

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Ferris, Jason, Mazerolle, Lorraine, Bennett, Sarah, Devaney, Madonna, King, Mark J., & Bates, Lyndel J. (2013) Random Breath Testing and their effectiveness revisited : an examination of RBT and Alcohol-Related Crash Data from 2000-2011 across Australia. In *ADASC 2013 6th Australasian Drug and Alcohol Strategy Conference*, 19-22 March 2013, Sydney, Australia. (Unpublished)

This file was downloaded from: http://eprints.qut.edu.au/58793/

© Copyright 2013 The Authors

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

Random Breath Testing and their effectiveness revisited: An Examination of RBT and Alcohol-Related Crash Data from 2000-2011 across Australia.

Jason Ferris, Lorraine Mazerolle, Sarah Bennett, Madonna Devaney - University of Queensland Mark King, Lyndel Bates – CARRS-Q (QUT)

Acknowledgements

QPS

- Assistant Commissioners Peter Martin
- Chief Superintendent Bob Gee
- Road Safety and Traffic Support Managers Monique Grigg and Lisa-Marie O'Donnell

Collaborations with:

- All jurisdictions police service
- All jurisdictions department of main roads (and equivalent)
- AustRoads, South Australia

Overview of Presentation

- History of RBTs
- The predominant theory behind 'effective' RBTs
- Highlight initial findings from WA vs QLD comparison
- Situate these findings in the context of other state data
 - Monthly data
 - Yearly data
- Discussion of where to?

History of RBTs

- Prior to introduction of RBTs ~
 50% of drivers killed in a MVA had BAC over 0.05% g/mL
- First introduced in Victoria 1976
- Reduction in fatalities at around roll out 10-50%
- RBTs main drink-driving law enforcement tool
- 2000-2010 ~ 8m RBTs annually
- 2010 ~ 15m licenced drivers
- Australian RBT:LD ratio 1:2

RBT rate by state

- Most states do not have a mandatory rate of RBTs
- Annual RBTs ratio Annual number licenced drivers
 - NSW 1:1* ratio has been increasing
 - VIC 1:3
 - QLD 1:1
 - WA 1:3* no 'true' rate
 - SA 1:2
 - ACT 1:3
 - TAS 1.4:1
 - NT 1:1

• Is based on one's decision-making processes – does the benefits of the crime outweigh the costs of getting caught

• Is based on one's decision-making processes – does the benefits of the crime outweigh the costs of getting caught

• Is based on one's decision-making processes – does the benefits of the crime outweigh the costs of getting caught

- Is based on one's decision-making processes does the benefits of the crime outweigh the costs of getting caught
- From the communities perspective:
 - Perceived risk of getting caught must be high
 - Punishment associated with getting caught perceived as severe

- Is based on one's decision-making processes does the benefits of the crime outweigh the costs of getting caught
- From the communities perspective:
 - Perceived risk of getting caught must be high
 - Punishment associated with getting caught perceived as severe
- From the procedural justice perspective:
 - RBTs must be highly visible
 - Unpredictable
 - Difficult to evade
 - Range of consequences
 - Considered a 'high' threat by community

Taken from NDLERF monograph

- 12 million RBTs in Australia each year
- Total annual cost of police doing RBTs in Australia = \$71 million

- Cost of police doing ONE RBT = \$5.92
- Average length of ONE RBT = 20 seconds per encounter

Estimates are from Papafotiou-Owens & Boorman (2011) and Vos, Carter, & Barendregt (2010)

- Estimated cost of ONE fatal crash is \$2.67 million
- The cost of a hospitalised injury crash is about \$266,000
- The cost of a non-hospitalised injury crash is about \$14,700
- The average cost of a property damageonly crash is about \$9,950

Preliminary findings based on initial data from two states – QLD and WA (2004-2009)

