
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Nepal, Madhav Prasad, Staub-French, Sheryl, Pottinger, Rachel, & Web-
ster, April (2012) Querying a building information model for construction-
specific spatial information. Advanced Engineering Informatics, 26(4), pp.
904-923.

This file was downloaded from: http://eprints.qut.edu.au/58162/

c© Copyright 2012 Pergamon Elsevier

This is the author’s version of a work that was accepted for publica-
tion in Advanced Engineering Informatics. Changes resulting from the
publishing process, such as peer review, editing, corrections, struc-
tural formatting, and other quality control mechanisms may not be re-
flected in this document. Changes may have been made to this work
since it was submitted for publication. A definitive version was subse-
quently published in Advanced Engineering Informatics, [26, 4, (2012)]
http://dx.doi.org/10.1016/j.aei.2012.08.003

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1016/j.aei.2012.08.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10916636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Nepal,_Madhav.html
http://eprints.qut.edu.au/58162/
http://dx.doi.org/10.1016/j.aei.2012.08.003

 1

Querying a Building Information Model for Construction-Specific Spatial

Information

Madhav Prasad Nepal 1*, Sheryl Staub-French 1, Rachel Pottinger 2, April Webster3
1 Department of Civil Engineering, University of British Columbia, Vancouver, B.C. Canada, V6T 1Z4
2 Department of Computer Science, University of British Columbia, Vancouver, B.C. Canada, V6T 1Z4
3 IBM Research – Almaden, 650 Harry Road, San Jose, California 95120-6099

Abstract
The design and construction community has shown increasing interest in adopting building information

models (BIMs). The richness of information provided by BIMs has the potential to streamline the design

and construction processes by enabling enhanced communication, coordination, automation and analysis.

However, there are many challenges in extracting construction-specific information out of BIMs. In most

cases, construction practitioners have to manually identify the required information, which is inefficient

and prone to error, particularly for complex, large-scale projects. This paper describes the process and

methods we have formalized to partially automate the extraction and querying of construction-specific

information from a BIM. We describe methods for analyzing a BIM to query for spatial information that

is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our

approach integrates ifcXML data and other spatial data to develop a richer model for construction users.

We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The

validation results demonstrate that this approach provides a richer representation of construction-specific

information compared to existing BIM tools.

Keywords: BIM, Spatial Queries, Construction, Knowledge Extraction, Design Features, GML

* Corresponding author. Tel.: +1 604 822 2739; Fax: +1 604 822 6901; Email: mpnepal@civil.ubc.ca

mailto:mpnepal@civil.ubc.ca

 2

1 Introduction

In recent years, the design and construction community has increasingly adopted building information

models (BIMs), also called building product models. BIMs are object-oriented information models that

contain rich geometric (e.g., dimensions), topological (e.g., connections), and semantic (e.g., material

properties) information of a building, enabling enhanced communication, coordination, analysis, and

quality control [1]. BIM results in a faster and more cost-effective project delivery process, and creates

higher quality buildings that perform at reduced costs [2].

Although much focus has been given to the designer’s use of BIM, contractors are also using

BIM to support various construction management (CM) functions. However, there remain many

challenges in getting construction-specific information out of a BIM, limiting the usability of these

models for construction and other downstream processes. Consider the following example scenario from

the Engineering Design Centre (EDC) project studied at the University of British Columbia (UBC)

campus.

Scenario 1: Forming trades on the job site need to know in advance, the size, location and type of

“openings” and “penetrations” on concrete walls, slabs and beams, for forming and shoring. Drywall

and masonry trades also require similar information on the layout and construction of walls. Mechanical,

electrical and plumbing (MEP) trades require this information in order to layout, position, and route

building service components and to ensure that design, construction, and operational requirements are

met. All of these trades not only need to collaborate with each other, but more importantly, must be aware

of any changes in structural and architectural designs in order to accurately account for those changes in

the execution of their work. Today, construction practitioners working for these trades must manually

analyze and interpret design drawings and related documents to identify these kinds of construction-

specific design conditions. Then they typically mark-up or annotate these conditions in the drawings, as

shown in Figure 1; they must repeat this same process each time a design changes.

Figure 1 Annotated drawings of the size and location of openings on walls (left) and penetrations on a slab (right)

by a site superintendent on a local project that we studied

 3

 The existence of penetrations and openings are just a few examples of the design conditions that

are important to construction practitioners. Others noted in the literature and confirmed in our case studies

include spacing, horizontal and vertical alignment, and design uniformity (or variation). Consider another

project scenario that we observed in the Chemical and Biological (Chem-Bio) Building project at UBC.

Scenario 2: The “columns” in the Chem-Bio Building have considerable variation in orientation, size

and shape and location both within a floor and from floor to floor (Figure 2). Columns located at the

same grid intersections also have varying size and/or shape from floor to floor. Due to variation in the

size, shape, location, and orientation of columns in a floor or from floor to floor, the formwork contractor

for this building would be motivated to: (a) find the unaligned columns in a floor and from floor to floor

(i.e., check for horizontal and vertical alignment of columns); (b) locate off-grid columns, if any; (c)

identify the maximum and minimum spacing of columns or bay sizes; and (d) identify the uniformity in

location and size of columns from floor to floor. The practitioners working for the general contractor and

subcontractors in the Chem-Bio project manually analyzed and interpreted architectural, structural

and/or mechanical drawings and other design documents to identify these kinds of design conditions for

constructability analysis, cost estimating, MEP coordination, and methods selection.

