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Abstract: In recent years, there has been a growing interest from the design and construction community 
to adopt Building Information Models (BIM).  BIM provides semantically-rich information models that 
explicitly represent both 3D geometric information (e.g., component dimensions), along with non-
geometric properties (e.g., material properties).  While the richness of design information offered by BIM 
is evident, there are still tremendous challenges in getting construction-specific information out of BIM, 
limiting the usability of these models for construction.  In this paper, we describe our approach for 
extracting construction-specific design conditions from a BIM model based on user-defined queries.  This 
approach leverages an ontology of features we are developing to formalize the design conditions that 
affect construction.  Our current implementation analyzes the component geometry and topological 
relationships between components in a BIM model represented using the Industry Foundation Classes 
(IFC) to identify construction features.  We describe the reasoning process implemented to extract these 
construction features, and provide a critique of the IFC’s to support the querying process.  We use 
examples from two case studies to illustrate the construction features, the querying process, and the 
challenges involved in deriving construction features from an IFC model. 

 

 



1. Introduction 

In recent years, several research and industry efforts have focused on developing building information 
models (BIM) and leveraging those models to support various aspects of the architectural, engineering, 
construction and facility management (AEC/FM) industry. The emergence of BIM has created new 
challenges as well as new hope for construction practitioners. While the richness of design information 
offered by BIM is evident, there are still tremendous challenges in getting construction-specific 
information out of BIM, limiting the usability of these models for construction and other downstream 
processes. While BIM explicitly represents building components, component properties, and relationships 
between components, they do not explicitly represent many of the design conditions that are important for 
construction. As a result, construction professionals spend significant amounts of time and effort 
browsing, analyzing and interpreting design information to identify these design conditions. This process 
is ad-hoc, inefficient, and inconsistent. There is a need for computer support to help practitioners query a 
given electronic building model to identify the design conditions that are important for a particular 
construction domain. 

Many have recognized the various design conditions that affect construction, including the horizontal and 
vertical layout of elements, distances between elements, dimensions, tolerances, spacing, modularity, 
connection details, repetition, similarity, uniformity, and use of standard sizes (Fischer and Tatum 1997, 
Hanna and Sanvido 1990, ASCE 1991).  Many of these design conditions occur frequently from project to 
project and are critical to a variety of construction domains.  For example, modularity, similarity, layout, 
and standard sizing are important for the construction of walls, ductwork, piping, and columns in building 
construction, and girders and trusses in bridge construction.  Research has shown that these design 
conditions are important for a variety of construction management functions, including constructability 
assessment (e.g., Boeke 1989), productivity analysis (e.g., Thomas and Zavrski 1999), method selection 
(e.g., Fisher and Tatum 1997), and cost estimating (e.g., Staub-French et al. 2003). Recently researchers 
have tried to encode this knowledge to provide more computer-based support for these functions.  
However, their approaches to date have been limited: focusing on a narrow set of design conditions (e.g., 
Haymaker et al. 2004); requiring extensive user input (e.g., Nguyen and Oloufa, 2002); querying only 
certain design conditions (e.g., Chen et al. 2005); or lacking user customizability (e.g., Fischer 1991).    

Our research aims to address these limitations.  In this paper, we describe our progress in developing a 
feature ontology to represent construction-specific design conditions and mechanisms to query these 
features from a building product model.  We define the different classes of features represented in the 
feature ontology based on two case studies (discussed next).  We describe our current implementation 
that analyzes a BIM model represented using the Industry Foundation Classes (IFC) to answer a variety 
of user-defined queries.  We also describe the IFC elements used to identify these features and provide a 
critique of the IFC’s to support the querying process.  

2. Motivating Cases 

In this section, we describe two case studies that illustrate the variety of design conditions that are 
important to practitioners when constructing (1) concrete columns and (2) walls. Construction practitioners 
look for these design conditions to accomplish a variety of construction management tasks, including cost 
estimating, method selection, scheduling, productivity analysis, and project management.  Here we try to 
highlight those design conditions that are relevant for multiple domains, characterize them in a general 
way, and describe why they are important for specific construction applications. 

