
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Nepal, Madhav Prasad, Staub-French, Sheryl, Zhang, Jiemin, Lawrence,
Michael, & Pottinger, Rachel (2008) Deriving construction features from
an IFC model. In Annual Conference of the Canadian Society for Civil
Engineering 2008 : Partnership for Innovation, Curran Associates, Inc,
Quebec City, Quebec, pp. 426-436.

This file was downloaded from: http://eprints.qut.edu.au/58421/

c© Copyright 2008 Canadian Society for Civil Engineering

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10916831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Nepal,_Madhav.html
http://eprints.qut.edu.au/58421/

Congrès annuel 2008 de la SCGC
CSCE 2008 Annual Conference

Québec, QC
10 au 13 juin 2008 / June 10-13, 2008

 1

Deriving Construction Features from an IFC Model

M. P. Nepal1, S. Staub-French1, J. Zhang2, M. Lawrence2 and R. Pottinger2

1 Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia
Canada; 2 Department of Computer Science, The University of British Columbia, Vancouver, British
Columbia Canada

Abstract: In recent years, there has been a growing interest from the design and construction community
to adopt Building Information Models (BIM). BIM provides semantically-rich information models that
explicitly represent both 3D geometric information (e.g., component dimensions), along with non-
geometric properties (e.g., material properties). While the richness of design information offered by BIM
is evident, there are still tremendous challenges in getting construction-specific information out of BIM,
limiting the usability of these models for construction. In this paper, we describe our approach for
extracting construction-specific design conditions from a BIM model based on user-defined queries. This
approach leverages an ontology of features we are developing to formalize the design conditions that
affect construction. Our current implementation analyzes the component geometry and topological
relationships between components in a BIM model represented using the Industry Foundation Classes
(IFC) to identify construction features. We describe the reasoning process implemented to extract these
construction features, and provide a critique of the IFC’s to support the querying process. We use
examples from two case studies to illustrate the construction features, the querying process, and the
challenges involved in deriving construction features from an IFC model.

1. Introduction

In recent years, several research and industry efforts have focused on developing building information
models (BIM) and leveraging those models to support various aspects of the architectural, engineering,
construction and facility management (AEC/FM) industry. The emergence of BIM has created new
challenges as well as new hope for construction practitioners. While the richness of design information
offered by BIM is evident, there are still tremendous challenges in getting construction-specific
information out of BIM, limiting the usability of these models for construction and other downstream
processes. While BIM explicitly represents building components, component properties, and relationships
between components, they do not explicitly represent many of the design conditions that are important for
construction. As a result, construction professionals spend significant amounts of time and effort
browsing, analyzing and interpreting design information to identify these design conditions. This process
is ad-hoc, inefficient, and inconsistent. There is a need for computer support to help practitioners query a
given electronic building model to identify the design conditions that are important for a particular
construction domain.

Many have recognized the various design conditions that affect construction, including the horizontal and
vertical layout of elements, distances between elements, dimensions, tolerances, spacing, modularity,
connection details, repetition, similarity, uniformity, and use of standard sizes (Fischer and Tatum 1997,
Hanna and Sanvido 1990, ASCE 1991). Many of these design conditions occur frequently from project to
project and are critical to a variety of construction domains. For example, modularity, similarity, layout,
and standard sizing are important for the construction of walls, ductwork, piping, and columns in building
construction, and girders and trusses in bridge construction. Research has shown that these design
conditions are important for a variety of construction management functions, including constructability
assessment (e.g., Boeke 1989), productivity analysis (e.g., Thomas and Zavrski 1999), method selection
(e.g., Fisher and Tatum 1997), and cost estimating (e.g., Staub-French et al. 2003). Recently researchers
have tried to encode this knowledge to provide more computer-based support for these functions.
However, their approaches to date have been limited: focusing on a narrow set of design conditions (e.g.,
Haymaker et al. 2004); requiring extensive user input (e.g., Nguyen and Oloufa, 2002); querying only
certain design conditions (e.g., Chen et al. 2005); or lacking user customizability (e.g., Fischer 1991).

