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ORDER STATISTIC FILTERS FOR IMAGE MATCHINGJasmine E. BanksFraunhofer Institute for Computer Graphi
s,Rundeturmstr. 6, Darmstadt 64283, Germany.Email: jbanks�ieee.orgABSTRACTThe rank and 
ensus are two �lters based on orderstatisti
s whi
h have been applied to the image mat
h-ing problem for stereo pairs. Advantages of these �ltersin
lude their robustness to radiometri
 distortion andsmall amounts of random noise, and their amenabil-ity to hardware implementation. In this paper, a newmat
hing algorithm is presented, whi
h provides anoverall framework for mat
hing, and is used to 
omparethe rank and 
ensus te
hniques with standard mat
h-ing metri
s. The algorithm was tested using both realstereo pairs and a syntheti
 pair with ground truth.The rank and 
ensus �lters were shown to signif-i
antly improve performan
e in the 
ase of radiomet-ri
 distortion. In all 
ases, the results obtained were
omparable to, if not better than, those obtained us-ing standard mat
hing metri
s. Furthermore, the rankand 
ensus have the additional advantage that their
omputational overhead is less than these metri
s. Forall te
hniques tested, the di�eren
e between the resultsobtained for the syntheti
 stereo pair, and the groundtruth results was small.1. INTRODUCTIONStereo vision is one te
hnique for per
eption of the 3Denvironment, in whi
h two or more images of a s
eneare taken from di�erent perspe
tives, and depth in-formation is obtained by triangulating 
orrespondingpoints in the images. A fundamental problem fa
ed bystereo vision algorithms is that of lo
ating 
orrespond-ing points in the images. This is known as the imagemat
hing or 
orresponden
e problem.The rank and 
ensus are two �lters based on or-der statisti
s whi
h have been applied to the mat
hingproblem. Advantages of these �lters in
lude their ro-bustness to radiometri
 distortion and small amountsof random noise, and their amenability to hardwareimplementation. This paper presents a new mat
h-ing algorithm, whi
h provides an overall framework for

mat
hing, and is used to 
ompare standard mat
hingmetri
s with rank and 
ensus based te
hniques.This paper is organised as follows. Se
tion 2 de-s
ribes the rank and 
ensus �lters. The new mat
hingalgorithm is then outlined in Se
tion 3. Results ob-tained for a number of test images, using both stan-dard mat
hing metri
s, and the rank and 
ensus, arepresented in Se
tion 4. In Se
tion 5, results obtainedfor a syntheti
 stereo pair are 
ompared with a knownground truth. Se
tion 6 provides some dis
ussion ofthese results and 
on
ludes.2. RANK AND CENSUS FILTERSThe rank and 
ensus �lters were �rst proposed for thestereo mat
hing problem in [8℄. Their relian
e on theordering of pixel values, rather than pixel values them-selves, means that they are robust to radiometri
 dis-tortion. This is signi�
ant be
ause radiometri
 distor-tion is a problem whi
h 
an often arise in the �eld,parti
ularly where low 
ost 
ameras are used[2℄. Fur-thermore their low 
omputational 
omplexity lends it-self to hardware implementation, therefore they havepotential for real-time appli
ations.2.1. Rank FilterA window of size M �N is passed over the image. Atea
h lo
ation in the image, the number of pixels lessthan the 
entre pixel are 
ounted. This be
omes thevalue of the rank image at that lo
ation. Two rank�ltered image regions may be 
ompared using the SAD(Sum of Absolute Di�eren
es) metri
[1℄.2.2. Census FilterAgain, a window of sizeM�N is passed over the image.At ea
h lo
ation in the image, the pixel neighbourhoodis mapped to a bit string. If a pixel is less than the
entre pixel, the 
orresponding position in the bit stringis set to 1, otherwise it is set to 0. Ea
h lo
ation in the
ensus transformed image therefore 
onsists of a bit
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Figure 1: Overall mat
hing algorithm.string, whi
h 
hara
terises the pixel neighbourhood atthat image lo
ation. Regions in 
ensus �ltered imagesmay be 
ompared by 
ounting the number of bits whi
hdi�er in the bit strings | e�e
tively an XOR operation| and summing over the region.Two hardware implementations of mat
hing usingthe 
ensus �lter are des
ribed in [3, 7℄.3. MATCHING ALGORITHMFigure 1 depi
ts the overall mat
hing algorithm. Thevarious 
omponents of this algorithm are des
ribed asfollows:3.1. Sparse Mat
hing and Epipolar GeometryThe input to the algorithm 
onsists of an image pair,and the fundamental matrix, whi
h en
apsulates thegeometri
 relationship between the two images whi
h
omprise the image pair. For 
ompleteness, Figure 1shows that the main algorithm is pre
eded by a sparsemat
hing stage, whi
h automati
ally dete
ts a set ofrobust mat
hes in the images, and a stage whi
h 
om-putes the epipolar geometry (in this 
ase performedusing the INRIA FMatrix software[4℄). The sparsemat
hing algorithm 
ould itself be de
omposed into a