Practitioners often associate various pieces of information to a component to distinguish its type. For 
example, walls could be categorized as masonry walls, exterior walls, interior walls, curved walls, clipped 
walls, etc. Specific properties of a component are also critical to practitioners.  For example, wall 
properties such as height, thickness, length, and fire-rating impact execution and ultimately construction 
cost.  For example, if a design has different wall heights and types, this can lead to decreased 
productivity due to the different construction methods (e.g., different equipment needed for full-height 
walls) and activities required (e.g., cutting and framing needed for drywall panels). 
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Practitioners also look for specific types of component intersections that may impact construction. For 
instance, the intersection of two walls (i.e., wall turns or corners) is important because it requires 
additional construction work for framing, layout, detailing, forming etc. The wall-column intersections may 
require additional set up, framing and allocation for movement joints. 

Openings in building components (such as doors and windows, and even empty openings) and their 
properties (e.g., the location and size) impact construction productivity and methods of construction. For 
example, to make use of tunnel forms for concrete wall construction, there must be uniformity in the size 
and location of openings (Fischer and Tatum 1997).  Penetrations of building components by building 
services are also an important design condition occurring frequently in components such as walls and 
slabs. Wall penetrations often require special construction procedures such as fire stopping, weather 
resistance, sound insulation, and the application of penetration seals.  Similarly, additional entities that 
are added to the component, which we call add-ons, also impact construction. For example, the 
existence of a column drop head may hinder the use of flying forms in high-rise buildings. 

Uniformity in the design helps to standardize and select proper construction means and methods, and 
enables workers to learn the job fast faster, thereby increasing output and decreasing cost. For example, 
the uniformity of column spacing allows regular bay size and regular grid of columns and frames that 
facilitates more efficient construction of other components such as beams, slabs, walls, or cladding. 
Similarly, the alignment of columns in both the X- and Y-direction can be an important factor in figuring 
out the selection of particular construction methods, such as the use of flying form tables. 

Practitioners look for the aforementioned design conditions (and others) in every building project because 
they are critical for assessing construction methods, productivity, costs, etc. Our goal is to formalize these 
design conditions in a systematic, formal, and computer interpretable way, using the manufacturing 
concept of product features, to enable reuse and sharing of this knowledge from project to project. Such 
a formalism is necessary to support automated processing of queries about a given 3D model. 
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Figure 1: Different design conditions for columns and walls that impact construction.  

3. Overview of Querying Process 

We implemented a system that identifies relevant construction-specific design features based on user-
defined queries of a given 3D model.  Figure 2 shows a high-level diagram of the envisioned querying 
process.  Most of the functionality described here has been implemented though additional work is 
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needed on the user interface and data representation to support more input from users and more 
flexibility in interacting with the underlying data.  The querying process is flexible in that it can be based 
on one (show me all curved walls) or multiple (show me all walls with the same height, type, and width) 
design conditions.  The feature ontology is described in more detail in section 4 and the reasoning 
process is described in more detail in section 5.   

 

Figure 2: IDEF0 model of the querying process 

The three major steps in the querying process, as illustrated in Figure 2, include the following: 

1. Define Project-Independent Features: Users define the features that are important for a particular 
domain based on the generic feature ontology.  The user is generally an expert in the domain and defines 
these features from a specific viewpoint and for a specific purpose, such as cost estimating.  The process 
of defining the features can take different forms depending on the feature.  In some cases it is just a 
matter of the user selecting the feature, such as wall curvature.  In other cases, additional information is 
required from the user, such as defining the variables for which uniformity will be assessed.  The system 
will have flexibility in that the user can create new feature types and define relevant properties if it is not 
already available in the feature ontology. The output of this process is a project-independent set of 
features that are important to the practitioner.  These features are input once and represented generically 
so that they can be reused from project to project. 