Our research aims to address these limitations. In this paper, we describe our progress in developing a
feature ontology to represent construction-specific design conditions and mechanisms to query these
features from a building product model. We define the different classes of features represented in the
feature ontology based on two case studies (discussed next). We describe our current implementation
that analyzes a BIM model represented using the Industry Foundation Classes (IFC) to answer a variety
of user-defined queries. We also describe the IFC elements used to identify these features and provide a
critique of the IFC’s to support the querying process.

2. Motivating Cases

In this section, we describe two case studies that illustrate the variety of design conditions that are
important to practitioners when constructing (1) concrete columns and (2) walls. Construction practitioners
look for these design conditions to accomplish a variety of construction management tasks, including cost
estimating, method selection, scheduling, productivity analysis, and project management. Here we try to
highlight those design conditions that are relevant for multiple domains, characterize them in a general
way, and describe why they are important for specific construction applications.

Practitioners often associate various pieces of information to a component to distinguish its type. For
example, walls could be categorized as masonry walls, exterior walls, interior walls, curved walls, clipped
walls, etc. Specific properties of a component are also critical to practitioners. For example, wall
properties such as height, thickness, length, and fire-rating impact execution and ultimately construction
cost. For example, if a design has different wall heights and types, this can lead to decreased
productivity due to the different construction methods (e.g., different equipment needed for full-height
walls) and activities required (e.g., cutting and framing needed for drywall panels).

 2

Practitioners also look for specific types of component intersections that may impact construction. For
instance, the intersection of two walls (i.e., wall turns or corners) is important because it requires
additional construction work for framing, layout, detailing, forming etc. The wall-column intersections may
require additional set up, framing and allocation for movement joints.

Openings in building components (such as doors and windows, and even empty openings) and their
properties (e.g., the location and size) impact construction productivity and methods of construction. For
example, to make use of tunnel forms for concrete wall construction, there must be uniformity in the size
and location of openings (Fischer and Tatum 1997). Penetrations of building components by building
services are also an important design condition occurring frequently in components such as walls and
slabs. Wall penetrations often require special construction procedures such as fire stopping, weather
resistance, sound insulation, and the application of penetration seals. Similarly, additional entities that
are added to the component, which we call add-ons, also impact construction. For example, the
existence of a column drop head may hinder the use of flying forms in high-rise buildings.

Uniformity in the design helps to standardize and select proper construction means and methods, and
enables workers to learn the job fast faster, thereby increasing output and decreasing cost. For example,
the uniformity of column spacing allows regular bay size and regular grid of columns and frames that
facilitates more efficient construction of other components such as beams, slabs, walls, or cladding.
Similarly, the alignment of columns in both the X- and Y-direction can be an important factor in figuring
out the selection of particular construction methods, such as the use of flying form tables.

Practitioners look for the aforementioned design conditions (and others) in every building project because
they are critical for assessing construction methods, productivity, costs, etc. Our goal is to formalize these
design conditions in a systematic, formal, and computer interpretable way, using the manufacturing
concept of product features, to enable reuse and sharing of this knowledge from project to project. Such
a formalism is necessary to support automated processing of queries about a given 3D model.

3 3

C

C

1 1

D

D

2 2

A

A

B

B

16' 16' 12'

16
'

16
'

03
A-203

04
A-204

02
A-202

01
A-201

Intersection of exterior masonry
wall & interior wall

Intersection of exterior
walls with round column

Interior walls with
different wall heights

Non-fire rated
interior wall

Empty
Openings

Penetration of interior
fire-rated walls by a
duct

Window opening Exterior straight
masonry wall

Intersection of
exterior walls with
rectangular column

Intersection of two
interior walls

Door opening

Clipped Wall
(varying wall height)

Figure 1: Different design conditions for columns and walls that impact construction.

3. Overview of Querying Process

We implemented a system that identifies relevant construction-specific design features based on user-
defined queries of a given 3D model. Figure 2 shows a high-level diagram of the envisioned querying
process. Most of the functionality described here has been implemented though additional work is

 3

needed on the user interface and data representation to support more input from users and more
flexibility in interacting with the underlying data. The querying process is flexible in that it can be based
on one (show me all curved walls) or multiple (show me all walls with the same height, type, and width)
design conditions. The feature ontology is described in more detail in section 4 and the reasoning
process is described in more detail in section 5.