5
6

7
6

8
8

6
7

6
5

2
1

1
3

3

1
1

2

11
4

4
4

4

4
4

11

15
16

16
16

16
16

Main Floor

5
6

7
6

8
8

6 7
6

52
1

1
3

3
1

1
215 16

16
16 16 16

11

11

4
4

4
4

4 4

5
6

7
6

8
8

6
7

6
5

2

1

4
4

4
4

4

11

2
1

1
1

1
1

11
4

550 dia
750 dia

300x1200

300x1110

750 dia

400x1200

400x900

400x860

400x1200

300x1500

500 dia

Second Floor

Third Floor

400x1200

920

40
0

400

11
20

920

30
0

300

10
70

300x1110
920

30
0

300

10
70

Same column
locations can have
different sizes in
different floors

Same column
locations can have
same size in floors 2
and 3

400x1200

400x1200

400x1200

Figure 2 Variation in column size, shape, and location in a floor and from floor to floor in the Chem-Bio Building

 4

Current BIM tools provide some support for identifying a few of these kinds of spatial design

conditions. For example, Autodesk® Navisworks® Manage (hereafter “Navisworks”) is often used on

BIM projects to support building system coordination to help identify design conditions like the ones

shown in Figure 1. Navisworks provides sophisticated functionality for detecting conflicts between

systems and managing the resolution of these conflicts over time, which is very important for design

coordination. However, Navisworks is not able to differentiate between a conflict and a penetration, and it

does not provide any information on the location and size of the opening or penetration, which is what the

practitioner really needs. Solibri Model Checker® (SMC) is another sophisticated BIM analysis tool that

provides some support for analyzing a BIM from different perspectives, including construction. SMC can

visualize and analyze a BIM for its integrity, quality, and for compliance with a given set of design

requirements, which may include code checking, quantity takeoff, and conflict detection [3]. However,

similarly to Navisworks, SMC is unable to provide the necessary support for practitioners for the spatial

analysis of a BIM described in the second scenario. To summarize, current BIM analysis tools do not

provide support for spatial analysis of a BIM to find information that is required by construction

practitioners but that is currently represented implicitly in a BIM, and that must be derived by analyzing

the geometry and topology of objects [4-6].

Recently, researchers have tried to address these challenges by (a) developing a semantic or

ontological model as a gateway to accessing BIM or Industry Foundation Classes (IFC) data [7-10], (b)

deploying task specific algorithms or models to derive certain topological relations and information [11-

13] , and (c) providing query facilities, especially spatial queries [14-16]. These approaches provide some

solutions that meet the needs for their particular purpose. However, each of these approaches will not

satisfy the unique requirements of practitioners for the problems we are trying to address. Specifically,

they do not provide sufficient ‘flexibility’ to configure queries by non-expert construction practitioners to

meet their varied requirements and preferences of different construction management functions (e.g., cost

estimating, site management, method selection, etc.).

This research aims to address these practical and technological challenges by developing and

implementing a novel framework that combines feature extraction with query processing to leverage

BIMs for a broad range of CM functions. The overall framework involves ontology-based feature

modeling, automatic feature extraction and spatial querying of a BIM by combining ifcXML and spatial

XML data. In this paper, we focus more on the spatial analysis and querying of a BIM. Our approach

combines domain-specific knowledge with a Geographic Markup Language (GML) schema and custom

XQuery spatial predicates to support domain users in specifying spatial queries on the underlying BIM to

extract the desired construction information. This paper makes the following contributions:

• We develop and implement an integrated framework to answer spatial queries on a BIM.

 5

• We define different types of construction-specific spatial queries and formalize the domain

knowledge by providing the structure and language to specify these queries.

• We create an application to extract spatial data from an underlying BIM data model (i.e.,

(Autodesk Revit).

• We extend a GML application schema for representing information extracted from a BIM model

in a common syntax and schema.

• We develop custom XQuery spatial query predicates to create the mappings from the domain

concepts to the underlying BIM data and describe the process for querying some representative

spatial queries.

2 Related Work

This section describes relevant background research on representing building information, reasoning

approaches for analyzing a BIM, GML and XQuery-based spatial query languages.

2.1 Building Information

Building information consists of non-spatial and spatial information. Non-spatial information relates to

the geometry, material and other characteristics of the building components. Spatial information describes

various spatial relationships between building components, or between components and spatial elements,

i.e., the site, building, storey, and space of a building [17]. Much of the research on spatial/topological

relationships relates to the concepts and technologies developed in the area of Geographic Information

Systems (GISs). According to Clementini and Di Felice [18], spatial relationships fall into one of the

following three basic categories:

• Topological relationships (e.g., adjacent, overlap): these describe whether or not two objects

intersect, and, in the former case, how they intersect.

• Orientation relationships (e.g., north-of, south-of): these describe object location with respect to a

reference.

• Distance relationships (e.g., very close, close): these describe the distance of an object with

respect to a reference.

Topological relations are among the most extensively researched spatial relationships in the field

of GIS. Egenhofer and Franzosa [19] have formalized nine topological spatial relations, called the “9-

intersection model” (9IM) that occur between polygonal areas in the plane (spatial regions). They are:

disjoint, touch, equals, inside or contains, covers or is covered by, overlap with disjoint boundary, and

overlap with intersecting boundary. These relationships are defined in terms of the intersections of the

boundaries and the interiors of two sets. The 9IM was later extended to the Dimensionally Extended 9-

 6

Intersection Model (DE+9IM) by [20]. The DE+9IM forms the basis for the formal definitions of

topological relationships in the Open GIS Consortium Standard [21]. There are, however, many

hindrances to fully using GIS-based tools and formalisms to spatial reasoning about a BIM, due to

geometric and semantic differences which exist between BIM and GIS models [22].

Spatial relationships play a critical role in building design and construction. Researchers have

recognized many important spatial relations and/or defined generic conceptual schemas and constructs

between building components [11,17,23-25]. Such relationships include topological relationships, such as

adjacency, intersection and containment relationships, orientation or directional relationships, and

distance relationships between components. For the past decade and a half, IFC has undertaken a global

effort to develop a model schema that is able to support a semantically-rich representation of information

pertaining to the life cycle of a building. IFC defines multiple spatial relationships (mainly topological)

that may occur between the objects or elements of a building. The IFC product model, however, has not

explicitly defined directional and distance relationships between objects [4]. The expectation is that

standard schemas such as IFC could be used by BIM tools and software applications to reason about the

spatial and non-spatial information required by design and construction professionals.

2.2 Reasoning Approaches on Building Information Models

Pre-defined BIM schemas, such as IFC, provide a standardized structure to construct and interpret a BIM.

It is, however, up to the applications to structure the needed information on top of BIM and/or provide

reasoning support to facilitate the extraction of construction-specific information. Some related studies

use dedicated algorithms such as in Nguyen and Oloufa [11] and the perspective approach [6] to derive

certain topological or spatial relationships among building components from a 3D solid model. Other

studies employ IFC-based models or IFC Model Servers to generate application-specific views

[12,13,26,27]. Researchers have developed ontologies on top of IFC models to add reasoning dimension

to the IFC model to access IFC data [7] and support knowledge integration and management [8-10].