2. Create Feature Based Model: The system analyzes the input IFC-based 3D model of the project and 
identifies the feature instances and property values that were defined by the user in step 1.  Although 
some of these features and properties will be explicit in the input IFC-based model, as noted in Figure 3, 
most are difficult to find.  More complex features, such as uniformity, require extensive analysis of the 
geometry and topological relationships between components to identify. The output of this process is the 
project-specific feature-based model (FBM) that is customized for the user.  In essence, the feature-
based model is the domain-specific secondary representation of the design in terms of features that the 
domain experts care about. 

3. Query the IFC-based 3D Model: The system queries the project-specific FBM to answer specific 
questions posed by the user. For query processing, the system implements dedicated query languages 
and an array of deduction algorithms and functions. The function is constrained by the way the queries 
are specified. Because the input data is in xml (ifcXML), we used XQuery as the query language. The 
results of the query can take different forms including: (1) calculation (e.g., what is the total length of 
curved walls?); identification (e.g., which columns are uniformly spaced?); and interaction (e.g., browsing 
the feature-based model).  In some cases, there may be a feedback loop to the previous step as users 
may want to further refine a query. The query results will be displayed in a variety of formats including 
tabular, text, and graphical displays (not yet implemented). 
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4. The Feature Ontology 

The feature ontology provides a vocabulary of design conditions to help users define, create, and query a 
feature-based model. Our aim is to define features in a way that is consistent, unambiguous, and 
computer-interpretable.  Features have been used extensively in the manufacturing domain to refer to “a 
set of information related to a part’s description” (Shah and Rogers 1988) and “elements used in 
generating, analyzing, or evaluating design” (Shah 1991). Features in the context of this research are 
used to explicitly describe different design conditions that are important to construction practitioners and 
that practitioners would want to identify in a given 3D model. Ontologies provide a means of representing 
knowledge about some domain of interest, and include a set of concepts (e.g., entities, attributes, 
processes), their definitions, relationships and semantics (Genesereth and Nilsson, 1987).  We use an 
ontology to organize knowledge about construction features in a structured vocabulary, facilitating its 
exchange and reuse. 

The fundamental building blocks of the feature ontology are features, feature properties, and relationships 
among features.  We currently have classified features into the following types: component, opening, 
intersection, penetration, add-ons, design uniformity, and alignment.  Figure 3 shows the ontology that we 
developed for the design conditions highlighted in the motivating cases. The figure shows the feature 
class, super-class, class properties, and additional clarifying comments.  Due to space constraints, only 
the feature classes are described below.  

Feature Class Super class Class Properties Clarifying Comments
Feature Abstract super class
Component Feature

Wall Component
IsExternal; IsLoadBearing; FireRating; 
AcousticRating; SurfaceArea, Height; 
Length; Thickness

IFC Properties

IsStraight; IsVertical; IsSloped;     IsCurved; 
IsClipped

Wall category Designer specified wall type 
Number of clippings Constrained by: IsClipped = true
Slope Constrained by: IsSloped = true
Curvature Constrained by: IsCurved = true

Column Component Height; Depth, Width IFC Properties
Size Width, Depth
Shape Rectangular, Square, Round 
Concrete grade e.g., M25
Casting method Site cast vs Precast

Opening Feature Length; Width IFC Properties
Opening type Door, Window, recess etc. 
Size Length, Width
Horizontal Location User has to specify some reference 
Vertical location User has to specify some reference 
Relating Component Similar to IFC Property RelatingElement
Related Component Similar to IFC Property RelatedElement

Intersection Feature Relating Component Similar to IFC Property RelatingElement
Related Component Similar to IFC Property RelatedElement
Angle of intersection

Penetration Feature Length; Width
Size Length, Width
Hor. location User has to specify some reference
Ver. Location User has to specify some reference
Relating Component
Related Component

Design uniformity Feature Type Horizontal or vertical uniformity
Uniformity of spacing Design uniformity Type of spacing Center-to-Center or Clear Spacing

Uniformity of column spacing Uniformity of spacing Direction X-, Y-Direction or  X- & Y-Direction
Alignment Feature Type Horizontal or vertical alignment

Column alignment Alignment Direction X-, Y-Direction or  X- & Y-Direction
Alignment reference Column Center, Column Face, etc.  