Figure 2: IDEF0 model of the querying process

The three major steps in the querying process, as illustrated in Figure 2, include the following:

1. Define Project-Independent Features: Users define the features that are important for a particular
domain based on the generic feature ontology. The user is generally an expert in the domain and defines
these features from a specific viewpoint and for a specific purpose, such as cost estimating. The process
of defining the features can take different forms depending on the feature. In some cases it is just a
matter of the user selecting the feature, such as wall curvature. In other cases, additional information is
required from the user, such as defining the variables for which uniformity will be assessed. The system
will have flexibility in that the user can create new feature types and define relevant properties if it is not
already available in the feature ontology. The output of this process is a project-independent set of
features that are important to the practitioner. These features are input once and represented generically
so that they can be reused from project to project.

2. Create Feature Based Model: The system analyzes the input IFC-based 3D model of the project and
identifies the feature instances and property values that were defined by the user in step 1. Although
some of these features and properties will be explicit in the input IFC-based model, as noted in Figure 3,
most are difficult to find. More complex features, such as uniformity, require extensive analysis of the
geometry and topological relationships between components to identify. The output of this process is the
project-specific feature-based model (FBM) that is customized for the user. In essence, the feature-
based model is the domain-specific secondary representation of the design in terms of features that the
domain experts care about.

3. Query the IFC-based 3D Model: The system queries the project-specific FBM to answer specific
questions posed by the user. For query processing, the system implements dedicated query languages
and an array of deduction algorithms and functions. The function is constrained by the way the queries
are specified. Because the input data is in xml (ifcXML), we used XQuery as the query language. The
results of the query can take different forms including: (1) calculation (e.g., what is the total length of
curved walls?); identification (e.g., which columns are uniformly spaced?); and interaction (e.g., browsing
the feature-based model). In some cases, there may be a feedback loop to the previous step as users
may want to further refine a query. The query results will be displayed in a variety of formats including
tabular, text, and graphical displays (not yet implemented).

 4

4. The Feature Ontology

The feature ontology provides a vocabulary of design conditions to help users define, create, and query a
feature-based model. Our aim is to define features in a way that is consistent, unambiguous, and
computer-interpretable. Features have been used extensively in the manufacturing domain to refer to “a
set of information related to a part’s description” (Shah and Rogers 1988) and “elements used in
generating, analyzing, or evaluating design” (Shah 1991). Features in the context of this research are
used to explicitly describe different design conditions that are important to construction practitioners and
that practitioners would want to identify in a given 3D model. Ontologies provide a means of representing
knowledge about some domain of interest, and include a set of concepts (e.g., entities, attributes,
processes), their definitions, relationships and semantics (Genesereth and Nilsson, 1987). We use an
ontology to organize knowledge about construction features in a structured vocabulary, facilitating its
exchange and reuse.

The fundamental building blocks of the feature ontology are features, feature properties, and relationships
among features. We currently have classified features into the following types: component, opening,
intersection, penetration, add-ons, design uniformity, and alignment. Figure 3 shows the ontology that we
developed for the design conditions highlighted in the motivating cases. The figure shows the feature
class, super-class, class properties, and additional clarifying comments. Due to space constraints, only
the feature classes are described below.

Feature Class Super class Class Properties Clarifying Comments
Feature Abstract super class
Component Feature

Wall Component
IsExternal; IsLoadBearing; FireRating;
AcousticRating; SurfaceArea, Height;
Length; Thickness

IFC Properties

IsStraight; IsVertical; IsSloped; IsCurved;
IsClipped

Wall category Designer specified wall type
Number of clippings Constrained by: IsClipped = true
Slope Constrained by: IsSloped = true
Curvature Constrained by: IsCurved = true

Column Component Height; Depth, Width IFC Properties
Size Width, Depth
Shape Rectangular, Square, Round
Concrete grade e.g., M25
Casting method Site cast vs Precast

