
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Feng, Yanming (2012) Regression and hypothesis tests for multivariate
GNSS state time series. Journal of Global Positioning Systems, 11(1), pp.
33-45.

This file was downloaded from: http://eprints.qut.edu.au/58740/

c© Copyright 2012 The International Association of Chinese Profes-
sionals in Global Positioning Systems (CPGPS)

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Feng,_Yanming.html
http://eprints.qut.edu.au/58740/


 

 

 

Journal of Global Positioning Systems (2012) 

Vol.11, No.1 : 33-45 

DOI: 10.5081/jgps.11.1.33 

 

 

 

 

Regression and Hypothesis Tests for Multivariate GNSS State Time 

Series 
 

Yanming Feng  

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Q4001, Australia 

 

 

Abstract 

 

A satellite based observation system can continuously or 

repeatedly generate a user state vector time series that 

may contain useful information. One typical example is 

the collection of International GNSS Services (IGS) 

station daily and weekly combined solutions. Another 

example is the epoch-by-epoch kinematic position time 

series of a receiver derived by a GPS real time kinematic 

(RTK) technique. Although some multivariate analysis 

techniques have been adopted to assess the noise 

characteristics of multivariate state time series, statistic 

testings are limited to univariate time series. After 

review of frequently used hypotheses test statistics in 

univariate analysis of GNSS state time series, the paper 

presents a number of T-squared multivariate analysis 

statistics for use in the analysis of multivariate GNSS 

state time series. These T-squared test statistics take the 

correlation between coordinate components into account, 

which is neglected in univariate analysis. Numerical 

analysis was conducted with the multi-year time series of 

an IGS station to schematically demonstrate the results 

from the multivariate hypothesis testing in comparison 

with the univariate hypothesis testing results. The results 

have demonstrated that, in general, the testing for 

multivariate mean shifts and outliers tends to reject less 

data samples than the testing for univariate mean shifts 

and outliers under the same confidence level. It is noted 

that neither univariate nor multivariate data analysis 

methods are intended to replace physical analysis. 

Instead, these should be treated as complementary 

statistical methods for a prior or posteriori investigations. 

Physical analysis is necessary subsequently to refine and 

interpret the results. 
 

Key words: GNSS state time series, univariate analysis, 

multivariate analysis, T-squared statistics.  

_____________________________________________ 

 

1. Introduction 

 

With a GNSS-based observation system, users can 

repeatedly generate state vectors from time to time, 

despite possibly at different accuracy levels. Typically, 

the state vectors can include any combination of satellite 

orbit and clock parameters, ground station coordinates 

and clock biases, atmospheric delays etc. A local 

network of GPS stations may be continuously observed 

to produce high-rate station displacements for 

monitoring the earthquake in its coverage area Borghi et 

al. (2009). A regional or global Continuous Operating 

Reference Stations (CORS) network is more often used 

to generate daily or weekly station solutions for 

geodynamics studies, such as crustal deformation 

monitoring. These solutions are usually given in form of 

coordinates biases with respect to a certain reference 

frame such as International Terrestrial Reference Frame 

2008-ITRF2008. For instance, the International GNSS 

Services (IGS) routinely generate a number of weekly, 

daily and sub-daily products. Station coordinates and 

velocities, earth rotation parameters (ERPs) and apparent 

geocentre are among these products generated (Ferland 

and Piraszewski (2009), Ferland (2006), Altamimi and 

Collilieux (2008). Form a global CORS stations, the IGS 

community also generate various GNSS orbital and 

clock products for the satellites over the same periods, 

including daily available IGS rapid orbits, final orbits for 

various applications and services. In recent years, a 

number of IGS data analysis centres start to generate real 

time GPS/Glonass orbital and clocks corrections which 

are precise orbits and clocks given with respect to 

broadcast orbits and clocks (Caissy et al, 2012). 

 

Generally GNSS permanent station time series show 

various types of signals, some of which are real whilst 

the others may not have apparent causes: miss-modelled 

errors, effects of observational environments, random 

noise or any other effects produced by GNSS analysis 

software or operator choices of software parameters and 

settings of a prior stochastic models for different types of 

measurements. However, IGS station solutions are 

basically given in two different ways (i) 3D coordinate 

time series which reflect the sum of all noises and signal; 

(ii) the covariance matrices of the stations derived from 

the estimation systems. It is challenging to extract 

detailed signals from the limited information. Significant 

efforts have been made to analyse GNSS time series, 

including the earlier studies by Mao et al (1999) about 

http://www.citeulike.org/user/xcollilieux/author/Altamimi:Z
http://www.citeulike.org/user/xcollilieux/author/Collilieux:X
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noise in the GPS time-series and Blewitt & Lavallée 

(2002) on the effect of annual signals on geodetic 

velocity time series. Williams (2003) described the effect 

of coloured noise on the uncertainties of the rates 

estimated from the geodetic time series. Williams et al. 