Query-based approaches provide increased generic support to rapidly generate task-specific views

of a product or BIM model. They act on the predefined model schemas or they support the definition of

schemas to query a product model database [6]. Some research efforts provide a means to describe query

information to handle partial model data from the IFC Model Server. Two such efforts are the Partial

Model Query Language [28] of the Secom IFC Model Server and the Product Model Query Language of

the EuroStep Model Server. They provide query support for the retrieval of explicitly defined IFC

properties and spatial relationships. Lou et al. [29] investigate generic CAD query languages that enable

engineers to query a model for geometric features in the mechanical engineering domain. Kriegel et al.

[16] introduced spatial database technology to perform spatial queries (e.g., distance queries) and spatially

 7

index CAD data of 3D CAD models. Recent research has extended the application of spatial concepts and

language developed in the GIS community to the architecture, engineering and construction (AEC) sector

to develop a 3D spatial query language to extract partial models that fulfill certain spatial constraints [4].

Beetz et al. [15] have defined application or knowledge-based models for transforming IFC model

information to ontologies which they use for processing building information through generic query and

reasoning algorithms. However, existing query-based approaches and languages are not widely used in

AEC practice today [6], possibly because they lack a simple, generic, formal and expressive framework

which enables practitioners to explicitly define construction queries. Our research builds on and shares

many common features with previous research to provide rich, expressive and flexible query support for a

variety of knowledge-intensive construction tasks.

Our research and the existing work discussed above share a similar goal, which is to support the

data access or information extraction from a BIM model. We however do this in a distinctive way. We

provide a mechanism to schematically integrate spatial and non-spatial BIM data into a single, common

representation using GML application schema and use XQuery and XQuery spatial predicates to extract

practical and meaningful construction-relevant information. We leverage and extend 2D topological query

predicates developed in the GIS community to solve practical problems. We employ an ontology of

design features and query specifications that capture the knowledge needed by domain practitioners to

specify semantic-based spatial queries on BIM data. Our research thus builds on the existing work on

spatial queries for BIMs, such as the work of [4]. We extend this work by including a much broader set of

semantic information (object attributes and relationships) available in BIM, and by leveraging XQuery as

a spatial query language to demonstrate the practical applications of query languages.

2.3 Geography Markup Language (GML)

Geography Markup Language (GML) is an XML grammar defined by the Open Geospatial Consortium

(OGC) to describe geographical features. It is by no means the first language developed to describe

spatial data, but it is the first to gain widespread acceptance by the GIS community as demonstrated by its

approval by the OGC [30]. GML provides a non-proprietary, open-source and standard representation of

spatial data (up to three dimensions), units of measure, and coordinate reference systems. The GML

specification also specifies rules for extending the standard to create a domain-specific application

schema.

The basic constructs of the GML data model are a feature (i.e., a real world object) and its

properties (i.e., attributes of a real world object or a relationship between objects). The GML model

differs from the traditional GIS model in what is modeled as first-class objects. Instead of representing

geometric information such as points, lines or areas as in the GIS model, objects in the GML model

 8

describe meaningful, real-world objects that have some significance to the domain for which they are

defined. Specific features are not defined in the core GML schemas, but instead in application schemas

that extend GML. GML can be extended to provide data interoperability for a particular community

through what are called application schemas. A GML application schema is a vocabulary that represents

the spatial (and non-spatial) objects that are important to a specific target community. It is usually a

smaller, more manageable subset of GML that is targeted for a particular set of uses within the domain

[31]. For example, cityGML is a general-purpose application schema that models built structures and

landscapes including water bodies, vegetation and elevation. cityGML provides constructs for describing

buildings but does not support the level of detail needed to support the type of analysis required by AEC

practitioners [32].

2.4 XQuery-based Spatial Query Languages

XQuery [33] is the standard language for querying XML. XQuery is a general-purpose XML query

language. While it provides substantial support for queries involving non-spatial attributes, it provides no

native support for queries of a spatial nature [34]. It is therefore necessary to extend XQuery with custom

spatial query predicates to support queries over GML [35]. A handful of XQuery-based spatial query

languages such as GML-QL, CXQuery, GQuery, and GQL for GML have been proposed in the research

literature [34,36-38] particularly in the context of GIS.

We base our work on the core topological relationships specified by the 9-IM and extend it for the

AEC application domain. However, we do not, in our framework, implement all nine of the topological

relationships identified by the 9-IM in our first implementation but only those that were necessary for

creating the more complex spatial query predicates representing the spatial relationships important to

construction practitioners: Intersects, Touches and Disjoint (Section 6.1). Our approach uses custom

XQuery predicates to articulate the mappings between integrated BIM data represented in GML and the

domain knowledge.

3 Research Framework and System Architecture

Figure 3 graphically illustrates our generic research framework of the system developed for automated

extraction and querying of design features from a BIM. In the first step (Create Feature-based Model),

the prototype application, ‘Feature Extractor’ that we created transforms the input IFC-based BIM model

into a project-specific feature-based model (FBM) that explicitly represents the features that are important

to a particular construction practitioner or domain. For this step, we formalized a feature ontology to

generically represent construction-specific design conditions, which is described in detail in [39].

 9

In the second step (Query Features), users configure queries that operate on the project-specific

feature-based model. The system takes the query input from the user and executes the application

‘Feature Query Analyzer’ that we created to process queries. For this step, we developed query

specifications to formalize the language and structure of the user-driven queries in relation to a BIM. The

query specifications define a query vocabulary and attributes to specify different types of spatial and non-

spatial queries. In this paper, we focus on how spatial data that is not available in ifcXML is extracted

directly from an underlying BIM application (Revit in our case) and how we extend the GML application

schema to answer spatial queries on features.

Create
Feature-Based

Model

Feature
Ontology

Instantiated
Project Specific
Design Features

User Inputs a
BIM Model

Automatic
Instantiation

User Defines
Queries

Query
Specifications

Query Features
Query Result/

Output

Automatic
Query

Processing

User Action

Computer
Action

Activity
Result

ControlFeature Query
Analyzer

Feature
Extractor

Inputs Outputs

Mechanisms
(optional)

Controls

Function

Legend

Figure 3 A generic research framework for extracting and querying a BIM

Figure 4 shows the system architecture of the different components developed for answering spatial

queries on features over BIM data, i.e., an Autodesk Revit model. Providing spatial query support

requires three key components: (a) capturing the knowledge required by construction domain practitioners

in a formal, human-readable and machine-interpretable manner, (b) a mechanism to store both spatial and

non-spatial data in a common format, (c) and a way to automatically transform or map the BIM

application’s internal representation of design data to the construction domain practitioners’ view of a

BIM. Our feature ontology and query specifications represent the first component that captures the

construction view of a building design, and hence represents the domain model held by construction

practitioners. We use XML as the common compatible format or syntax to store both spatial data

 10

extracted from Revit and non-spatial ifcXML data. The mappings from BIM objects to concepts in the

domain model are implemented as XQuery spatial query predicates.