Opening Feature Length; Width IFC Properties
Opening type Door, Window, recess etc.
Size Length, Width
Horizontal Location User has to specify some reference
Vertical location User has to specify some reference
Relating Component Similar to IFC Property RelatingElement
Related Component Similar to IFC Property RelatedElement

Intersection Feature Relating Component Similar to IFC Property RelatingElement
Related Component Similar to IFC Property RelatedElement
Angle of intersection

Penetration Feature Length; Width
Size Length, Width
Hor. location User has to specify some reference
Ver. Location User has to specify some reference
Relating Component
Related Component

Design uniformity Feature Type Horizontal or vertical uniformity
Uniformity of spacing Design uniformity Type of spacing Center-to-Center or Clear Spacing

Uniformity of column spacing Uniformity of spacing Direction X-, Y-Direction or X- & Y-Direction
Alignment Feature Type Horizontal or vertical alignment

Column alignment Alignment Direction X-, Y-Direction or X- & Y-Direction
Alignment reference Column Center, Column Face, etc.

Figure 3. Portion of the feature ontology defined for the motivating cases

 5

� The feature class ‘component’ represents building components, such as columns and walls etc.

� The feature class ‘opening’ represents many different types of openings that occur in
components. Openings essentially modify the component by removing part of the component
and filling it with other components, such as doors and windows, or leaving it empty.

� The ‘intersection’ feature class represents the conditions that similar or different components of
a building interact or meet. Intersections between major building components mainly arise for the
purpose of carrying or transferring loads, enclosing the space, or maintaining the structural
integrity of a building. The relationships that express this interaction and thereby form component
intersections may be expressed by terms such as attached to or attached from, supporting or
supported by, connected to or connected from, extend to, cross, etc.

� The feature class ‘penetration’ is a design condition that occurs in building components such as
walls, slabs, and roofs for the purpose of containing or facilitating the routing of building services
elements (e.g., ducts, conduit, and piping). Various sub-types of penetration can be distinguished
depending on the component creating the penetration.

� The ‘add-ons’ feature class represents additional entities that are added to a component, and
that generally modify the shape, geometry or form of the component to provide additional
functionality. Examples include column heads or drop panels (added to a column), pile cap
(added on top of a pile), slab band (added to a slab), corbel (added to a wall), etc.

� The feature class ‘design uniformity’ is used to characterize regularity or consistency in design.
Design uniformity is a complex feature that encompasses a variety of concepts or types:
uniformity in the size, shape, location, spacing, and other feature properties. Characterizing each
type of design uniformity is quite complicated and our aim is to define each in a way that is
unambiguous. Uniformity can be assessed on a single floor (horizontal uniformity) or on multiple
floors (vertical uniformity). Horizontal uniformity can be assessed along the X-axis or Y-axis. For
example, we say that a group of columns are uniformly spaced along the X-axis if: (a) there are at
least 3 columns in the group, and (b) there is a value delta such that every column in the group is
aligned along the X-direction with at least one other column in the group, and there is a distance
of delta between their centers.

� The ‘alignment’ feature class is a concept applied to a group of components to express their
orientation and/or location with respect to some reference. For example, column alignment can
be used to assess whether a group of columns are aligned in the X or Y direction with respect to
their column centers. We say that a group of columns are aligned along the Y-direction if their
centers have the same value for x, and are aligned along the X-direction if their centers have the
same value for y.

Each of the feature classes listed above can have properties that characterize these classes further.
There is no hard and fast rule dictating whether to model a specific concept as a property or as a set of a
class. For example, do we create Exterior wall and Interior wall as a subclass of Wall or do we simply
create them as properties of walls using the attributes Is Interior and Is Exterior? The choice depends on
the scope of the domain and problem solving task at hand. In this research we take a pragmatic approach
to defining concepts in the ontology in that we don’t set a priori the number of classes allowed in the
hierarchy. We allow users to define them as necessary, which has been noted as one of the desired
properties of ontologies. The anticipated user should have the freedom to specialize and instantiate the
ontology as needed, which is known as minimal ontological commitment (Gruber 1995). Given the
uniqueness of each construction project, this approach helps practitioners to define new terms related to
design conditions as new features and/or properties thereby providing more flexibility and extensibility of
the ontology to suit the different requirements of practitioners.

