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Abstract—In 1980 Alltop produced a family of
cubic phase sequences that nearly meet the Welch
bound for maximum non-peak correlation mag-
nitude. This family of sequences were shown by
Wooters and Fields to be useful for quantum state
tomography. Alltop’s construction used a function
that is not planar, but whose difference function
is planar. In this paper we show that Alltop type
functions cannot exist in fields of characteristic 3
and that for a known class of planar functions, x3

is the only Alltop type function.

I. INTRODUCTION

Planar functions belong to the larger class of
highly nonlinear functions which are of use in
classical cryptographic systems, coding theory as
well as being of theoretical interest [4].

Let Fpr be a field of characteristic p. A func-
tion f : Fpr → Fpr is called a planar function
if for every a ∈ F∗pr the function ∆fa : x 7→
f(a+ x)− f(x) is a bijection.

An equivalent definition of a planar function
involves the ability to construct an affine plane [6,
§5], which is where the name planar originates.
It is known that planar functions do not exist on
fields of characteristic 2 [6, §5].

Two orthonormal bases B1 and B2 of Cd are
unbiased if |〈~x|~y〉| = 1√

d
for all ~x ∈ B1 and

~y ∈ B2. A set of bases for Cd which are pairwise
unbiased is a set of mutually unbiased bases
(MUBs). This idea is credited to Schwinger [14]
who realised that a quantum system prepared in a
basis state from B′ reveals no information when
measured with respect to the basis B. Mutually
unbiased bases (MUBs) are an important tool in

quantum information theory and have applications
in quantum cryptography [2], [13] and quantum
state tomography [16].

We highlight two different constructions of
mutually unbiased bases for odd prime power
integers, one which uses a polynomial of degree
3 but only works for finite fields of characteristic
p ≥ 5 [9, Theorem 1]. This construction is a gen-
eralisation of low correlation complex sequences
first constructed by Alltop [1] for spread spectrum
radar and communication applications.

The other construction uses a polynomial of
degree 2, which is a planar function, to construct
the vectors in a complete set of MUBs (see Thm
1) [12], [9]. In contrast, the Alltop construction of
complete sets of MUBs (Thm 2 [1], [9]) uses a
function, f(x) = x3 which is not planar, but for
which the difference function ∆fa(x) is planar.
We aim to discover if x3 is the only polynomial
function with this property.

Let ωp := e
2iπ
p .

Theorem 1 (Planar function construction). [12,
Thm 4.1] Let Fq be a field of odd characteristic
p. Let Π(x) be a planar function on Fq . Let Va :=
{~vab : b ∈ Fq} be the set of vectors

~vab =
1
√
q

(
ωtr(aΠ(x)+bx)
p

)
x∈Fq

(1)

with a, b ∈ Fq . The standard basis E along with
the sets Va, a ∈ Fq , form a complete set of q + 1
MUBs in Cq .

The property that is being exploited in the
planar function construction is that [4, Theorem



16] ∣∣∣∣∣∣
∑
x∈Fq

ωtr(Π(x))
p

∣∣∣∣∣∣ =
√
q. (2)

Theorem 2 (Alltop Construction). [9, Thm 1] Let
Fq be a finite field of odd characteristic p ≥ 5 and
let Va := {~vab : b ∈ Fq} be the set of vectors

~vab :=
1
√
q

(
ωtr((x+a)3+b(x+a))
p

)
x∈Fq

(3)

with a, b ∈ Fq . The standard basis E along with
the sets Va, a ∈ Fq , form a complete set of q + 1
MUBs in Cq .