(2004) reported significant spatial correlation between 

GPS time-series. Biagi et al (2006) studied the effects of 

tidal errors and deformations in regional GPS networks. 

In geophysical studies, in addition to global models of 

plate motions, it is widely accepted that the site 

velocities of permanent GPS stations are determined by a 

linear regression of individual GPS coordinate time-

series. In the work by Amiri-Simkooei et al (2007), a 

method was used to assess the noise characteristics of 

univariate GPS coordinate time series. All these analyses 

were based on the univariate noise assessment for which 

the time series were estimated individually. In the recent 

years, multivariate analysis methods have been 

introduced to the analysis of noise in GNSS time series. 

Amiri-Simkooei et al (2009) adopted some stochastic 

models to assess the noise characteristics of multivariate 

time series. The least-squares variance component 

estimation (LS-VCE) was then applied to estimate full 

covariance matrices among different series. The analysis 

for five IGS station timer series confirmed that the 

spatial correlation between different stations for 

individual components is significant both for white and 

for colored noise components. 

 

However, multivariate analysis of GNSS time series 

does not limit to the multivariate linear modelling, 

parameters and variance-covariance component 

estimation. Hypothesis testing is another important 

aspect of both univariate and multivariate analyses. 

Hypothesis testings answer the questions such as 

whether the signals or biases are statistically significant 

with respect to the level of noise in the background, 

whether the parameters selected are statistically 

significant enough to be included in the model. Statistic 

tools for such types of analysis are less studied, albeit 

many traditional statistics, such as univariate mean, 

standard deviations, spectrum analysis, have been used 

in the analysis of 3D position time series, such as the t-

test procedures as outlined by Kouba (2009). 

 

The rest of the paper is structured as follows. Section 2 

gives a review of univariate linear models, regression 

estimation of state parameters and various testing 

statistics. Section 3 presents T-square testing statistics 

for use in multivariate time series. Section 4 provides 

experimental analysis for the results showing by 

example how the introduced test can be used to detect 

the significance of coordinate variations in the solutions. 

Section 5 summarised the research findings of this work 

and other potential applications of the testing statistics as 

concluding remarks.  

2. Univariate Analysis of GPS State Time Series: 

Models, Estimation and Testing Statistics 

 

Although univariate analysis of GPS time series has been 

reasonably discussed, a systematic review of the 

regression models, estimation and hypothesis testing 

problems are provided herein for a number of reasons: 

(1) univariate modelling and analysis should be used as a 

preliminary step to analyse the multivariate data; (2) 

comparison with the multivariate analysis can be made 

both theoretically in next section and numerically in the 

section 4; and (3) the procedures available for the studies 

of residuals, detection of outliers in univariate analysis 

of time series may be extendable to multivariate 

analysis.  

 

2.1 Linear models and least square estimation 

We consider an individual GNSS coordinate time series, 

for instance, the daily solution of one coordinate 

component of a station, having a function model 

generally expressed as a linear regression model 

 

,... 11,22,11,0 ippiiii eXaXaXaXy  
   (1) 

 

where{yi ,i=1,..,n} is the observable of the coordinate 

component at the data point i; {Xj, j=0,1,..., p-1} are the 

p-by-1 vector to be estimated as regression coefficients; 

{ai,j,. i=1,…, n; j=0,1,.., p-1} are the independent 

variables in the observation equation (1), which could be 

given the function of time, depending on the actual 

physical problems; and {ei,i=1,..,n} is the noise of the 

observable {yi}. For instance, Willims (2003) gives the 

linear model to describe a component of coordinate time 

series as function of time: 
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where 2s=p, ωk represents different frequencies of the 

signals; t is the time variable given with respect to 

certain time epoch t0.  

 

Using vector-matrix symbols,  
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Equation (1) is then rewritten as  

 

eAXY      (3a) 
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For GNSS daily state solutions obtained from different 

sets of measurements, it is straightforward we assume e 

as a white noise vector, the following statistical models 

 

n

2Iσ(e)0,e)  Cov(E    (3b) 

 

where In is the n-by-n unit matrix . For the statistic 

analysis, we assume that the noise vector has the 

multivariate normal distribution: 

 

),(N~ n
2
I0e      (4a)  

 

Or defining E(Y)=µy, the observation vector Y is 

distributed according to  

 

),(N~ ny IY
2     (4b) 

 

The least squares solutions of the problems (3) are given 

as follows 

 

Yˆ T1T
AA)(AX

    (5) 
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As a special case, when p=1, the equations (5) and (6) 

are reduced as 
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2.2 Univariate hypotheses testing 

After a linear regression model is obtained from the 

least-square estimation given above, the first question is 

whether the regression model has properly described the 

dependences of {yi} on the independent variables {ai,j}. 