WA vs QLD

	WA	QLD	
RBT : licensed driver ratio	1:3*	1:1	
Population	2.3m	4.5m	
State (population)	4 th	3 rd	
Capital city (population)	75%	46%	
Geographical size	2.5m km ²	1.8m km ²	
Proportion urban	71%	60%	
Licensed drivers	69%	71%	
Current drinkers*	84%	83%	
Drink-driving last 12 months	14%	9%	
Odds Ratio of drivers admitting DUI p.a.	1.57	1	

25

(1:4)

New data Adding in more states (2000-2011)

Summary of 6 States - Monthly

State	Period	RBTs:LD	Period	ARTC:LD	Comment		
QLD	2000-11	Stable (\downarrow)	2004*-09*	Stable			
WA	2000-11	Large ↓	2001-10	Large ↑	ARTC ↓ '09-'11		
SA	2000-11	Stable (\downarrow)	2000-11	\downarrow	ARTC ↓ '07-'11		
TAS	2004*-11	Unstable ↑↓	2005*-11	Unstable↑↓	Pattern of ARTC follows RBT		
NT	2006-11	Large ↑	2002-11	Unstable↑↓	Since ↑ in RBTs substantial ↓ in ARTC		
ACT	2004*-11	Stable ↓	2000-11	Stable (↓)	RBTs		
NSW	No monthly crash data						
VIC	No monthly RBT data						

Putting all the data together (2000-2011)

(as an RBT:DL ratio)

One size (does not) fit all

WA vs QLD

	QLD	WA	SA	TAS	NT	ACT
RBT : licensed driver ratio	1:1	1:3*	1:2	1.4:1	1:1	1:3
Population	4.5m	2.3m	1.6m	.5m	.2m	.4m
Rank (population)	3 rd	4 th	5 th	6 th	8 th	7 th
% in capital city (population)	46	75	75	42	50	99
Geographical size (km ²⁾	1.8m	2.5m	1.0m	0.07m	1.3m	.23m
Rank (size)	2 nd	1 st	4 th	7 th	3 rd	8 th
% licensed drivers	71	69	71	73	49	80*
% Current drinkers*	83	83	81	86	86	86
% Drink-driving last 12 months	9	14	13	12	15	15
Odds Ratio of drivers admitting DUI p.a.	1:00	1.57*	1.46*	1.40*	1.66*	1.71*

ARC Centre of Excellence in Policing and Security

Variations by state

- Geographical factors
 - Urban density
 - Kilometers and spread of sealed road
 - Proportion living in capital cities
- Operational factors
 - RBT types
 - Stationary/Booze bus
 - Roving/Mobile
 - RBT targets
 - Numbers of RBTs conducted
 - Number of positive detections
 - Operational differences between city, regional, remote

Limitations and what next?

- Changes in recording of alcohol involvement at traffic accidents
- Administrative police data have '0%' BAC measures
 These measures may represent 'no' measure taken not a zero
- Other limitation???
- We are currently modelling these data using crashes during high-alcohol hours as a proxy for alcohol related traffic crashes.
- We are looking into how the proportion of RBT types conducted impact the relationship between ARTC and RBTs

The following slides – I may not use – but they are about estimating the cost of RBTs and the effect of changing the RBT ratio – based on QLD and WA data

If we only use the WA and QLD data!

- The cost per RBT is \$6.00
- In WA, doubling the ratio of RBTs LD means increasing the monthly average number of RBTs from 60,000 to 120,000: an extra 60,000 RBTs/month
- This equates to $6^{0000} = 4.5$ million dollars p.a.
- Doubling the number of RBTs from 1:2 to 1:1 may result in ARTC reduction of 1.7 (1.2-2.2) per 100,000 LDs per month
- WA 1,456,480 therefore 1.7*14= 23 ARTC per month
- ~ if 1 in 10 ARTC result in fatality 2.3 lives per month
- \$2.6 mill (cost per life) * 2.3 lives saved = is \$5.9 million saved per month