 6

5. Querying the IFC-based 3D Model

The ontology in Section 4 shows us what features the user may be interested in. We use this feature
ontology to help define and answer queries that users may require. In this section, we describe the input
to the querying process (ifcXML) and some of the challenges involved with querying IFC-based models.
We then step through some specific query examples that encompass a variety of the design conditions
highlighted in the motivating cases.

5.1 Input Data: ifcXML

We use a 3D model built using Revit MEP 2008 for testing queries. We first export the model to an IFC
file and then use an IFC/ifcXML Specifications (IFC 2x2) based convertor to convert the IFC file into an
ifcXML file. An XML document contains a set of elements, where each element may have a sub-element
(e.g., a wall element may have a sub-element describing its name) to describe relationships to other
objects or an attribute to describe a simple property (e.g., a wall has an ID). Figure 4(a) to (c) shows a 3D
wall component, a hierarchical representation of some ifcXML elements in an XML viewer, and the actual
ifcXML respectively. As shown in Figure 4 (b), “ifc:uos” is a parent node whose children are the units of
serialization containing all IFC specific elements (e.g., ”IfcWallStandardCase”). The term “id” [see Figure
4(c)] with an attribute value “i47” belongs to the elements “IfcWallStandardCase”.

Wall

Door

(a) 3D Model (c)Actual ifcXML(b) Hierarchical representation of
some ifcXML elements

Figure 4: A 3D wall object with corresponding ifcXML representations

Compared to other export mechanisms from Revit (e.g., DWF and relational database), the ifcXML file
contains the most information, including all objects, and most of their properties, relationships, and
location information. Although both the DWF and the relational export provide simple properties, none
provide location and relationship information, similar to ifcXML.

 7

There are several challenges with ifcXML. Among them are that: (1) the directions of curved walls are not
provided (they are also unavailable in DWF or relational database), so the location of curved walls is not
clear; (2) information about MEP components such as ducts is not complete, so that queries related to
curved walls and ducts are not currently supported; and (3) some relationships between components may
not be explicit. Also, the information about an object is often not attached directly; it is related indirectly
through ID references. Furthermore, an element sometimes refers to an ID of another element to describe
their relationships. For example, a door opening is attached to a wall by referring related IDs to four
related objects. Figure 5 shows a few concepts and the reference paths showing their linkage with a wall
object. It becomes apparent that analyzing how objects are linked with different attributes and
relationships is often the first, complicated necessary step to query ifcXML data.

IfcWallStandardCase

IfcRelDefines
ByProperties

IfcPropertySet

IfcProperty
SingleValue

IfcRelVoids
Element

IfcOpening
Element

IfcRelFillsElement

IfcDoor

IfcLocalPlacement

IfcAxis
Placement

IfcCartesian
Point

IfcDirection

IfcProduct
DefinitionShape

IfcShapeRepresentation

IfcFaceBased
SurfaceModel

IfcConnectedFaceSet

IfcFace

IfcFaceOuterBound

IfcPolyLoop

IfcCartesianPoint

IfcExtruded
AreaSolid

IfcDirection

IfcRectangle
ProfileDef

…...
Attributes Location

IfcArbitrary
ClosedProfile

Def

IfcComposite
Curve

IfcComposite
CurveSegment

IfcPolylineCurve IfcTrimmed

IfcRelSpace
Boundary

IfcConnection
SurfaceGeometry

IfcSurfaceOf
LinearExtrusion

IfcArbitrary
OpenProfileDef

IfcPolyline
IfcTrimmed

Curve

IfcRelConnects
PathElements

IfcWall
StandardCase

Relationships

(a) Attributes

(b) Openings

(c) Connectivity

(d) Curvature

(e) Insertion
Point

(f) Direction

(g) Shape 1

(h) Shape 2

Shape

Figure 5: Attributes and relationships with reference paths showing their linkage to a wall object in ifcXML

5.2 Query Processing

To query the ifcXML file, we use the standard XML query language, XQuery. XQuery is to XML what SQL
is to database tables. The result of an XQuery expression is the data we need in XML; we then
manipulate it and return the final result through an application written in Java. In the following subsection,
we take some selected query examples and illustrate the query process, the IFC attributes used to
identify relevant features, and the difficulties encountered in the process.