On one hand, we shall test the experimental models with 

the extensive real world data sets and give physical 

interpretation. On the other hand, we can perform 

statistical hypotheses tests, which may show how A is 

statistically significantly related to Y, and whether the 

dependence of Y on some specific variables, such as 

harmonic functions in (2), is statistically significant.  In 

addition, one may question whether the measurements 

have any outliers. We outline the required equations and 

statists for univariate analysis, referring to Jabson (1992) 

and Yang (2006) in particular.  

 

2.2.1 General formation of regression testing 

In general, various hypothesis tests can be expressed as 

the test of the null hypothesis 

 

H0:  HX=d    (9) 

 

where H is a full-rank m-by-p matrix to generally 

represent various testing problems as specified in the 

later discussion where m≤p; d is the m-by-1 constant 

vector. Under the constrained equation (9), the least 

square estimate of the X is given as follows: 

 

)d-X(H]HA)[H(AHA)(AXX
1T1TT1T

H
ˆˆˆ     (10) 

 

Letting  

 

)ˆˆ(SSe XA(Y)XAY
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The F statistic is obtained as 
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For a given confidence level of α, the critical region for 

testing the null hypothesis (9) is 

 

)(),( pnmFF 
    

(14) 

 

This is the interference for the linear function (9), which 

can be reduced to several special cases for different 

testing purposes.  

 

2.2.2 One-sample testing for univariate mean shifts 

The first special case is about testing for the hypothesis 

that some coefficients of the regression model are zeros. 

For instance,  

 

H0: X1=X2=…=Xp-1=0   (15) 

 

This means in the null hypothesis (9), the matrix H is the 

following: 

 

H=[0 Ip-1] and d=0   (16) 

 

Directly substituting (16) into (10) and (12), we obtain 

the F-statistic (13) where m=p-1. If this null hypothesis 

test is accepted, the effects of the independent variable 

factors in the regression model of the time series are 

insignificant.  

 

As a special case of (15), we can test the significance of 

the individual coefficients of the regression model. 

 

H0: Xi =0 i=1, 2,…,p-1  (17) 

 

There are p-1 individual matrices: 

 

H=[ 0 1 0,…, 0],…, H=[0 0,…,1]  (18) 
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Substituting the H matrix (18) one by one into (10), we 

obtain the F-statistic (13), which is however, equivalent 

to the t-statistic  

pn

ii

i
i t

c

X
t  ~

ˆ

ˆ


   (19) 

where cii is the diagonal element of the matrix 1TA)A (  

 

Many types of GNSS state time series are repeated 

measurements. In this case, the regression model derived 

from pervious time epochs may be used as the known 

model for the current time epoch, if the effects of the 

residuals are insignificant. This is equivalent to test the 

hypothesis that the mean shit or bias of the new residuals 

is equal to zero or to a specific value as the population 

mean. It is noticed that p=1, and the matrix A is  

 

 T111 A  

 

In this case, p=1, m=1. The null hypothesis is 

 

H0: X0=µy    (20) 

 

where µy is the population mean. In this case, the matrix 

H=[1]. The F-statistic (13) is reduced  
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(21a) can be replaced by the well-known t-statistic, 

which is the t-distribution with (n-1) degrees of freedom 

and sample standard deviation:  
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where y  and ̂ are computed with (7) and (8), 

respectively.  

 

2.2.3 Two-sample testing for univariate mean shifts 

The next case is to test a two-sample problem. There are 

two independently observed/sampled data sets, for 

instance, daily GNSS station solutions over two different 

months or over two different seasons. The question is 

whether the regression models derived from 

monthly/quarterly data sets are identical. For the first set 

of data, we have the model: 
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For the second the set we also have  
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We combine the two equations and obtain  
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The hypothesis to be tested is given as  
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Substituting Y, A in (22a) and H in (23) into (10), (11) 

and (12), the F-statistic is obtained as follows 
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The testing statistic can be applied to the two-sample 

problems. Suppose there are two separate data samples, 

which have two independent sets of used data points       

{
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which are distributed independently according to 

 z

2

zz n/,N~z   and  yyy nNy /,~ 2 , 

respectively. The variance estimates are  
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where (26) can be written as  
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2.2.3 Testing for univariate outliers 