Figure 4 A system architecture for spatial analysis of a BIM

4 Specification of Construction-specific Spatial Queries

Construction practitioners require different types of queries, have different ways of expressing queries,

and different levels of knowledge specifications are needed for describing queries. Our goal with this

research is to provide a formal and structured way to specify queries on features formalized in the feature

ontology and represented in the FBM. These queries analyze feature instances and feature attributes

instantiated in the FBM to identify spatial information that is relevant to construction practitioners.

 The systematic schematization or organization of knowledge of a domain is essential to represent

information about the domain and make inferences about it [40]. The knowledge needs to be represented

and structured to enable users to flexibly define queries and extract the relevant and specific information

required. The end users should be shielded from the underlying data models of a BIM, query language, or

database systems [13]. In this research, a feature ontology and query specifications provide knowledge

structures, or schemas, for extraction and querying of design features from a BIM. They control the

functions for creating the feature-based model and for querying the features. Query specifications provide

controlled and structured vocabularies to specify queries. They represent the underlying domain

knowledge for the formulation and processing of different types of queries by encoding the knowledge

Domain Specific Knowledge

Query SpecificationsFeature Ontology

Information: GML

A GML Application Schema

Data: XML

Spatial XML Data

BIM Model: Autodesk Revit

Spatial Query Predicates: XQuery

ifcXML Data

 11

into computer-interpretable query templates which the practitioners can specify during the querying [39].

The following sections highlight the types and characteristics of the spatial queries that we formalized and

implemented and that are relevant to construction practitioners. We also include the domain concepts that

are relevant to specify those queries.

4.1 Component Intersection and Penetration Queries

Component intersection and penetration queries identify the interaction between features. Component

intersection queries identify the intersection between component features. They represent the

physical/geometric interaction or connectivity between components that may involve conditions, such as

a face of one component overlapping or attaching the face or edge of another component in a vertical

plane, a component abutting another component, a component crossing another component, or a

component supporting or supported by another component for vertical load transfer. Component

intersections can occur between components of the same type, such as intersections between walls (wall

to wall intersection) or between different types (e.g., wall to column intersection). Other information

about the component intersection, such as type of intersecting components (e.g., masonry wall

intersecting dry wall, dry wall intersecting the round column), relative dimension and characteristics (e.g.,

fire-rating) of intersecting components, is also important to construction practitioners.

Penetration queries are used to find the instances of penetrations on building components which

are formed by the building service elements entering or passing through them. Examples include a duct,

pipe or cable penetrating a wall or slab. A penetration is a special case of intersection or clash (or conflict)

detection. However, current tools do not differentiate between a conflict, an intersection, or a penetration.

Moreover, additional information above and beyond what is reported in current conflict detection tools is

needed. For example, the size and location of the penetration of a building service element on the wall

(i.e., its distance from each side of the wall, the ceiling and floor) is equally important as minimum

clearances of building services from walls and ceilings must be met and additional work may be needed

to prevent moisture penetration or heat exchange [41]. Knowing where these penetrations occur will

result in a more accurate cost estimate [42].

4.2 Location Queries
Location queries identify the location of features relative to some frame of reference, such as the location

of columns with respect to related grid lines. Some examples of location queries that practitioners ask are:

• Identify on-grid or off-grid columns;

• Identify the location of off-grid columns with respect to the proximate grid intersections;

 12

• Identify the location of penetrations and openings on walls from wall boundaries (top, bottom,

right, and left edges), floor level, and from the intersection boundaries, such as wall to wall

intersection/s or wall to column intersection/s.

Being able to quickly identify the location of features is critical for construction planning,

constructability assessment, and facility management [39,43]. For instance, knowing the location of

all of the penetrations will result in more accurate cost estimates of the work [42]. Through

consultations with construction practitioners and case studies, we captured the following query

attributes for characterizing the location queries. Figure 5 illustrates location specific terms or

parameters:

1. Location Type: This represents a practitioner’s preference for querying either the ‘horizontal’ or

‘vertical’ location of features. The location of openings and penetrations on components can be

characterized as either horizontal or vertical assessed relative to a stated reference. The location

of columns, for example, is generally assessed horizontally, relative to related grid lines.

2. Relative Reference: This attribute allows practitioners to specify the reference for the horizontal

or vertical location of a feature. For instance, as shown in Figure 5, the horizontal and vertical

location of duct penetrations on walls (similar terminology applies for openings on components)

can be specified in a number of ways. The vertical location of a penetration can be defined based

on: the distance from the top of the host wall, or from the bottom of the host wall, and the

distance to the floor level. The horizontal location of a penetration can be designated from either

edge of the host wall. It can also be referenced from the intersection of the host component with

other components, such as a wall to wall intersection or a wall to column intersection.

3. Target Location: This attribute allows practitioners to specify the location of interest of the

selected feature, either as the ‘feature centre’ or ‘feature boundary,’ referred with respect to the

selected relative reference. For instance, the user defines the ‘target location’ of duct penetration

as the ‘feature centre’ to specify that the location of all duct penetrations be measured up to the

centre of each penetration. If specified as the ‘feature boundary,’ the location of duct penetrations

is measured to the proximate boundary of the penetration from the relative reference.

 13

Figure 5 Illustration of the different attributes required to locate penetrations on walls, based on a lab in the Chem-

Bio Building project, UBC

4.3 Spacing Queries
Spacing queries identify the distance between (or spacing of) proximate features of the same type or

different types. A sample spacing query is: “Identify the maximum and minimum clear spacing between

proximate columns.” Spacing between features, such as column spacing, opening spacing, and so forth,

can impact construction planning, constructability assessment and formwork method selection [44]. We

acquired the spacing knowledge that practitioners consider in characterizing the spacing query and

formalized it to help them specify queries on spacing. Some important query attributes that we formalized

include the following:

1. Spacing Direction: This attribute designates the direction of spacing, depending on the type of

relating and related feature, the spacing will be assessed in the ‘horizontal’ direction (horizontal

spacing) or ‘vertical’ direction (vertical spacing). For components, such as columns, which are

normally placed relative to rectangular grid lines, the spacing is assessed in the horizontal

direction, and can be further evaluated as spacing along the X- or Y-axis. The spacing of

openings or penetrations could be assessed in the horizontal or vertical direction.