blo
k diagram and des
ribed in detail, however this isbeyond the s
ope of this paper.3.2. Computation of Interest S
oresAn interest s
ore is 
omputed for every lo
ation in theimages. Points whose interest s
ore is below a thresholdare 
agged as \low interest".3.3. Sele
tion of PointsThe N most interesting points are sele
ted for mat
h-ing, where N is typi
ally set to one tenth the size of theimage. The algorithm progressively mat
hes the nextN lesser important points, until all points are mat
hed.3.4. Computation of Mat
hing S
oresA template window 
entered on ea
h point in the �rstimage is shifted in integer in
rements along the epipolarline in the se
ond image. The value of the mat
h s
oreis 
omputed at ea
h 
andidate position, using mat
hmetri
s[1℄, or the rank and 
ensus te
hniques. This re-sults in an array of mat
h s
ores, in whi
h potentialmat
hes are identi�ed as lo
al maxima or minima, de-pending on the metri
 used. The mat
h s
ores are usedto estimate an initial probability for ea
h mat
h.



(a) (b)Figure 2: Test image pairs (a) road (b) hmmwv2.3.5. Image PyramidThe algorithm allows for the use of an image pyramid,where mat
h s
ores are 
omputed from multiple reso-lution images. If the highest resolution level has notbeen rea
hed, the potential mat
hes are propagated tothe next level.3.6. Update of Mat
h ProbabilitiesThe mat
h probabilities are in
reased proportional tothe number of neighbouring points already mat
hed,whi
h have a similar disparity.3.7. Removal of Invalid Mat
hesFor ea
h point, the mat
h having the highest probabil-ity is sele
ted. The mat
h s
ore array is interpolated todetermine the disparity to sub-pixel a

ura
y. A num-ber of te
hniques are then used to 
ull mat
hes likelyto be invalid. Lo
ally anomalous mat
hes, whi
h di�erfrom their neighbours more than a given threshold, are
agged as \anomalous". Mat
hing is then performedin reverse, that is, the mat
hed lo
ation in the se
-ond image is itself mat
hed ba
k to the �rst image. Ifthe mat
hed lo
ation mat
hes ba
k to a lo
ation otherthan the original point, the mat
h is 
agged as \in
on-sistent".3.8. Multiple algorithm passesIt is possible to run the algorithm more than on
e |on ea
h \pass", all points 
agged as having invalidmat
hes are set to unmat
hed, and it is attempted tomat
h these points again.3.9. Multiple Mat
h Window SizesThe mat
hing pro
ess may be repeated for a number ofdi�erent window sizes. The disparity results obtainedfor ea
h window size are then 
ombined into a singledisparity result. This is done by initially setting the

(a) (b)
(
) (d)Figure 3: Disparity results for \road" stereo pair (a)SAD (b) NCC (
) RANK (d) CENSUS.global disparity to that obtained using the largest win-dow size. The global disparity is updated in turn by thedisparity results of su

essively smaller window sizes. Itis updated depending on the existen
e of enough neigh-bours in the global disparity whi
h are within a spe
-i�ed threshold of the smaller window disparity value.This strategy assumes that the disparity results fromlarger window sizes are the most reliable, and ensuresthat obviously in
orre
t disparity values from smallerwindow sizes do not in
uen
e the global disparity re-sult. The aim of this te
hnique is to improve the a

u-ra
y of the disparity result and remove the \smoothing"e�e
t introdu
ed by using a window of pixel values format
hing.3.10. Output of the AlgorithmThe outputs of the mat
hing algorithm 
onsist of x,y and absolute value of disparity images, as well asan image of \mat
h 
ags". Ea
h point in the \mat
h
ags" image is one of the following values:mat
hed - point su

essfully mat
hed.low interest - interest s
ore below threshold.not found - there exists no lo
al maxima or minima ofthe mat
h s
ores array.in
onsistent - mat
h failed the 
onsisten
y test.anomalous - mat
h was lo
ally anomalous.border - lo
ation was a border region.