Now, we detect potential measurement outliers. The 

detection of univariate outliers in GNSS time series is 

relatively straightforward in the sense that outliers are 

generally observations that are somewhat distant from 
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the reminder of the data. The problem is how to avoid 

the effects of outliers on the regression models. With one 

outlier on the ith measurement, the regression equation is 

now expressed as 

 

ebdAXY i  ,  ),(N~ I0e 2  (28) 

 

where b is the outlier and 
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We are now to test the hypothesis that the bias is zero, 

i.e.,  

 

H0: b=0     (29) 

 

The test statistic for the jth outlier is  
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The standardized residual is given by 
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The F statistic is  
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To avoid the effects of outliers, define the mean values 

and the standard deviation of ̂  with the jth 

measurement deleted,  
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The standardized residual is given by 
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3. Multivariate Analysis of GNSS Time Series: 

Models, Estimation and Hypothesis Testing 

 

3.1 Linear models and least square estimation 

The linear regression models for the multivariate GNSS 

time series have been expressed in a number of existing 

works as follows (eg. Amiri-Simkooei, 2009) 
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where i=1,…n, j=1,…,q. for instance, for each 

component, there is a equation (2). All the coordinates 

have the same independent variables and different 

coefficients. Using the matrix notations: 
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the linear model is expressed as follow 
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To obtain the estimate of the matrix X, the basic 

principle is to vectorise the multivariate linear model 

(37) to univariate linear model (Jobson, 1992) 
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)(Vec)(Vec()(Vec

 (38) 

 

where Σ is the q-by-q variance matrix. Using least 

square estimation and the properties of Kronecker 

products denoted by  , the vector of X is estimated as 

 

 YAA)AX
T1T  (Vec)

~
(Vec   (39) 

 

The estimate of matrix X is given as follows 
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For each vector of X, we have 
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The covariance matrix of Vec(X) 
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where the variance matrix Σis estimated by 
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where 
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when p=1, the solutions (40) and (43) are reduced to  





n

1i

i0 yy
n

1~x    (44) 

and 








n

in

~

1

i

T

i y(y)yy
1

1
Σ )(   (45) 

respectively. 

 

Similarly, for the statistic analysis, we assume the 

normal distribution for the noise vector: 

 

]),(Vec)[(N~)(Vec np IΣXAIY          (46) 

 

The most important distinction between the sets of 

univariate regression and multivariate regression is that 

in the multivariate regression model there are nonzero 

correlation among noise terms from different multiple 

univariate regression models. If joint inferences are 

required involving two or more of the multiple 

regression models, these correlation must be taken into 

consideration. These join inference procedures are 

discussed in the next section 

 

3.2 Hypotheses testings in multivariate time series 

The cases of hypothesis testings in multivariate 

regression analysis are similar to these in univariate 

regression analysis as outlined in section 2.2. For 

instance, it may be useful to be able to test the null 

hypothesis that a subset of the columns of the matrix A 

is superfluous, or some specific variable vectors of X are 

statistically insignificantly related to Y. In case of the 

regression model is given, it is useful to test the 

significance of the effect of the noise, or the mean values 

of residuals are zero. In addition, one may question 

whether the measurements have any outliers.  

 

3.2.1 General formation of testing for multivariate 

regression models 

In general, various hypotheses tests can be expressed as 

the test of the null hypotheses 

 

H0: HX=B    (47) 

 

where H is a m-by-p matrix of known constants of rank 

m and B is a m-y-q matrix of given constants. The 

restricted least squares estimator of X subject to HX=B 

is given by (eg. Jobson, 1992). 
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The likelihood ratio test of the hypothesis (47) is carried 

out using the Wilk’s Lambda statistic  
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If the H0 is true, in large samples the distribution of is 

approximated by the statistic which has an F distribution 

with m1 and m2 degrees of freedom: 
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where, 
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If q=1, or 2, or m=1, or 2, this F-distribution is exact. 

When p=1, v=1. m1=m, m2 =(n-p), the F-statistic (50) is 

reduced to (13). 

 

Similarly, to test different hypotheses, we only need to 

define the matrices H and B of known constants. 

Specifically, one can test the hypothesis that some 

coefficients are zero. 
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    (53) 

 

This is to test the hypothesis that the last m variables are 

superfluous. Following the same procedure to define H 

and B matrices, it is also possible to testing the 

hypotheses that two identical multivariate regression 

models are the same using the F- statistic (50). 