2. Type of Spacing: This attribute denotes the practitioners’ preference for identifying the spacing

between features as ‘centre to centre’ or ‘clear’ spacing.

3. Aggregate Function: This attribute is used to specify the further needed quantification of the

results from the spacing query, and includes functions such as ‘maximum’, ‘minimum’,

‘average’, ‘percentage variation’, etc. For instance, a formwork practitioner would generally ask

for the maximum and minimum spacing of proximate columns in a floor.

 14

4.4 Alignment Queries
Alignment queries are used to identify the orientation and/or placement of the instances of a feature with

respect to some criteria. The purpose is to identify the unaligned features, if any, that may be present in a

given design. The proper alignment of features, such as the column alignment in a floor, or from floor to

floor, is crucial for the constructability of a design and installation of the façade and curtain walls [43,44].

A potential alignment query that a practitioner might ask is: “Identify columns that do not align

horizontally or vertically.” The queries on column alignment seek to answer questions about specific

aspects of the layout, position, or orientation of columns in a floor (horizontal alignment) or from floor to

floor (vertical alignment). This requires specific practitioner knowledge about how they might define

what it means for columns to be aligned. For instance, each of the following three rules (or criteria) or

combination thereof, can be used by practitioners to define the horizontal alignment of columns:

1) Related columns located on the same grid line;

2) Related columns’ centres are collinear; and

3) Related columns’ respective faces, or edges, are equidistant from the relevant column reference

line.

 According to the first criterion, if the same grid line intersects a set of columns, then the columns

are considered to be horizontally aligned along the direction of that grid line. The second criterion relates

to the co-linearity of the columns’ centre. According to this definition, if the centre of the related columns

are collinear, or lie on the same line, connecting their individual centre, then the columns are considered

horizontally aligned along the axis of the grid line, to which such columns belong. The third criterion

stipulates that, if related columns’ respective faces or edges are the same distance from the relevant

column reference line, then these columns are horizontally aligned along the direction of that line. The

reference line could be the related grid line.

4.5 Design Uniformity Queries

Design uniformity queries are used to identify or gain insights about the consistency (or variation) of

design features on a particular building floor or from floor to floor of a building (see Figure 2). Design

uniformity is an important factor for practitioners as it can influence the method selection, constructability

of a structure [44,45], and technical and economic feasibility of using a particular construction method

[46]. Practitioners normally use non-spatial information such as size and/or dimension attributes (width,

thickness, diameter, length, depth, height), spatial information (e.g., location, spacing) or both types of

information to characterize design uniformity queries of features (e.g., the variation in the openings’ size

and location on walls, change in column size, and location from floor to floor).

 15

Design uniformity queries generally fall into two categories: (i) identifying the cluster of similar

components or features; and (ii) recognizing non-uniform features. The first category identifies or creates

a grouping of similar features based on simple geometric or nominal attributes, and calculates some

measure of variation, such as count, percent count, etc. An example query that practitioners might ask is:

“Show me the variation in wall types and height in a building.” The process of filtration and grouping of

components based on feature attributes creates clusters of similar walls, which is very useful information

to practitioners [39]. Additionally, component similarity can also be evaluated by combining nominal and

quantitative attributes and by using a simple matching approach [47]. The second category of design

uniformity involves assessing the uniformity of features by incorporating the spatial information and/or

combining nominal (e.g., material), geometric (e.g., size, shape) or spatial or topological attributes (e.g.,

location, spacing). A typical query of this type that practitioners might ask is: “Identify columns that have

a change in size, shape or location from floor to floor.”

5 Spatial Data Extraction and Representation

Much of the spatial information needed to process spatial queries is not available using IFC or any of the

other export mechanisms available for Revit [48,49]. Thus, we had to extract that information through the

Autodesk Revit API, particularly the relative location of building objects. The Revit API is an application

programming interface that provides a way to programmatically access the Revit’s internal representation

of BIM data — all BIM building element objects as well as their properties including the spatial data,

which is hidden within each building object in a building project. This facilitates more sophisticated

analysis of a building project and, for our purposes, the ability to answer custom spatial queries.

In order to extract the spatial information needed to answer the spatial queries that are important

to construction practitioners, we first have to determine what spatial data Revit stores for the building

objects such as walls, columns, and ducts, and how it is organized within its data model. We also require

spatial information about the project’s grid in the xy-plane. Moreover, an application to extract the spatial

data is needed (Section 5.2).

5.1 Spatial Data Representation of Building Objects in Revit

The objects in a building project, such as columns, walls, ducts and gridlines, are represented as elements

in Revit. All of the elements in a building project are stored in a single Elements list and are associated

with a Document object — a Revit project file [50]. Each building object stores its own spatial

information. The most basic representation of a building object’s location in Revit is either as a point or a

line, which identifies the ‘centre’ of the building object. If the object’s location is a point as is the case

with columns, it will have an instance of the Revit LocationPoint class. If the location is a line, as is the

 16

case with walls, the object will have an instance of the LocationCurve class.

A LocationPoint object has a single 3D coordinate in the project’s Cartesian coordinate system

and a LocationCurve object has two or more 3D coordinates. If the object is not curved, the

LocationCurve will store two points that represent the endpoints of the centreline that describes the

object’s location in 3D space; otherwise it will store several points to approximate the line. The

LocationCurve also contains a Function parameter that describes the object’s trajectory through 3D space

as a mathematical expression. Because the location of each object — either in the form of a LocationPoint

or a LocationCurve — is in the same coordinate system this information can be used to determine the

relative locations of two objects. Therefore, topological relationships between objects can be deduced

[51]. However, the distances calculated between points in this coordinate system does not necessarily

represent the actual distance between building object instances in the units specified by the user because

Revit converts all location information into the internal units it uses [52].