Although on the surface the Alltop construc-
tion does not use a planar function, when inspect-
ing the inner product of the vectors,

〈~vab|~vcd〉 =
1

q

∣∣∣∣ ∑
x∈Fq

ωtr[3(a−c)x2+(3a2−3c2+b−d)x
p

+(a3−c3+ba−dc)]
∣∣∣∣ (4)

we notice a polynomial of degree 2. Now Π(x) =
x2 is a planar function, and equation (2) ensures
that a set of MUBs has been constructed. Thus
if we take f(x) = (x + b)3 then ∆fd(x) is a
planar function. The question that arises is whether
f(x) = (x+ b)3 is the only function of this type:

Question 3. Is f(x) = x3 the only polynomial
function on a Galois field such that ∆fa(x) is a
planar function?

Two sets of MUBs, B = {B0, B1, . . . , Bd}
and C = {C0, C1, . . . , Cd}, written as matrices,
are equivalent [3, App A] if either B or B∗ is
equal to {UC0D0P0, UC1D1P1, . . . , UCdDdPd}
for some unitary matrix, U , unitary diagonal ma-
trices, Di, and permutation matrices, Pi.

Godsil and Roy [8] have shown that the Alltop
construction produces MUBs that are equivalent to
the set of MUBs constructed using Π(x) = x2 in
the Planar function construction, which naturally
leads to the following question:

Question 4. If another function exists such that
∆fa(x) is planar, will the sets of MUBs con-
structed be equivalent?

Any function which meets the criteria of Ques-
tion 3 will hence forth be called an Alltop type
function.

Definition 5. An Alltop type polynomial is a
polynomial, f , such that for each a ∈ F∗q

∆fa(x) = Πa(x) (5)

for some planar polynomial Πa.

We investigate Question 3 establishing that
Alltop type functions cannot exist on fields of
characteristic 3, and show that for the class of
planar functions of the form Π(x) = xp

k+1 with
p a prime, f(x) = x3 is the only Alltop type
function.

II. PRELIMINARIES

We begin with some preliminary results con-
cerning polynomials. The following properties of
binomial expansions will be used in calculating
∆fa(x).

Lemma 6. [15, Prop. 8] Let n =
∑
aip

i and
k =

∑
bip

i with 0 ≤ ai, bi ≤ p. Then p -
(
n
k

)
if

and only if 0 ≤ bi ≤ ai for all i.

Lemma 7. [15, Cor 19.1] If ps|n and (k, p) = 1,
then ps|

(
n
k

)
.

Lemma 8. [15, Cor 10.2](
ps

k

)
=

{
1 (mod p) if k ∈ {0, ps}
0 (mod p) if 1 ≤ k ≤ ps − 1

(6)

Corollary 9.(
ps + 1

k

)
6= 0 (mod p) if k ∈ {0, 1, ps, ps + 1}
= 0 (mod p) if 2 ≤ k ≤ ps − 1

(7)(
ps + 2

k

) 6= 0 (mod p) if k ∈ {0, 1, 2, ps,
ps + 1, ps + 2}

= 0 (mod p) if 3 ≤ k ≤ ps − 1
(8)

Lemma 10. k
(
n
k

)
= n

(
n−1
k−1

)
.

Using these preliminary facts, we can calculate
a few properties of ∆fa(x) when f is a monomial.

Lemma 11. Let Fq be a field of characteristic p
and f(x) = xn with n = ps, where s ≥ 0. Then
∆fa(x) is constant for all a ∈ F∗q .

Proof: By the Taylor’s expansion ∆fa(x) =∑n
i=1

(
n
i

)
aixn−i. By Lemma 8 p|

(
n
k

)
for all k ∈

{1, . . . , ps − 1} hence (x+ a)n − xn is constant.

Theorem 12. Let Fq be a field of characteris-
tic p and f(x) = xn with n = psm where



s ≥ 0,m > 1 and (m, p) = 1. Then ∆fa(x)
has degree ps(m− 1) for all a ∈ F∗q .

Proof: Let f(x) = xn then by the Taylor’s
expansion ∆fa(x) =

∑n
i=1

(
n
i

)
aixn−i. We need

to show that the first non-zero coefficient in this
binomial expansion is

(
n
ps

)
.