 

3.2.2 T-squared statistics for testing of multivariate 

mean vector 

In analysis of repeated multivariate GNSS state time 

series, we can test the hypothesis that the mean vector of 

the residuals is equal to a specific vector. We proceed by 

using Hotelling’s T
2
 statistics (Hotelling, 1931, Bowker, 

1960). The null hypothesis  

 

H0: y0 μx       (54) 

 

The T-squared statistic reads as follows (Anderson 

(1984), p156): 
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The distribution for the above statistics under the null 

hypothesis is the central F-distribution with p and n-p 

degrees of freedoms as follows 
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The ellipsoid )y

1

yy

2
μy()Sμy  (nT  provides a 

confidence ellipsoid for
y . The critical region for 

testing the null hypothesis y  is 
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3.2.3 T-squared statistics for testing of multivariate 

two-sample problems 

Similarly we can consider two-sample problems, to test 

the null hypothesis that mean of one normal population 

is equal to the mean of other where the covariance 

matrices are assumed equal but unknown. The null 

hypothesis is expressed as 

 

H0: yz μμ      (60) 

 

Using (45) as the definition of one sample mean, and the 

1-by-q vector  
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as the second sample mean, and  
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as the unbiased pooled covariance matrix estimate, then 

the two-sample T-squared statistic is 
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which can be related to the F-distribution by 

 

)1,(~
)2(

1
2 




pnnpFT

nnp

pnn
yz

yz

yz  (64) 

 

The critical region is  
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3.2.4 T-squared statistics for testing of multivariate 

outliers 

We now turn attention to testing for multivariate outliers. 

The procedures commonly used for detecting outliers in 

univariate and bivariate distributions should be used as a 

preliminary step to identifying potential outliers for 

multivariate data. However, it is possible for a case of a 

multivariate outlier not to be an outlier with respect to 

any one of the underlying univariate distributions, the 

detection of extreme measurements in multivariate 

distributions is more difficult.  

 

Following Jobson (1992), we outline the outlier 

detection procedures based on Hotelling’s T
2
 statistic. 
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One way of detecting multivariate outliers is to measure 

the distance of each repeated measurement from the 

centre of the data using the Mahalanobis distance. Each 

sample yi can be ordered or ranked in terms of its value 

of  
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which is the equation of p-dimensional ellipsoid. A 

relative large value of 
2

im would indicate that yi is 

potential outlier. In practice, 
2

im  is related to the 

measure 
T
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The relationship between 
2

im  and 
2

ib is given by 
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which is rewritten as 

 

 

Table 1 Summary of three hypothesis tests for both univariate and multivariate analysis 

 Univariate Multivariate 

One-sample 

problem 

 

Test 1: 

H0: y  

with unknown 

variance or 

covariance matrix 
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Two-tailed test: 

Given the confidence value α, if P-
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covariance matrix 
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Outlier detection 
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Ordering based on 
2

im  is therefore equivalent to 

ordering based on 
2

ib . An equivalent procedure is to 

compute the ratio of the variance  
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A relative small value of 
2
i would indicate that xi is a 

potential outlier. The methods (68) and (67 of ordering is 

equivalent.  

 

Under the multivariate normality and the null hypothesis 

that n,...,1i),(N~ p Σ,μy yi
. The Hotelling T

2
 statistic 

is given as 
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The largest value of 
2

iT over the sample, 
2

maxT , is used 

to test for the presence of a single outlier. From (58), we 

form the F-statistic as follows 
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Considering the relationship between 
2

ib and 
2

im , the F-

statistic can also be written as 
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The identification of a subset of outliers is a more 

difficult problem. But, the F-test statistic based on the 

Mahalanobis distance given as above can be used to 

detect multiple outliers. The idea is to begin with the 

entire sample, the data point yielding the largest value of 
2

im is removed from the sample if the corresponding F-

statistic is considered significant. The value of 
2

im are 

then recomputed and a new maximum value of 
2

im is 

compared to F. The procedures will be demonstrated in 

the next section. In addition, the measure 
2
i  introduced 

above for single outliers can be extended for multiple 

outliers.  We denote the covariance matrix by 
(I)S with 

the t observations 
t21 iii y,...,y,y removed, where I 

denotes the vector of subscripts (i1,i2, …,it). The critical 

ratio is given by y)y( SS /I
2
i  . A subset of 

observations with a smaller 
2
i is a indication that 

outliers may be present.  

 

For the sake of convenience, Table 1 provides a 

summary of test statistics for three special testing 

problems in univariate and multivariate analysis: one-

sample problem, two-sample problem and outlier 

detection problem. 

 

4. Numerical Analysis of IGS Daily Station 

Solutions 

 

The IGS community has been generating daily station 

state solutions for hundreds of CORS stations worldwide 

since their installations, or their data sets have been 

reprocessed with the more advanced software editions. 