The Revit API stores two pieces of spatial information about a wall: the wall’s centreline — a

line that follows the trajectory of the wall (i.e., wall’s location in the xy-plane) — and its height (i.e.,

wall’s location in the z-direction). The centreline of a Wall is represented in the Revit model as a Curve

object which is a specialization of the LocationCurve object. The Curve object stores an array of 3-

dimensional points which can be accessed using the object’s Tessellate function. The array representing

the centreline of a straight Wall will contain two points which identify the two endpoints of the Wall’s

centreline. The array representing a curved wall will contain multiple points — the greater the curvature

of the wall, the greater the number of points that are required to adequately capture its location [53].

The Revit API defines the geometry of a column by two spatial properties: a centrepoint and a

height. The centrepoint represents the location of the centre of the column in the xy-plane: the intersection

of the midpoint of the column in the x-dimension with the midpoint of the column in the y-dimension. It

is modeled as a Location-Point object which contains an XYZ 3D coordinate point; the z-coordinate is the

same as the z-value of the level (or floor) where the Column is located. The height represents the height of

the column in the z-direction [53].

Gridlines which are required for spatial queries, such as for determining column’s location, are

modeled in Revit as instances of Revit’s Grid class. A Gridline’s location is represented in the same

manner as the centreline of Wall: as an array of two (or more) points that are extracted from the

LineCurve object using the Tesselate function. It is assumed for this research that Gridlines are straight

lines. The name of the gridline is a property of the Grid class; gridline’s axis property, gridAxis, is a

derived value providing information about the axis of the gridline. The gridline’s value, gridlineValue, is

also derived and is the value of the x-or y-coordinate corresponding to the axis of the gridline.

 17

5.2 Spatial Data Extraction Application

We created an application to extract spatial data for Walls, Columns and Gridlines from Revit’s BIM data

model using the Revit API. This application was developed in Microsoft Visual Studio using C#, a

.NET-compliant language, a requirement for working with the Revit API [51]. The application is

essentially organized as three different external tools — ColumnLocation, WallLocation, and

GridLocation — that are available from the Tools menu item in the toolbar in Revit’s interface. Each Tool

extracts the spatial information discussed in Section 5.1 for the building object it is named after (e.g., the

WallLocation tool extracts the centreline and height, as well as length for all walls in a building project

file). This information is output in an XML file.

5.3 Extending GML Schema to Answer Queries
This section describes how we extended GML to create an application schema to answer queries.

5.3.1 Representing Location

Several geometric types are provided by GML, including one-, two- and three-dimensional types. In the

initial version of our application schema, only two-dimensional spatial information is encoded for the

features specified in the domain specific knowledge. The location of a feature is therefore described in

terms of points and/or lines.

GML provides two geometric types to represent a single point: the PointType and the

PointPropertyType. If the point is encoded as a first-class object, the PointType should be used.

However, in most cases the location of a feature should be encoded as a property of the feature; in this

case the PointPropertyType is required. A Column’s location is specified by the centrepoint of the base of

the Column. We model the centrepoint as a property of the Column; it is represented as a

PointPropertyType in our application schema. The location of an Intersection and the location of a

Penetration are also represented using the Point-PropertyType: each of the eight corners of the rectangular

cuboid (or box) that represents the three-dimensional intersection of a Column and a Wall, a Wall and a

Wall, or a Duct and a Wall (i.e., a Penetration) is a point. For example, the schema element for the

centrepoint of a Column has the following structure:

<element name="centreOf" type="gml:PointPropertyType" minOccurs="1" maxOccurs="1"/>

The minOccurs and maxOccurs attributes are optional. They specify the minimum and

maximum number of occurrences of an element. Columns must have exactly one centrepoint;

 18

therefore, both the minOccurs and maxOccurs attributes in the schema fragment for the centrepoint of

a Column have a value of 1.

 The GML CurveType and CurvePropertyType represent a line; the former type is used for an

object and the latter for a property. In our research, the location of Walls and Ducts are represented using

the CurvePropertyType. For instance, the schema element for the centreline of a Wall or Duct is provided

below. As was the case with a Column’s centrepoint, Walls and Ducts must have exactly one centreline

specifying their location.

<element name="centreLineOf" type="gml:CurvePropertyType" minOccurs="1" maxOccurs="1"/>

GML’s PointPropertyType and CurvePropertyType specify geometric types for the properties

of features such as Walls, Columns and Intersections. However, when an application schema is

instantiated with the information from a particular building model, these types are replaced with specific

geometry object types. In an instance of a GML application schema, GML’s PointPropertyType is

replaced with GML’s Point type. The following excerpt is an instance of the centreOf property of a

Column that is encoded as a subelement of the Point using the GML pos property.

<centreOf>

<gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.75 20.79 0.00</gml:pos>

</gml:Point>

 </centreOf>

GML’s pos property is a direct position, which is a location in space whose coordinates are speci-

fied relative to some coordinate reference system (CRS) — a system of coordinates that uniquely

identifies a point in the space defined by that system. The srsName attribute is used to specify the CRS

that should be used to interpret the coordinates encoded by a pos property [54]. Typically the srsName

attribute is specified on the geometry object — in this case a Point — containing the pos property and not

on the pos property itself as is demonstrated in the instance of a centreOf schema element above [54]. The

CRS in our research is a three-dimensional Cartesian Coordinate system. GML 3.2.1 provides a concrete

CartesianCS type which is used in an instance of our GML application, as shown in the excerpt above.

Similarly, GML’s CurvePropertyType can be replaced with several associated GML curve

object types in an application schema instance including the LineString, Curve, OrientableCurve and

CompositeCurve types [55]. A LineString is the GML type that represents a straight line. It is encoded as

a set of coordinates referred to as control points each of which are a direct position. In our research, the

 19

location of Walls and Ducts are described using their centreline and are represented using a LineString

object. An example of an instance of the centreline element follows:

<centreLineOf>

<gml:LineString srsName="gml:CartesianCS">

<gml:posList dimension="3">-33.75 20.79 0.00 -33.75

50.79 0.00</gml:posList>

</gml:LineString>

</centreLineOf>

The control points of a LineString are represented as a single subelement of a LineString using

the GML posList property, a list of double numbers. The posList property does not delineate individual

points in the posList. To ensure that the points in the posList are interpreted properly, a dimension

attribute is provided to specify the number of coordinate entries for each point.

5.3.2 Representing Features and Feature Collections

Each real-world object identified in the domain knowledge is modeled as a GML feature in our GML

application schema. A GML feature is defined by creating a global element whose type is derived from

the GML AbstractFeatureType. A global element is simply a child element of the schema element (i.e.,

<xs:schema>).