5.2.1 Query 1: What is the total length of all walls for each wall type and shape?

The ontology in Section 4 differentiates walls as two types: interior and exterior, and considers the shape
to be either curved or clipped. Therefore, we use the same set of distinctions. To process this query, we
first cluster walls by their type and shape, then derive the length of each wall, and finally calculate the
total length for each wall type and shape.

Step 1: Identify the Wall Type - Interior vs. Exterior
ifcXML contains a Boolean property named “IsExternal”. It is set as “1” and “0” for external and interior
walls respectively. However, while one might expect that this property would be explicitly attached to a
wall (i.e., it would be its attribute or sub-element), determining the relationship is much more complicated.
In ifcXML, each object, property and property set is treated as an IFC element having an “ifcID”. Most
properties, including “interior or exterior”, are linked to an object by attaching their ifcIDs to it, through the
path shown in Figure 5(a). We use an XQuery expression to manage this process and find the
appropriate property.

 8

Step 2: Identify the Wall Shape - Clipped and Curved
We defined clipped and curved as wall properties. They are however, not explicitly defined in ifcXML.
Deriving them requires an understanding of how walls are represented in the IFC model. There are two
ways of representing walls in ifcXML: “IfcFaceBasedSurfaceModel” and “IfcExtrudedAreaSolid” are shown
in Figure 5 (g) and (h) respectively. IfcFaceBasedSurfaceModels contain IfcConnectedFaceSets and,
following several more referring steps, we eventually find the points that are used to define a wall. The
faces, however, are not in consistent shape and order, which makes it too difficult to tell if a wall is clipped
or curved. The second representation, as shown in Figure 5(h), defines a shape by sweeping a bounded
planar surface. The planar area, as well as the direction and the length of the extrusion are given. The
planar area can be a rectangle or it could be composed of lines or curves. Based on our observations
thus far, it appears that all non-clipped walls are represented using an IfcExtrudedAreaSolid, and clipped
walls are represented using an IfcFaceBasedSurfaceModel which are more complicated to analyze.
Therefore, we decide whether a wall is clipped by checking whether the shape is represented using an
IfcExtrudedAreaSolid. If that is the case, the wall is not clipped otherwise it is clipped. However, there
may be exceptions to this rule.

It is difficult if not impossible to reason about curved walls using the paths shown in Figure 5. If the wall is
represented using an IfcFaceBasedSurfaceModel, we would need to analyze all faces, which is too
complex. On the other hand, if the wall is represented using an IfcExtrudedAreaSolid, although the planar
area can be composed by curves (the path on the right in Figure 5(h)), we would still need to determine if
those curves are the longer edges, since only walls whose longer edges are curved are treated as curved
walls. In either case using the information listed in Figure 5, it is very complicated to derive the property
“curved”. The alternative to this approach is to look for the shape of the boundary surface of a wall to
determine whether or not the wall is curved. Figure 5(d) shows the ID referring path needed to determine
the shape of the boundary surface from a wall. If the path ends with an “IfcPolyline”, then the wall is not
curved; otherwise (i.e., it ends in IfcTrimmedCurve) the wall is curved.

Step 3: Find the Length of Each Wall and Calculate the Total Length.
The “Length” property is linked to a wall object similar to the property “IsExternal” described earlier.
Replacing the property name “IsExternal” by “Length” provides the length of every wall. The final step is
to sum up the lengths of the walls in each cluster to calculate the total length of the walls.

5.2.2 Query 2: Which walls have component intersections (excluding slabs) and penetrations?

Step1: Identify the Intersecting Components – Explicit and Implicit
We consider two kinds of intersections: wall (wall to wall) intersections and wall-column (wall to column)
intersections. Wall intersections are typically explicit in ifcXML (because they are modeled explicitly), so
we can query ifcXML (following the paths shown in Figure 5(c)) to identify those component intersections.
Determining which wall intersections are non-perpendicular, however, can not be queried directly from
ifcXML. They can be derived using the orientations of related walls as shown in Figure 5 (f). We first
extract these two orientations which are represented by unit vectors, and then use a geometric formula to
calculate the angle between them.