We start with s = 0. Then n and p are co-
prime and

(
n
ps

)
=
(
n
1

)
= n which is not divisible

by p.

Next consider s > 0 and recall m > 1.

If s = 1, then n = pm and, by Lemma 7,
p|
(
n
i

)
for 1 ≤ i ≤ p − 1 but p -

(
n
p

)
which is the

coefficient of xn−p = xp(m−1) and hence ∆fa(x)
has degree p(m− 1).

For s > 1, it is clear from Lemma 7 that p|
(
n
i

)
for all i such that (p, i) = 1. The question that
remains is whether p|

(
n
i

)
for those i < ps with

i, p not co-prime.

Let i = pkt for 1 ≤ k < s and (p, t) = 1, t ≥
1.

By Lemmas 7 and 10,(
n

pkt

)
=

n

pkt

(
n− 1

pkt− 1

)
(9)

=
ps−km

t

(
n− 1

pkt− 1

)
(10)

= 0 (mod p). (11)

Since m and ps are co-prime, m =
∑j

i=0 aip
i

where a0 ≥ 1. Hence n = psm =
∑s+j

i=s ai−sp
i,

whereas ps = 1.ps +
∑

i 6=s 0× pi. Using Lemma
6 we find that p -

(
n
ps

)
. Thus ∆fa(x) has degree

ps(m− 1).

Corollary 13. Let a ∈ F∗pr . If ∆fa(x) ∈ Fpr [x]
has degree psl, where (l, p) = 1 and 0 ≤ s ≤ r,
then

f(x) = g(x) +

s∑
t=0

btx
pt(ps−tl+1)

where at least one of bt ∈ F∗pr , and g(x) is such
that ∆ga(x) is of degree less than psl.

Proof: From Theorem 12, if f has degree
ptm then ∆fa(x) has degree pt(m− 1).

pt(m− 1) =psl (12)
m =ps−tl + 1. (13)

Thus the possible monomials f for which ∆fa(x)
has degree psl are of degree pt(ps−tl + 1) where
0 ≤ t ≤ s.
Lemma 14. [5] Let L(x) and L′(x) be additive
permutation polynomials, and M(x) an additive
polynomial on a field F of characteristic p. Let
Π′(x) = L′(Π(L(x)))+M(x)+δ. If Π is a planar
function on a field F, then Π′ is also a planar
function on F for all δ ∈ F.

The functions Π and Π′ are considered equiva-
lent [4]. For a field of characteristic p, an additive
polynomial has the shape

M(x) =

k∑
i=0

aix
pi . (14)

The families of planar functions are specified
by conditions on the degree of the monomials
which make up Π. Hence we are only considering
L(x), L′(x) to have degree 1. Any polynomial on
Fq may be reduced modulo xq − x to yield a
polynomial of degree less than q which induces the
same function on Fq [5]. Hence we only consider
polynomials of degree less that q.

With the aid of the preceding facts about
polynomial expansions, we show that no Alltop
type functions exist in fields of characteristic 3,
and that a specific class of planar functions has a
unique Alltop type function.

A more recent and extensive list of planar
function can be found in [11]. New planar func-
tions are continually being discovered. The results
presented here are not an exhaustive investigation,
but show some promising directions for future
work.

III. SPECIFIC CLASSES OF PLANAR
FUNCTIONS

It is known that planar functions do not exist
in field of characteristic 2 [6]. We show that
Alltop type functions cannot exist in a field of
characteristic 3.

Theorem 15. There are no Alltop type polynomi-
als over F3r .