For each feature in the domain knowledge — Wall, Column, Duct, Intersection, etc. — a GML

feature collection is modeled in the GML application schema. For example, there is a feature collection

called “walls” that acts as a container for a feature Wall in the domain knowledge.

<element name="walls">

<complexType>

<complexContent>

<extension base="gml:AbstractFeatureType">

<sequence>

<element ref="artifact:Wall"

maxOccurs="unbounded"/>

</sequence>

 </extension>

</complexContent>

</complexType>

</element>

 20

The walls feature collection is itself a feature — it extends GML’s AbstractFeatureType — and it

contains GML objects, each of which must be a GML feature. Each feature in the collection is modeled as

a property (i.e., subelement) of the collection and its type must extend GML’s

AbstractFeatureMemberType as shown in the following schema definition of a Wall.

<element name="Wall">

<complexType>

<complexContent>

 <extension base="gml:AbstractFeatureMemberType"> ...

 </extension>

</complexContent>

</complexType>

</element>

5.3.3 Representing Feature Relationships

In GML, a Feature Relationship is not modeled as a Feature, but instead as a property on a Feature or the

Features participating in the relationship. This is contrary to the practitioners’ view of a design and the

corresponding representation provided in the Feature Ontology in which spatial relationships such as

Penetrations and Intersections are modeled as first-class objects or features. Therefore, to maintain the

semantic model of a building held by construction practitioners, spatial relationships are modeled as GML

features in our application. For example, the Intersection spatial relationship is modeled as an element

instead of as a property of an element or elements:

<element name="Intersection">

<complexType>

<complexContent>

<extension base="gml:AbstractFeatureMemberType">

<sequence>

<element ref="artifact:Wall"/>

<choice minOccurs="1" maxOccurs="1">

<element ref="artifact:Wall"/>

<element ref="artifact:Column"/>

</choice>

<element name="location"

 21

type="artifact:IntersectionLocationType"/>

<element name="area" type="gml:MeasureType"

minOccurs="0"/>

<element name="volume" type="gml:MeasureType"

minOccurs="0"/>

 </sequence>

</extension>

 </complexContent>

</complexType> </element>

5.3.4 Units of Measure (UOM)

It is important to qualify a numerical measurement with units. Failing to do so introduces ambiguity and

can easily lead to the incorrect interpretation of numerical measurements. The GML schema, units.xsd,

provides seven base units of measure (UOM) as defined by the International System of Units (SI) [54].

When a BIM model uses the Imperial system of measurement such as length measurements as feet, and

other derived measures, such as square-feet and cubic-feet for area and volume respectively, they must

explicitly be defined in the GML model. GML provides constructs to support the creation of user-defined

UOM. While UOMs can be specified within an instance of a GML application schema, they are more

often specified in a units dictionary to enable reuse and to make their definition explicit. We took this

latter approach in our project. A units dictionary is simply an XML file that contains a collection of GML

Definitions for UOM.

6 Developing Query Predicates for Spatial Analysis

This section describes several of the query predicates we developed to support querying the

BIM.

6.1 2D topological Query Predicates

We implemented the Overlaps, Touches, and Disjoint query predicates that were defined in the 9IM

model [19]. These predicates are Boolean functions; they take as input two building components. The

overlaps and touches predicates are used to check whether two building components intersect and are

collectively termed as the Intersects query predicate. The Disjoint and Intersects predicates are

converses of each other: two building components are disjoint if they do not intersect.

6.1.1 Intersects and Disjoint Query Predicate

In the initial phase of our implementation, we focused only on the spatial relationships between walls

(i.e., Wall-to-Wall intersections) and a Wall and a Column (i.e., Wall-to-Column intersections) with

 22

particular focus on non-circular column type. A standard algorithm used to determine if two objects

intersect, touch or are disjoint is the Separating Axis Theorem (SAT). The SAT states that two 2D objects

are disjoint (i.e., do not intersect) if there exists some line — the ‘separating line’ — onto which their

projections are disjoint [56]. In other words, if there is some line that can be placed between the two

objects, they won’t intersect. The separating line is perpendicular to the ‘separating axis’ of the two

objects as illustrated in Figure 6. A simplifying assumption that can be made for the SAT theorem is that

the objects are axis-aligned. In this case, the theorem is known as the Axis-Aligned Rectangle Test [57].

As the majority of Walls and Columns in a building are axis-aligned (i.e., their centreline is parallel to the

x-or y-axis), we make this assumption.

Wall 1

Wall 2

Separating Axis

Projection of Wall 2Projection
of Wall 1

Se
pa

ra
tin

g
L

in
e

Figure 6 Application of the Separating Axis Theorem (SAT) with respect to two walls

Determining if a Wall is aligned to the x-axis (i.e., is horizontal) can be accomplished by testing

whether the x-value of the points defining a Wall’s centreline are the same (i.e., y varies and x is

constant); alignment to the y-axis can be determined in the same manner. The query to determine if a

Wall is aligned to the x-axis is presented below. Determining if a column is axis-aligned can be similarly

ascertained.

declare function artifact:isWallXAligned($wall)

{

let $x1 := $wall/centreline[@size="2"]/point[@position="1"

and @axis="x"],

$x2 := $wall/centreline[@size="2"]/point[@position="2"

and @axis="x"]

return if($x1 = $x2)

then true()

 23

else false()

};

We implemented the Disjoint query predicate first, since the Intersects query predicate is

defined using the Disjoint predicate. Because we assume that the building components are axis-aligned

and are rectangular, determining if they are disjoint (or intersect or touch) means that we only need to

store/compute the maximum and minimum x-and y-values of each of the intersecting

components’defining points [49] .

Because the Intersects and Disjoint query predicates represent inverse spatial relationships — two

building components are disjoint if they do not intersect — the Disjoint query predicate can be used in

defining the Intersects query predicate as follows:

declare function artifact:intersects($wall1, $wall2)

{

let $isWall1Aligned := artifact:isWallXAligned($wall1) or

artifact:isWallYAligned($wall1),

$isWall2Aligned := artifact:isWallXAligned($wall2) or

artifact:isWallYAligned($wall2)

where $wall1/centreline[@size="2"] and (: wall1 is non-curved :)

 $wall2/centreline[@size="2"] and

 $wall1/centreline[@size="2"] and (: wall1 is non-curved :)

 $wall2/centreline[@size="2"]

return not(artifact:disjoint($wall1, $wall2))

};

In particular, the Intersects query predicate returns the logical negation of the Disjoint query

predicate as demonstrated in the return statement of the Intersects predicate: “return not

(artifact:disjoint($wall1, $wall2)).”