Wall-column intersections are often not explicit in ifcXML because these element connections are not
typically modeled explicitly in 3D. Therefore, these types of intersections have to be derived by analyzing
the location information of related objects. We use an open source collision detection library called
“RAPID” for this purpose. RAPID deduces the connectivity of two objects that are defined as triangular
meshes. A triangular mesh comprises a set of triangles that are connected by their common edges which
can lead to more efficient operation by graphics software packages and hardware devices. However, it
requires some pre-processing since an object in ifcXML is not defined by a triangular mesh. We first
extract object attributes including the insertion point, dimensions, and direction of an object as shown in
Figure 5, and then remodel it into a triangular mesh. Given the vertices of an object – which can be
calculated by an object’s insertion point, dimensions and directions – we break every rectangle into two
triangles to form a triangular mesh. This process makes it more difficult to find intersections between
round columns and curved walls. We simulate a curved face by breaking it into several rectangles and
then transfer those rectangles into a triangular mesh. After the pre-processing, we use RAPID to

 9

complete the connection detection. Since we can’t get the orientation for curved walls in ifcXML, as
previously mentioned, we currently support queries for wall-column intersections involving straight walls.
This function can be applied to curved walls if location information becomes available.

Step 2: Identify the Duct Penetrations
As previously mentioned, duct information is limited in ifcXML. A few properties such as type, insertion
point and shape can be found in ifcXML but dimension and relationship data are missing even though
they were defined in the 3D model. DWF and relational exports also provide type and dimension data for
ducts, but not the location or relationship information. Therefore, we cannot currently support the above
query related to duct penetrations. Should the location information of ducts become available; perhaps by
using the insertion point and directions similar to other building components, we may follow the same
reasoning process used to query component intersections as describe above.

5.2.3 Query 3: Which columns are aligned?

Option1: Identify columns aligned with a particular column
A construction practitioner may wish to know what columns are aligned with the one being considered in
a specific direction (assume the X-direction). This problem can be solved by drawing a horizontal line
through the center of the column, and reporting all other columns which intersect with this line. Specific to
ifcXML data, in order to answer this query, we need to extract the (x, y) values from ifcXML representing a
column's center. In order to do this, we must follow links as in the previous queries, to obtain (1) the
column's placement attribute (represented by an IfcLocalPlacement element), (2) the specific
representation of this placement (an IfcAxis2Placement3D element), and finally (3) the coordinates
(represented by an IfcCartesianPoint element). Using XQuery, we can easily find these coordinates and
retrieve the answer to our query: all columns having the same y value as the column in question.

Option2: Identify groups of columns aligned in a specific direction (X or Y-Direction)
In this case, we want to know which groups of columns are aligned in a particular direction (in this case,
the X-direction). This is possible with XQuery by retrieving all columns' y coordinates as done in the
previous query, and using additional XQuery features to sort the results by y value. We can then
programmatically compute the groups of columns aligned along the X-direction by scanning the resulting
list, creating a new group whenever a pair of consecutive non-equal y values is found.

5.2.4 Query 4: Which columns are uniformly spaced?

We cannot simply extract these groups from ifcXML by sorting or grouping on the columns' (x, y) values.
To answer this query, we have devised a "sweep line" algorithm. First, we extract the (x, y) values for
each column's center using XQuery (as explained above). If we imagine these values being laid out in a
two dimensional space (a plan view of the columns), our algorithm can be visualized as a line which
sweeps horizontally (for uniformly spaced columns along the X axis) across this space, computing the
uniformly spaced column groups along the way. The algorithm works by maintaining a table of uniformly
spaced column groups, indexed by delta (the spacing between columns in the group). Each time the
sweep line encounters a column, we look back at the spacing from the previous column aligned in the X–
Direction (if one exists), and either update an existing group if the spacing is similar, or make an entry for
a new group in the table if the spacing is different. The result is groupings of columns with similar spacing.