(a) (b)
(
) (d)Figure 4: Disparity results for \hmmwv2" stereo pair(a) SAD (b) NCC (
) RANK (d) CENSUS.4. RESULTS FOR TEST IMAGESFigure 2 shows the left image of two di�erent test pairs,obtained from [5℄. Both image pairs su�er from radio-metri
 distortion, for the \road" pair, the right image isapproximately 30% brighter than the left, while for the\hmmwv2" pair, the left image is 15% brighter thanthe right.Disparity results for the test pairs, using the SAD(Sum of Absolute Di�eren
es) and NCC (NormalisedCross Correlation) metri
s [1℄, and the rank and 
en-sus te
hniques, are shown in Figures 3 and 4. In ea
h
ase, the results were produ
ed using the simplest 
ase| one pyramid level, one pass of the algorithm, andonly one mat
h window size (in this 
ase 11). Thiswas in order to fo
us on the 
omparison between stan-dard mat
hing metri
s and rank and 
ensus based te
h-niques, and to avoid the 
ombinatorial explosion of al-ternative 
ombinations of mat
h algorithm input pa-rameters.Table 1 shows, for ea
h test image pair, the pro-portion of points mat
hed, and the number of mat
hesreturned for ea
h value of mat
h 
ag. The 
omputa-tion of the proportion mat
hed does not in
lude points
agged as \border" or \low interest", for whi
h mat
h-ing was not attempted.5. COMPARISON WITH GROUND TRUTHRESULTSComparison with ground truth, ie, \
orre
t" results,provides a method of testing the a

ura
y of the re-

(a) (b)Figure 5: Corridor images (a) left image (b) groundtruth disparity.
(a) (b)
(
) (d)Figure 6: Disparity results for 
orridor images (a) SAD(b) NCC (
) RANK (d) CENSUS.sults returned by the mat
hing algorithm. However,dense ground truth data is generally not available forreal stereo pairs. The \
orridor" stereo pair[6℄ is onesyntheti
 stereo pair for whi
h ground truth disparitydata is known. Figure 5 shows the left image of thisstereo pair, and the ground truth disparity image.The mat
hing algorithm was run with the parame-ters as for the test pairs in Se
tion 4, ex
ept that thethreshold \interest s
ore" was set to zero. This meantthat mat
hing would be attempted for all image points(apart from border areas). Figure 6 shows the dispar-ity results obtained using the SAD and NCC metri
s,and the rank and 
ensus te
hniques. The proportionof points mat
hed, and the number of points returnedwith ea
h mat
h 
ag, are given in Table 1. For the
orridor images, Table 1 also shows the 
omputed rmsdi�eren
e been the disparity of the mat
hed pixels, andthe ground truth disparity.



image mat
hmethod prop.mat
hed mat
hed lowinterest not found in
onsistent anomalous border rms di�.road SAD 0.0208 4372 20050 7497 191374 6851 15616 -NCC 0.6942 145852 20050 3674 54473 6095 15616 -RANK 0.7221 150451 17971 3297 43769 10832 19440 -CENSUS 0.8662 180477 17971 2880 20782 4210 19440 -hmmwv2 SAD 0.1849 43585 10335 22559 138294 31243 16128 -NCC 0.7845 184903 10335 21518 20945 8315 16128 -RANK 0.7915 185005 8325 21933 21104 5697 20080 -CENSUS 0.8010 187217 8325 22537 18310 5675 20080 -
orridor SAD 0.8192 47182 0 1773 5795 2848 7936 0.3990NCC 0.7559 43539 0 3101 8044 2916 7936 0.5449RANK 0.8157 45431 0 4019 4796 1450 9840 0.4148CENSUS 0.8262 46016 0 4139 4189 1352 9840 0.4100Table 1: Results of mat
hing for test images.6. DISCUSSIONFrom Figures 3 and 4 it 
an be 
learly seen that theSAD is not robust to radiometri
 distortion. Othermetri
s, su
h as the NCC, are robust to this type of dis-tortion, however introdu
e more 
omputational over-head. It 
an be seen from Table 1, and from resultsfrom of other test pairs not shown in this paper, thatthe performan
e of the rank and 
ensus is generally
omparable to, if not better than, metri
s su
h as theNCC. Furthermore, they have the advantage that their
omputational overhead is mu
h less than these met-ri
s.The mat
hing metri
s and the rank and 
ensus havealso been 
ompared using a known ground truth pair.In Table 1 shows this is the only pair for whi
h theSAD metri
 has out-performed all other te
hniques. Itis supposed that this is due to the \perfe
t" nature of asyntheti
 stereo pair | in that it does not su�er fromnoise or radiometri
 distortion. However, it 
an be seenfrom Table 1 that the rank and 
ensus have performed
omparable to the SAD, and that for all mat
hing te
h-niques, the di�eren
e between the 
omputed disparityand ground truth disparity is small.Further work would involve more extensive test-ing of the presented mat
hing framework | for ex-ample, using multiple \passes" of the algorithm to re-mat
h points 
agged as \not found", \in
onsistent"or \anomalous", and 
ombining results obtained frommultiple window sizes.7. ACKNOWLEDGEMENTSThis work was 
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