.
First, it is to the best of our knowledge the first complexity-aware automated process
discovery method, insofar as it seeks to produce models that meet user-specified com-
plexity thresholds. Second, SMD provides significant reductions in overall size relative
to existing process discovery techniques based on hierarchical trace clustering, while
preserving the fitness, appropriateness and generalization of process models mined from
trace clusters. The experimental evaluation based on three large real-life logs shows size



Log Method Size CFC|ACD|CNC|Density
avg |min|max|savings (%)| avg | avg | avg | avg

Motor S 22775 4 | 37 22.8 12.07|12.71|1.26| 0.07
SMDyg (17.57| 4 | 37 10.07|2.34| 1.21| 0.11

B 20.01| 4 | 37 9.8 9.972.51| 1.2 | 0.08

SMDp (18.04| 4 | 37 10.05/2.38| 1.2 | 0.11

M 15.73| 3 | 49 -1.1 7.36(2.14|1.12| 0.11

SMDys | 159 4 | 49 8341212 (1.14| 0.12
Commercial|S 24.07| 6 | 34 224 13.65/2.96|1.32| 0.06
SMDg |(18.67| 2 | 34 11.34/2.49 | 1.24| 0.1

B 21.11) 2 | 34 20.3 11.04/2.65|1.23| 0.07

SMDp (16.82| 2 | 34 9.732.29|1.18| 0.12

M 18.86] 2 | 40 11.1 10.182.47 (1.22| 0.09

SMDy, |16.76| 2 | 34 9.71 [2.38 | 1.21| 0.11

BPI S 47.321 15 | 56 29.7 20.77/2.34|1.24 | 0.03
SMDg |33.27| 4 | 56 20.18{2.41 | 1.28 | 0.07

B 46.54| 13 | 56 30.6 20.48/2.35|1.23| 0.03

SMDp 323 4 | 56 19.29|2.33|1.27| 0.07

M 46.48| 21 | 61 18.9 21.16]2.34 (1.24 | 0.03

SMDy, (3771 7 | 56 25.29(2.38| 1.3 | 0.04

Table 3. Size and structural complexity metrics for model collections mined with SMD.

reductions of up to 64%, with little impact on structural complexity metrics of individ-
ual process models — barring an increase in density attributable to the dependency of
this complexity metric on size.

While complexity metrics have been shown to be correlated with comprehensibil-
ity [12], it is unclear how exactly to tune the thresholds used by SMD so as to produce
models that users would best comprehend. While methods for determining complex-
ity thresholds on individual models have been put forward [11], the interplay between
overall size of a collection of process models, size of individual models and their struc-
tural complexity is less understood. Building an understanding on how to set complex-
ity thresholds for automated process discovery is a direction for future work. Another
direction for future work is to optimize SMD in order to reduce its execution time.
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