Figure 3. Portion of the feature ontology defined for the motivating cases 
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� The feature class ‘component’ represents building components, such as columns and walls etc.  

� The feature class ‘opening’ represents many different types of openings that occur in 
components.  Openings essentially modify the component by removing part of the component 
and filling it with other components, such as doors and windows, or leaving it empty.  

� The ‘intersection’ feature class represents the conditions that similar or different components of 
a building interact or meet. Intersections between major building components mainly arise for the 
purpose of carrying or transferring loads, enclosing the space, or maintaining the structural 
integrity of a building. The relationships that express this interaction and thereby form component 
intersections may be expressed by terms such as attached to or attached from, supporting or 
supported by, connected to or connected from, extend to, cross, etc.  

� The feature class ‘penetration’ is a design condition that occurs in building components such as 
walls, slabs, and roofs for the purpose of containing or facilitating the routing of building services 
elements (e.g., ducts, conduit, and piping). Various sub-types of penetration can be distinguished 
depending on the component creating the penetration.  

� The ‘add-ons’ feature class represents additional entities that are added to a component, and 
that generally modify the shape, geometry or form of the component to provide additional 
functionality. Examples include column heads or drop panels (added to a column), pile cap 
(added on top of a pile), slab band (added to a slab), corbel (added to a wall), etc. 

� The feature class ‘design uniformity’ is used to characterize regularity or consistency in design. 
Design uniformity is a complex feature that encompasses a variety of concepts or types: 
uniformity in the size, shape, location, spacing, and other feature properties. Characterizing each 
type of design uniformity is quite complicated and our aim is to define each in a way that is 
unambiguous.  Uniformity can be assessed on a single floor (horizontal uniformity) or on multiple 
floors (vertical uniformity). Horizontal uniformity can be assessed along the X-axis or Y-axis. For 
example, we say that a group of columns are uniformly spaced along the X-axis if: (a) there are at 
least 3 columns in the group, and (b) there is a value delta such that every column in the group is 
aligned along the X-direction with at least one other column in the group, and there is a distance 
of delta between their centers. 

� The ‘alignment’ feature class is a concept applied to a group of components to express their 
orientation and/or location with respect to some reference. For example, column alignment can 
be used to assess whether a group of columns are aligned in the X or Y direction with respect to 
their column centers. We say that a group of columns are aligned along the Y-direction if their 
centers have the same value for x, and are aligned along the X-direction if their centers have the 
same value for y. 

Each of the feature classes listed above can have properties that characterize these classes further. 
There is no hard and fast rule dictating whether to model a specific concept as a property or as a set of a 
class. For example, do we create Exterior wall and Interior wall as a subclass of Wall or do we simply 
create them as properties of walls using the attributes Is Interior and Is Exterior? The choice depends on 
the scope of the domain and problem solving task at hand. In this research we take a pragmatic approach 
to defining concepts in the ontology in that we don’t set a priori the number of classes allowed in the 
hierarchy. We allow users to define them as necessary, which has been noted as one of the desired 
properties of ontologies.  The anticipated user should have the freedom to specialize and instantiate the 
ontology as needed, which is known as minimal ontological commitment (Gruber 1995). Given the 
uniqueness of each construction project, this approach helps practitioners to define new terms related to 
design conditions as new features and/or properties thereby providing more flexibility and extensibility of 
the ontology to suit the different requirements of practitioners.  
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5. Querying the IFC-based 3D Model 

The ontology in Section 4 shows us what features the user may be interested in.  We use this feature 
ontology to help define and answer queries that users may require.  In this section, we describe the input 
to the querying process (ifcXML) and some of the challenges involved with querying IFC-based models.  
We then step through some specific query examples that encompass a variety of the design conditions 
highlighted in the motivating cases.   