Proof:

∆fa(x) =f(x+ a)− f(x) (15)
∆∆fab(x) =f(x+ a+ b)− f(x+ b)− f(x+ a)

+ f(x). (16)



In a field of characteristic 3, −1 ≡ 2, hence

∆∆fab(x) =f(x+ a+ b) + 2f(x+ b)

+ 2f(x+ a) + f(x). (17)

Let a = b = 1 then

∆∆f11(x) =f(x+ 2) + 2f(x+ 1) + 2f(x+ 1)

+ f(x) (18)
=f(x+ 2) + f(x+ 1) + f(x). (19)

Now let x = 1, 0

∆∆f11(0) =f(2) + f(1) + f(0), (20)
∆∆f11(1) =f(0) + f(2) + f(1), (21)

=∆∆f11(0). (22)

Hence ∆∆f11(x) is not a permutation polynomial,
∆f1(x) is not a planar function, and f is not an
Alltop type polynomial.

This is of particular importance since while
new planar functions are continually being discov-
ered, half of the known classes of planar functions
exist only on fields of characteristic 3 [11]. On
the other hand, the relative known abundance of
planar functions on fields of characteristic 3, may
be more a product of the ease of search, than
the rarity of planar functions on fields of higher
characteristic.

Theorem 16. [7] Let Π1(x) = xp
k+1 on Fpr ,

where p is an odd prime, k ≥ 0 is an integer and
r

gcd(r,k) is an odd integer. Then Π1(x) is a planar
function.

This includes x2 is a special case. We now
show that a cubic is the only Alltop type polyno-
mial for this class of planar functions, conditional
that p = 5.

Theorem 17. Let Π1(x) = xp
k+1 on Fpr , where

k ≥ 0 is an integer and r
gcd(r,k) is an odd integer.

If for each a ∈ F∗pr there exist αa, βa, δa ∈ Fpr ,
an additive polynomial Ma(x) and a polynomial
fa(x) such that,

∆faa(x) = αaΠ1(x+ βa) +Ma(x) + δa (23)

then p ≥ 5 and fa(x) is equivalent to a polyno-
mial of degree 3.

Proof: Theorem 15 shows that p ≥ 5. The
proof proceeds by establishing a set of possible de-
grees for f , and eliminating all possibilities other

than 3. For ease of notation let αa = α, βa = β,
δa = δ, Ma(x) = M(x), and fa(x) = f(x).

It is assumed that ∆fa(x) = αΠ1(x + β) +
M(x) + δ. Since αΠ1(x + β) + M(x) + δ has a
term of degree pk + 1, and hence by Corollary 13
f has a term of degree pk + 2.

Consider a general polynomial function f(x)
of degree n; f(x) takes the form f(x) =∑n

i=0 aix
i, with ai ∈ Fpr . That is, f can be

written as the sum of monomials fi(x) = aix
i

of degree i or equivalently f(x) =
∑n

i=0 fi(x).
Hence

f(x+ a)− f(x) =

n∑
i=0

fi(x+ a)− fi(x)

∆fa(x) =

n∑
i=1

∆fi,a(x).

It follows that the degree of ∆fi,a(x) is less
than or equal to pk + 1 for all i. Each of these
monomials can be treated separately, with an ar-
gument similar to that presented below.

Let fn = xn where n = psm and gcd(p,m) =
1, and ∆fn,a(x) is of degree pk + 1. By Theorem
12, the degree of ∆fn,a(x) is ps(m− 1), and we
know the degree of Π1 is pk + 1, so we require

ps(m− 1) = pk + 1.

There are three cases to consider, k, s ≥ 1, k = 0
or s = 0.

Case 1: If k, s ≥ 1, p|ps(m−1) but p 6 |(pk+1)
leading to a contradiction.

Case 2: If k = 0, then ps(m− 1) = 2 and so
s = 0 and m = 3, which implies p ≥ 5 as already
shown. This is the Alltop function.

Case 3: If s = 0, we assume k ≥ 1 and search
for solutions for n when for some i fi(x) has
degree pk + 2 thus

f(x) = xp
k+2 + g(x), (24)

with g(x) a polynomial function such that ∆ga(x)
is of degree pk or less. By assumption

∆fa(x) = α(x+ β)p
k+1 +M(x) + δ.