6. Conclusions

In this paper, we have described our approach for deriving construction features from an IFC model.
Central to this approach is an ontology of features that we are developing to provide a vocabulary for
characterizing construction-specific design conditions. A key consideration in developing this ontology is
providing a consistent, unambiguous, and computer-interpretable representation of features. Our current
implementation analyzes the component geometry and topological relationships between components in

 10

a BIM model represented in ifcXML format to answer a variety of user-defined queries about construction
features.

This work demonstrates both the power and challenge of working with IFC-based product models. The
IFC’s provide most information that is necessary to derive construction features including all objects and
most of their properties, relationships, and location information. Some necessary information is not
provided, however, including location data for building service elements (e.g., ducts and piping), and
directional information for curved elements (e.g., curved walls). The structure of the IFC model makes it
particularly tedious to query because most information is not attached directly. For example, to find the
door opening that is attached to a wall object you have to trace the IDs of four related objects.
Consequently, the first step in any query of ifcXML data is simply analyzing how objects are linked with
different attributes and relationships.

On-going work is focused on: extending the breadth and depth of features represented in the ontology;
developing the user-interface to support more user input and interaction; developing a graphical output to
display the query results; and further refining and expanding the querying process.

7. References

ASCE Construction Division 1991. Constructability and Constructability Programs: White Paper. J.
Constr. Engrg. and Mgmt., ASCE, 117(1): 67-89.

Boeke, E.H. 1990. Design for Constructability: A Contractor’s View. Concrete Construction Magazine,
Available online at: http://www.structuremag.org/

Chen, P.-H., Cui, L., Wan, C., Yang, Q., Ting, S.K., and Tiong, R.L.K. 2005. Implementation of IFC-based
Web Server for Collaborative Building Design between Architects and Structural Engineers.
Automation in Construction, 14: 115-128.

Fischer, M. 1991. Constructability Input to Preliminary Design of Reinforced Concrete Structures.
Technical Report, Center for Integrated Facility Engineering, Stanford University, Calif.

Fischer, M. and Tatum, C.B. 1997. Characteristics of Design-Relevant Constructability Knowledge. J.
Constr. Engrg. and Mgmt, ASCE,123(3): 253-260.

Genesereth, M.R., and Nilsson, N. J. 1987. Logical Foundations of Artificial Intelligence. San Mateo, CA;
Morgan Kaufmann.

Gruber, T. 1995. Toward Principles for the Design of Ontologies Used for Knowledge Sharing.
International Journal of Human – Computer Studies, 43: 907–928.

Hanna, A.S., and Sanvido, V.E. 1990. Interactive Vertical Formwork Selection. Concrete Intl. Design and
Constr., 12(4): 26-32.

Haymaker, J., Kunz, J., Suter, B., and Fischer, M. 2004. Perspectors: Composable, Reusable Reasoning

Modules to Construct an Engineering View from Other Engineering Views. Advanced Engrg.
Informatics, 18 (1): 49-67

Nguyen, T., and Oloufa, A. A. 2002. Spatial Information: Classification and Applications in Building
Design. Computer-Aided Civil and Infrastructure Engineering, 17: 246-255.

Shah, J.J., and Rogers, M.T. 1988. Functional Requirements and Conceptual Design of the Feature-
Based Modelling System. Computer-Aided Engineering Journal, 9-15.

Shah, J.J. 1991 Assessment of Features Technology. J. of Computer-Aided Design, 23(5): 331-341.
Staub-French, S., Fischer, M., Kunz, J., Ishii, K., and Paulson, B. 2003. A Feature Ontology to Support

Construction Cost Estimating. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing, 17: 133-154.

Thomas, H.R., and Ivica Zavr ki. I. 1999. Construction Baseline Productivity: Theory and Practice. J.
Constr. Engrg. and Mgmt., ASCE, 125(5): 295-303.

 11

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Zavrski%2C+Ivica&possible1zone=author&maxdisp=25&smode=strresults&aqs=true�
http://www.structuremag.org/
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Thomas%2C+H.+Randolph&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Zavrski%2C+Ivica&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCEMD4000125000005000295000001&idtype=cvips&gifs=Yes