5.1 Input Data: ifcXML  

We use a 3D model built using Revit MEP 2008 for testing queries. We first export the model to an IFC 
file and then use an IFC/ifcXML Specifications (IFC 2x2) based convertor to convert the IFC file into an 
ifcXML file. An XML document contains a set of elements, where each element may have a sub-element 
(e.g., a wall element may have a sub-element describing its name) to describe relationships to other 
objects or an attribute to describe a simple property (e.g., a wall has an ID). Figure 4(a) to (c) shows a 3D 
wall component, a hierarchical representation of some ifcXML elements in an XML viewer, and the actual 
ifcXML respectively. As shown in Figure 4 (b), “ifc:uos” is a parent node whose children are the units of 
serialization containing all IFC specific elements (e.g., ”IfcWallStandardCase”). The term “id” [see Figure 
4(c)] with an attribute value “i47” belongs to the elements “IfcWallStandardCase”.   

Wall 

Door 

(a) 3D Model (c)Actual ifcXML(b) Hierarchical representation of 
some  ifcXML elements  

Figure 4: A 3D wall object with corresponding ifcXML representations  

Compared to other export mechanisms from Revit (e.g., DWF and relational database), the ifcXML file 
contains the most information, including all objects, and most of their properties, relationships, and 
location information. Although both the DWF and the relational export provide simple properties, none 
provide location and relationship information, similar to ifcXML.  
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There are several challenges with ifcXML.  Among them are that: (1) the directions of curved walls are not 
provided (they are also unavailable in DWF or relational database), so the location of curved walls is not 
clear; (2) information about MEP components such as ducts is not complete, so that queries related to 
curved walls and ducts are not currently supported; and (3) some relationships between components may 
not be explicit. Also, the information about an object is often not attached directly; it is related indirectly 
through ID references. Furthermore, an element sometimes refers to an ID of another element to describe 
their relationships.  For example, a door opening is attached to a wall by referring related IDs to four 
related objects. Figure 5 shows a few concepts and the reference paths showing their linkage with a wall 
object. It becomes apparent that analyzing how objects are linked with different attributes and 
relationships is often the first, complicated necessary step to query ifcXML data. 
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ByProperties

IfcPropertySet

IfcProperty
SingleValue
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Element

IfcOpening
Element
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Shape

 

Figure 5: Attributes and relationships with reference paths showing their linkage to a wall object in ifcXML  

5.2 Query Processing 

To query the ifcXML file, we use the standard XML query language, XQuery. XQuery is to XML what SQL 
is to database tables. The result of an XQuery expression is the data we need in XML; we then 
manipulate it and return the final result through an application written in Java.  In the following subsection, 
we take some selected query examples and illustrate the query process, the IFC attributes used to 
identify relevant features, and the difficulties encountered in the process. 

5.2.1 Query 1: What is the total length of all walls for each wall type and shape? 

The ontology in Section 4 differentiates walls as two types: interior and exterior, and considers the shape 
to be either curved or clipped.  Therefore, we use the same set of distinctions.  To process this query, we 
first cluster walls by their type and shape, then derive the length of each wall, and finally calculate the 
total length for each wall type and shape. 

Step 1: Identify the Wall Type - Interior vs. Exterior 
ifcXML contains a Boolean property named “IsExternal”. It is set as “1” and “0” for external and interior 
walls respectively. However, while one might expect that this property would be explicitly attached to a 
wall (i.e., it would be its attribute or sub-element), determining the relationship is much more complicated. 
In ifcXML, each object, property and property set is treated as an IFC element having an “ifcID”.  Most 
properties, including “interior or exterior”, are linked to an object by attaching their ifcIDs to it, through the 
path shown in Figure 5(a). We use an XQuery expression to manage this process and find the 
appropriate property. 
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Step 2: Identify the Wall Shape - Clipped and Curved 
We defined clipped and curved as wall properties. They are however, not explicitly defined in ifcXML. 
Deriving them requires an understanding of how walls are represented in the IFC model. There are two 
ways of representing walls in ifcXML: “IfcFaceBasedSurfaceModel” and “IfcExtrudedAreaSolid” are shown 
in Figure 5 (g) and (h) respectively. IfcFaceBasedSurfaceModels contain IfcConnectedFaceSets and, 
following several more referring steps, we eventually find the points that are used to define a wall.  The 
faces, however, are not in consistent shape and order, which makes it too difficult to tell if a wall is clipped 
or curved. The second representation, as shown in Figure 5(h), defines a shape by sweeping a bounded 
planar surface. The planar area, as well as the direction and the length of the extrusion are given. The 
planar area can be a rectangle or it could be composed of lines or curves.  Based on our observations 
thus far, it appears that all non-clipped walls are represented using an IfcExtrudedAreaSolid, and clipped 
walls are represented using an IfcFaceBasedSurfaceModel which are more complicated to analyze. 
Therefore, we decide whether a wall is clipped by checking whether the shape is represented using an 
IfcExtrudedAreaSolid. If that is the case, the wall is not clipped otherwise it is clipped. However, there 
may be exceptions to this rule.  