Using Corollary 9, this can be simplified to

∆fa(x) =αxp
k+1 + αβxp

k

+ αβpkx

+ αβpk+1 +

k∑
i=0

aix
pi + δ. (25)

On the other hand, using equation 24 and
Corollary 9 we get

∆fa(x) =(x+ a)p
k+2 − xp

k+2 + ∆ga(x)

=2axp
k+1 + a2xp

k

+ ap
k

x2

+ 2ap
k+1x+ ap

k+2 + ∆ga(x) (26)

By comparing the coefficient of the xp
k+1

terms in equations 25 and 26 we find that

α =2a. (27)

If ∆ga(x) has degree pk, then by Corollary
13, g(x) =

∑k
r=0 brx

pr(pk−r+1) + h(x) where
h(x) is a polynomial such that ∆ha(x) is a
polynomial of degree pk − 1 or less. Let b′ =∑k

r=0

(
pk+pr

pr

)
bra

pr .

∆fa(x) =(x+ a)p
k+2 − xp

k+2 + ∆ga(x) (28)

=2axp
k+1 + (a2 + b′)xp

k

+

k∑
r=0

(
pk + pr

pr

)
bra

pkxp
r

+ ap
k

x2 + 2ap
k+1x+ ap

k+2

+

k∑
r=0

bra
pr(pk−r+1) + ∆ha(x) (29)

There exits an additive polynomial M in equation
(23) that can equate the coefficients of any term
of the xp

i

terms in equations (25) and (29).

Note that equation (25) has no x2 term but
equation (29) does. Hence the coefficient of the x2

term in ∆ha(x) must be nonzero, and must cancel
with the x2 term already present in equation (29).

However, we note that all the higher order
terms are in agreement, hence all such terms
in ∆ha(x) must have zero coefficients implying
∆ha(x) has degree 2, and consequently h(x) is
equivalent to a polynomial of degree 3. Thus let
h(x) = tx3 + ux2 + M(x) + w where M ′(x) is
an additive polynomial. Equation (26) becomes

∆fa(x) =2axp
k+1 + (a2 + b′)xp

k

+

k∑
r=0

(
pk + pr

pr

)
bra

pkxp
r

+ (ap
k

+ 3ta)x2

+ (2ap
k+1 + 3ta2 + 2ua)x+ ap

k+2

+

k∑
r=0

bra
pr(pk−r+1) + ta3 + ua2

+ ∆M ′a(x) (30)

Note that t, u,∈ Fpr and are fixed for f(x).
The coefficient of the x2 term in equation (30)
is
(
pk+2

2

)
ap

k

+ 3ta while in equation (25) the
coefficient of x2 is zero. Thus

0 =ap
k

+ 3ta

=a[ap
k−1 + 3t]

=ap
k−1 + 3t (31)

In equation (31) p, k and t are fixed and a
can take any value in the field. Under the given
assumptions,

ap
k−1 = a′p

k−1 (32)

for all a, a′ ∈ F∗pr , hence

ap
k−1 = 1 (33)

for all a ∈ F∗pr . Consequently xp
k+2 ≡ x3, and

x2pk ≡ x2. Note that equation 33 implies that
k = 0 or r divides k. Hence f is equivalent to a
polynomial of degree 3 which is already shown to
be a valid solution in case 2.

IV. CONCLUSION

We have shown that for a specific family of
Planar functions, a cubic is the only Alltop type
polynomial. We have also shown that Alltop type
functions cannot exist on fields of characteristic
3, which means that Alltop type functions cannot
exist for many classes of planar functions.

New planar polynomials are continually being
discovered. Thus investigating the existence of
Alltop type polynomials for all classes of planar
function cannot yet be completed. However many
of the newly discovered planar functions are on
fields of characteristic 3. So perhaps the possible
solution space is not expanding so rapidly.



The question of the existence of another Alltop
type polynomial is still open. As is the question
of whether any Alltop type polynomial would
produce a set of MUBs which are non-equivalent
to the corresponding planar function MUBs.
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