Data analysis to the station time series aims to extract 

useful signals, such as crustal deformation, seasonal 

variations of station dynamics etc. Essentially, knowing 

the station dynamics has to rely on physical knowledge. 

Suitable statistical methods, such multivariate data 

analysis methods, are not intended to replace physical 

analysis: these should be seen as complementary, and 

statistical methods can effectively be used to run a prior 

investigations, to sort out ideas, to put a new light on a 

problem, or to point out aspects which would not come 

out in a classical approach. Physical analysis is 

necessary subsequently to refine and interpret the results. 

Alternatively, the statistical analysis may be run as a 

posterior investigation, to give ideas whether the 

physical models have effectively extracted the dynamic 

information, or to detect the significance of effects of 

residual signals. The results may be useful to refine the 

physical analysis subsequently.  

 

4.1 Daily state time series and correlation 

The daily solutions of the IGS site COCO since mid 

1996 were obtained with permission from SOPAC for 

analysis in this paper. Figure 1 plots the East-North-Up 

(ENU) coordinates biases with respect to ITRF2005 

against the modelling results. Figure 2 shows the ENU 

coordinate residuals after removing the modeled values 

from the ENU daily solutions. We now perform the 

testing in both 1 D and 3 D coordinate domains for the 

residuals between the observed and modeled sequences. 

At the beginning, we examine the correlation 

coefficients of three residual components against the 

simulated three white noise time series, as shown in 

Figure 3. Their correlation coefficients mostly vary 

between ± 0.2 and ± ~0.4, while the white noise 

correlation coefficients fall within ±0.1~0.2, as a 

comparison. 
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Figure 1: Illustration of the IGS station COCO daily 

solutions plotted against the physical models that reflect 

the half-yearly variations of the station solutions and 

solution jumps 
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Figure 2: Illustrations of residuals of ENU components 

after removing the modelled values 
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Figure 3: The correlation coefficients of three residual 

components against the simulated three white noise time 

sequences, showing the correlation between ENU 

components do exist. 

 

4.2 Testing results for mean shits: univariate vs 

multivariate analysis 

Next, using the statistics listed in Table 1 for both 

univariate and multivariate analysis, we perform Test 1 

for the sample sizes of n=30 and n=91, respectively. For 

n=30, Figure 4 plots the t-statistic values in ENU 

components against the t-critical value at the confidence 

level of 0.001. For different components, their t-tests are 

rejected at different data points. Figure 5 shows the F-

statistics derived from T-squared values of the 3D ENU 

time series against the F-statistics derived from 3 white 

noise time series, and the F-critical value. The rejected 

sample points decided by the multivariate tests are 

mostly different from the rejected points decided by the 

three individual t-tests. For n=91, univariate t-statistics 

and multivariate F-statistics are shown in Figure 6 and 

Figure 7 respectively. It appears that the rejected sample 

points decided by the multivariate tests are mostly the 

same as the rejected points decided by the univariate t-

tests for each component.  In general, testing for 

multivariate mean shifts tends to reject less data samples 

than testing for univariate mean shifts under the same 

confidence level.  
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Figure 4: The t-statistic values in ENU components 

against their critical value (black), respectively, at the 

confidence level of 0.001. The sample size is n=30. 
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Figure 5: F-statistics (red) derived from T-squared 

values oof the 3D ENU time series against the F-

statistics (blue) derived from 3 white noise time series, 

and the F-critical value (black). The sample size n is 30. 

 

The results from Test 1 are summarized in Table 2. For 

Test 1, the mean covariance matrix over all the samples 

is used as the known covariance matrix. From Table 2, 

one may observe that the smaller the data sample size, 

the less the data samples are rejected in both tests for the 

hypothesis that the mean vector is equal to the given 

mean vector. This simply indicates that the assumption 

that the physical model established already fits into the 
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samples of daily coordinate solutions is more acceptable 

over shorter periods. Over longer terms, such as 

quarterly, the same assumption would be less acceptable.  
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Figure 6: The t-statistic values in ENU components 

against their critical value (black), respectively, at the 

confidence level of 0.001. The sample size is n=91. 
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Figure 7: F-statistics (red) derived from the T-squared 

values of the 3D ENU time series against the F statistics 

(blue) derived from 3 white noise time series, and the F-

critical value (black) for the confidence level of 0.001 

and degrees of freedom (3,89) is 5.91. 