It is difficult if not impossible to reason about curved walls using the paths shown in Figure 5. If the wall is 
represented using an IfcFaceBasedSurfaceModel, we would need to analyze all faces, which is too 
complex. On the other hand, if the wall is represented using an IfcExtrudedAreaSolid, although the planar 
area can be composed by curves (the path on the right in Figure 5(h)), we would still need to determine if 
those curves are the longer edges, since only walls whose longer edges are curved are treated as curved 
walls.  In either case using the information listed in Figure 5, it is very complicated to derive the property 
“curved”. The alternative to this approach is to look for the shape of the boundary surface of a wall to 
determine whether or not the wall is curved. Figure 5(d) shows the ID referring path needed to determine 
the shape of the boundary surface from a wall. If the path ends with an “IfcPolyline”, then the wall is not 
curved; otherwise (i.e., it ends in IfcTrimmedCurve) the wall is curved.   

Step 3: Find the Length of Each Wall and Calculate the Total Length. 
The “Length” property is linked to a wall object similar to the property “IsExternal” described earlier. 
Replacing the property name “IsExternal” by “Length” provides the length of every wall. The final step is 
to sum up the lengths of the walls in each cluster to calculate the total length of the walls.  

5.2.2 Query 2: Which walls have component intersections (excluding slabs) and penetrations?  

Step1: Identify the Intersecting Components – Explicit and Implicit 
We consider two kinds of intersections: wall (wall to wall) intersections and wall-column (wall to column) 
intersections. Wall intersections are typically explicit in ifcXML (because they are modeled explicitly), so 
we can query ifcXML (following the paths shown in Figure 5(c)) to identify those component intersections. 
Determining which wall intersections are non-perpendicular, however, can not be queried directly from 
ifcXML. They can be derived using the orientations of related walls as shown in Figure 5 (f).  We first 
extract these two orientations which are represented by unit vectors, and then use a geometric formula to 
calculate the angle between them. 

Wall-column intersections are often not explicit in ifcXML because these element connections are not 
typically modeled explicitly in 3D. Therefore, these types of intersections have to be derived by analyzing 
the location information of related objects. We use an open source collision detection library called 
“RAPID” for this purpose. RAPID deduces the connectivity of two objects that are defined as triangular 
meshes. A triangular mesh comprises a set of triangles that are connected by their common edges which 
can lead to more efficient operation by graphics software packages and hardware devices. However, it 
requires some pre-processing since an object in ifcXML is not defined by a triangular mesh. We first 
extract object attributes including the insertion point, dimensions, and direction of an object as shown in 
Figure 5, and then remodel it into a triangular mesh. Given the vertices of an object – which can be 
calculated by an object’s insertion point, dimensions and directions – we break every rectangle into two 
triangles to form a triangular mesh. This process makes it more difficult to find intersections between 
round columns and curved walls. We simulate a curved face by breaking it into several rectangles and 
then transfer those rectangles into a triangular mesh. After the pre-processing, we use RAPID to 
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complete the connection detection. Since we can’t get the orientation for curved walls in ifcXML, as 
previously mentioned, we currently support queries for wall-column intersections involving straight walls. 
This function can be applied to curved walls if location information becomes available.  

Step 2: Identify the Duct Penetrations  
As previously mentioned, duct information is limited in ifcXML. A few properties such as type, insertion 
point and shape can be found in ifcXML but dimension and relationship data are missing even though 
they were defined in the 3D model. DWF and relational exports also provide type and dimension data for 
ducts, but not the location or relationship information. Therefore, we cannot currently support the above 
query related to duct penetrations. Should the location information of ducts become available; perhaps by 
using the insertion point and directions similar to other building components, we may follow the same 
reasoning process used to query component intersections as describe above.  

5.2.3 Query 3: Which columns are aligned?  

Option1: Identify columns aligned with a particular column 
A construction practitioner may wish to know what columns are aligned with the one being considered in 
a specific direction (assume the X-direction). This problem can be solved by drawing a horizontal line 
through the center of the column, and reporting all other columns which intersect with this line. Specific to 
ifcXML data, in order to answer this query, we need to extract the (x, y) values from ifcXML representing a 
column's center. In order to do this, we must follow links as in the previous queries, to obtain (1) the 
column's placement attribute (represented by an IfcLocalPlacement element), (2) the specific 
representation of this placement (an IfcAxis2Placement3D element), and finally (3) the coordinates 
(represented by an IfcCartesianPoint element). Using XQuery, we can easily find these coordinates and 
retrieve the answer to our query: all columns having the same y value as the column in question.  

Option2: Identify groups of columns aligned in a specific direction (X or Y-Direction) 
In this case, we want to know which groups of columns are aligned in a particular direction (in this case, 
the X-direction). This is possible with XQuery by retrieving all columns' y coordinates as done in the 
previous query, and using additional XQuery features to sort the results by y value. We can then 
programmatically compute the groups of columns aligned along the X-direction by scanning the resulting 
list, creating a new group whenever a pair of consecutive non-equal y values is found.  

5.2.4 Query 4: Which columns are uniformly spaced? 

We cannot simply extract these groups from ifcXML by sorting or grouping on the columns' (x, y) values. 
To answer this query, we have devised a "sweep line" algorithm. First, we extract the (x, y) values for 
each column's center using XQuery (as explained above). If we imagine these values being laid out in a 
two dimensional space (a plan view of the columns), our algorithm can be visualized as a line which 
sweeps horizontally (for uniformly spaced columns along the X axis) across this space, computing the 
uniformly spaced column groups along the way. The algorithm works by maintaining a table of uniformly 
spaced column groups, indexed by delta (the spacing between columns in the group). Each time the 
sweep line encounters a column, we look back at the spacing from the previous column aligned in the X–
Direction (if one exists), and either update an existing group if the spacing is similar, or make an entry for 
a new group in the table if the spacing is different. The result is groupings of columns with similar spacing. 

6. Conclusions 

In this paper, we have described our approach for deriving construction features from an IFC model.  
Central to this approach is an ontology of features that we are developing to provide a vocabulary for 
characterizing construction-specific design conditions.  A key consideration in developing this ontology is 
providing a consistent, unambiguous, and computer-interpretable representation of features.  Our current 
implementation analyzes the component geometry and topological relationships between components in 
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a BIM model represented in ifcXML format to answer a variety of user-defined queries about construction 
features.     

This work demonstrates both the power and challenge of working with IFC-based product models.  The 
IFC’s provide most information that is necessary to derive construction features including all objects and 
most of their properties, relationships, and location information.  Some necessary information is not 
provided, however, including location data for building service elements (e.g., ducts and piping), and 
directional information for curved elements (e.g., curved walls).  The structure of the IFC model makes it 
particularly tedious to query because most information is not attached directly.  For example, to find the 
door opening that is attached to a wall object you have to trace the IDs of four related objects.  
Consequently, the first step in any query of ifcXML data is simply analyzing how objects are linked with 
different attributes and relationships. 

On-going work is focused on: extending the breadth and depth of features represented in the ontology; 
developing the user-interface to support more user input and interaction; developing a graphical output to 
display the query results; and further refining and expanding the querying process.   
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