 

Table 2. Comparison of Test 1 results between univariate 

and multivariate analyses with the sample sizes of 30 

and 91, respectively 
Scheme  Multivariate 

ENU 

Univariate Univariate 

E N U E N U 

 F
p,n-p

  F
p,n-p

  t(n-1) t(n-1) t(n-1) t(n-1) t(n-1) t(n-1) 

p 3 3 3 3 3 3 3 3 

n 30 91 30 30 30 91 91 91 

DOF 27 88 29 29 29 90 90 90 

=0.001 7.27 5.91 ±3.66 ±3.66 ±3.66 ±3.29 ±3.29 ±3.29 

Reject 

Rate % 

 

7.06 

 

88.22 

8.07 32.32 9.53 36.35 70.87 31.12 

48.06 86.76 

 

4.3 Testing results for univariate and multivariate 

outliers 

Similar results can be obtained from analysis of Test 2. 

To avoid repeating, we proceed to Test 3 directly, to 

detect outliers from based on univariate analysis from 

each ENU series individually and multivariate analysis 

from the ENU series together. Figure 8 shows the F 

statistics from the univariate analysis for each ENU 

component respectively, over the period from the day 

239 to day 330 in 1998. The F-critical value for the 

confidence level of 0.01 is 6.93. Four data points were 

identified with outliers, 1 in each of the E and N 

components and 2 in the Up component.  For the same 

data period, the results of multivariate analysis for the 

ENU components are shown in Figure 9. The F-critical 

value for the confidence level of 0.01 is 4.00. Only two 

data points were identified with outliers. This example 

shows that different testing conclusions were drawn 

using univariate and multivariate outlier testing statistics 

with the same data and under the same confidence level. 

In general, testing for multivariate outliers tends to reject 

less data samples than testing for univariate outliers 

under the same confidence level.  
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Figure 8: Univariate F-statistics for ENU components 

respectively, over the epochs from 600 to 690. The F-

critical value for the confidence level of 0.01 is 6.93. 

Four data points were identified with outliers, 1 in each 

of E and N components and 2 in the Up component. 
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Figure 9: Multivariate F-statistics for ENU over the 

epochs from 600 to 690. The F-critical value for the 

confidence level of 0.01 is 4.00. Two data points were 

identified with outliers 

 

5. Concluding Remarks 

 

To analyse various state vector time series from GPS 

observation systems in the coordinate domain, such as 3 

dimensional (3D) IGS station daily and weekly 

combined solutions, epoch by epoch real time kinematic 

positions, this paper has presented a number of T-

squared statistics from the context of multivariate 



Feng: Regression and hypothesis tests for multivariate GNSS state time series 

44 

 

analysis for use in the analysis of 3D GNSS station time 

series. Based on these T-squared statistics, F testing 

statistics for multivariate one-sample problem, two-

sample problems and outliers are provided in 

comparison with test statistics for the same univariate 

analysis problems.  These test problems are considered 

as the multivariate generalisation of univariate testing 

problems. T-squared statistics have taken the correlation 

between coordinate components into account, which is 

neglected in the univariate analysis.  

 

A multi-year time series of an IGS station, COCO, has 

been analysed using some of the proposed tests to detect 

possible 3D mean shifts and outliers in the 3D residuals 

obtained by removing the modeled values from the 

observed coordinates. The man shits reflect the 

unmodelled biases in the residuals. The results have 

shown that in general, testing for multivariate mean 

shifts tends to reject less data samples than testing for 

univariate mean shifts under the same confidence level. 

Similarly, testing for multivariate outliers tends to reject 

less data samples than testing for univariate outliers 

under the same confidence level. Both the univariate and 

multivariate tests have shown that the assumption that 

the physical model established already fits into the 

samples of daily coordinate solutions is more acceptable 

from the shorter period perspective. From the longer 

term perspective, such as a quarter instead of a month, 

this assumption would be much less assumption.  

 

It must be noted that data analysis for the station time 

series aims to extract useful signals, such as crustal 

deformation, seasonal variations of station dynamics etc. 

Essentially, knowing the station dynamics relies on 

physical knowledge. Suitable statistical methods, such 

multivariate data analysis methods, cannot replace 

physical analysis: these should be seen as 

complementary and statistical methods that can 

effectively be used to run a prior investigation, to sort 

out ideas, to put a new light on a problem, or to point out 

aspects which would not come out in a classical 

approach. Physical analysis is necessary subsequently to 

refine and interpret the results. Alternatively, the 

statistical analysis may be run as a posterior 

investigation, to give ideas whether the physical models 

have effectively extracted the dynamic information, or to 

detect the significance of effects of residual signals. The 

results may be useful to refine the physical analysis 

subsequently. 

 

Acknowledgements 

 

This work was carried out under the support of 

Cooperative Research Centre for Spatial Information 

(2010-2018) through the project 1.03 “Regionally 

enhanced orbits and clocks to support multi-GNSS real-

time positioning”. The author also acknowledges the 

comments from the reviewers which have been 

beneficial for the improvement of the paper.  

 

References 

 

Altamimi, Z X. Collilieux (2008), IGS contribution to 

the ITRF, Journal of Geodesy, Vol. 83, No. 3. (1 

March 2008), pp. 375-383.  

Amiri-Simkooei, A. (2009), Noise in multivariate GPS 

position time-series, J. Geodesy, 83(2), 175-187 

 

Anderson, T.W (2003) An Introduction to Multivariate 

Statistic Analysis, Willey Seriers in probability and 

mathematical statistics, Jonhn Wiley and Sons, 2003, 

752 pages. 

 

Borghi, A., A. Aoudia,  R.E.M Riva, R. Barzaghi 

(2009) GPS monitoring and earthquake 

prediction: A success story towards a useful 

integration, Tectonophysics, Volume 465, Issues 1-

4, 20 February 2009, Pages 177-189. 

 

Caissy M, L Agrotis, G Weber, M Hernandez-

Pajares, and U Hugentoble(2012),  Coming 

soon: the Coming soon: the international GNSS 

real-time service, GPS World, June 2012, pp. 52-8. 

Ferland R, M. Piraszewski, (2009) The IGS-combined 

station coordinates, earth rotation parameters and 

apparent geocenter, J Geod (2009) 83:385–392 

 

Ferland R (2006) Proposed IGS05 Realization, in IGS 

Mail. 

http://www.igs.org/mail/igsmail/2006/msg00170.htm

l 

 

Gnanadesikan, R, (1977), Methods of Statistic Data 

Analysis of Multivariate Observations. Wiley, New 

York.  

 

Hotelling. H (1931), The generalisation of Student’s 

ratio, Annals of Mathematical Statistics, (2) 360-

378. 

Jobson  J D (1992) Applied Multivariate Data Analysis: 

Regression and experimental design, Volume 2, 

Springer. 

 

Kouba, J (2009) A guide to using International GNSS 

Service (IGS) Products  
http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSP

roductsVer21.pdf. 

 

Mardia, K. V (1980) Tests of Univariate and 

Multivariate Normality, Handbook of Statistics 1: 

Analysis of Variance (edited by P R Krishnaiah): 

p279-320. North-Holland 

 

http://www.citeulike.org/user/xcollilieux/author/Altamimi:Z
http://www.citeulike.org/user/xcollilieux/author/Collilieux:X
http://www.igs.org/mail/igsmail/2006/msg00170.html
http://www.igs.org/mail/igsmail/2006/msg00170.html
http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf
http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf


Feng: Regression and hypothesis tests for multivariate GNSS state time series 

45 

 

Nikolaidis, R (2002), Observation of Geodetic and 

Seismic Deformation with the Global Positioning 

System, Ph.D Thesis, University of California, San 

Diego, 2002. 

 

Williams, S. D. P (2003) The effect of coloured noise on 

the uncertainties of rates estimated from geodetic 

time series, J. Geodesy, 76 (9-10), 483-494 

Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. 

Nikolaidis, L. Prawirodirdjo, M. Miller, and D. J. 

Johnson (2004) Error analysis of continuous GPS 

position time series, J. Geophys. Res., 109, B03412, 

doi:10.1029/2003JB002741. 

 

Yang, Y X (2006) Adaptive Navigation and Kinematic 

Positioning, Publishing House of Surveying and 

Mapping, 234 pages. 

 

 

 

Biography  

 

Yanming Feng received his PhD degree in satellite 

geodesy from Wuhan Technical University of Surveying 

and Mapping (merged into Wuhan University in 2000), 

China. He is currently a Professor in Global Navigation 

Satellite Systems at School of Electrical Engineering and 

Computer Science, Queensland University of 

Technology, Australia. He has served as a project leader 

within Cooperative Research Centre for Spatial 

Information and Cooperative Research Centre for 

Automotive Technologies. His active research interests 

have included satellite orbit determination, wide area 

GNSS positioning, GNSS integrity determination, 

multiple GNSS data processing algorithms, and 

Dedicated Short-Range Communications for road safety 

applications. He is the Editor-in-Chief for The Journal of 

Global Positioning Systems. 

 

 

 

http://sopac.ucsd.edu/input/processing/pubs/nikoThesis.pdf
http://sopac.ucsd.edu/input/processing/pubs/nikoThesis.pdf
http://sopac.ucsd.edu/input/processing/pubs/nikoThesis.pdf
http://sopac.ucsd.edu/input/processing/pubs/nikoThesis.pdf