The Touches query predicate can be implemented by slightly changing the Disjoint query

predicate. In particular, the greater-than and lesser-than signs in the four test conditions in the return

statement of the Disjoint predicate can be replaced with equals signs; this change creates a predicate that

tests if two rectangular axis-aligned building components touch at one of their faces.

6.1.2 Proximate Query Predicate

The Proximate query predicate is used to answer queries about how objects are spaced (Section 6.2.3),

 24

which this paper only considers between columns. We also assume, for the Proximate predicate, that the

columns are on-grid (see Section 6.1.3) and that they are square, circular or rectangular in shape.

A target column is proximate to a source column (an input column) if it satisfies two criteria: (1)

the column is aligned to one of the gridlines that the source column is aligned to and (2) it is the closest

such column along that gridline in a given direction (i.e., the positive or negative x-or y-direction from the

input column). A column will have at least two and at most four proximate columns.

An algorithm called ‘ray tracing’ is employed to identify proximate column candidates. Ray

tracing is a common technique used in computer graphics to draw a 3D object. The path of a ray of light

is followed from a source and the interaction of the ray with objects in the space generates the object’s

image. Because this must be done quickly in order to draw a computer game or a movie, the algorithms

for detecting ray-object intersections and locating the closest object in a particular direction from the

source are quite fast. Ray tracing was used to determine the proximate columns for each on-grid column.

In the context of the Proximate query predicate, the ray represents the gridline extending from the centre

of a source column in either the north, south, east or west direction. The ray is defined by its origin and

direction. Its origin is the centrepoint of the source column in the xy-plane, (x0, y0), and its direction is a

two-dimensional unit vector, (xd, yd). The unit vector in the north direction is represented as (1, 0); a

value of 1 for xd and 0 for yd indicates that the ray’s direction is in the positive x-direction. A candidate

proximate column is represented by its centrepoint, (xT, yT) and its radius, rT.

We represent all columns (circular, square and rectangular) as circles in the xy-plane because it

simplifies the intersection test. The circle-ray intersection test involves only one comparison — the circle

is represented as a single equation. A box-ray intersection would involve four comparisons because a box

would be represented as four line equations and it would be necessary to check for an intersection of the

ray with each of these lines. Our choice to represent all columns as circles is acceptable because all

columns are on-grid and we are following a ray along a gridline; therefore, the point at which the

column’s face and the circle representing the column intersects that gridline will be the same point.

Given the equation for a ray and the equation for a the circle that represents a column, the ray will

intersect the ‘target’ column if the quadratic equation formed by substituting the equation for the ray (a

linear equation) into the equation for the circle representing the column has a solution. The XQuery

provided below determines if a gridline (represented as a ray) that a source column is aligned to intersects

a column in direction d, where d is north, south, east or west from the source column; the query is a

Boolean one and thus outputs either a value of true or false.

declare function artifact:isRayCircleIntersection($x0, $y0, $xT, $yT, $rT, $xd, $yd)

{

 25

let $B := 2 * ($xd * ($x0-$xT) + $yd * ($y0-$yT)),

 $C := ($x0-$xT)*($x0-$xT) + ($y0-$yT)*($y0-$yT) -$rT*$rT,

 $discriminant := $B * $B -4 * $C,

 $t0 := (-1 * $B -math:sqrt($B * $B -4 * $C)) div 2,

 $t1 := (-1 * $B + math:sqrt($B * $B -4 * $C)) div 2

return if ($discriminant > 0 and $t0 > 0 and $t1 > 0)

 then true()

 else false()

};

If there is a real solution to the resulting system of equations, an intersection exists. This

technique can be used to determine the proximate column of an on-grid column along the two gridlines to

which the column is aligned in each of the four grid directions extending from the on-grid column’s

centrepoint. The proximateColumn query predicate calls the proximateColumnCandidates query predicate

which, for a given direction (xd, yd), returns all on-grid columns in the given direction. The

proximateColumn query predicate determines the distance to each of these candidates and returns the

closest one [49].

6.1.3 On-Grid Query Predicate

A column is On-grid (or horizontally aligned) if it is aligned to both an x-gridline and a y-gridline. The

on-grid query is given below. Figure 7 shows different cases of on-grid and off-grid columns for a floor

plan.

declare function artifact:ongrid($column) {
let $isXAligned := artifact:isAlignedToGridlineInterior($column,"x") or

artifact:isAlignedToGridlineExterior($column,"x") $isYAligned :=
artifact:isAlignedToGridlineInterior($column,"y") or
artifact:isAlignedToGridlineExterior($column,"y")

$ongrid := $isXAligned and $isYAligned return $ongrid };

 26

Figure 7 The designation of on-grid and off-grid columns on part of a floor plan

6.2 Deploying 2D Topological Query Predicates for Answering Meaningful Queries

In this section we describe how we employ different query predicates described above for answering

some representative types of spatial queries.

6.2.1 Identifying the Intersection between Building Components and Related Details

We employ Intersects query predicate introduced in Section 6.1.1 to first determine if an intersection

occurs. Where an intersection exists, the Intersection query predicate will return more detailed

information about the intersecting region: its location (i.e., the corner points of the region), dimensions

(i.e., width, length, height), area and volume. A sample output from the ‘component intersection’ query is

provided below. Figure 8 shows the instance of wall to wall intersection graphically in 2D with some of

the relevant details highlighted.

<Intersection>

<Wall gml:id="133315"/>

<Wall gml:id="133152"/>

<location>

<gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.75 50.79 0.00</gml:pos>

</gml:Point>

 <gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.75 49.98 0.00</gml:pos>

 27

 </gml:Point>

 <gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.27 50.79 0.00</gml:pos>

 </gml:Point>

 <gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.27 49.98 0.00</gml:pos>

 </gml:Point>

</location>

<area uom=#sq-ft>0.39</area>

<volume uom=#cu-ft>3.95</volume>

</Intersection>

Figure 8 Example of a wall-to-wall intersection and the details provided by the “intersection query”

6.2.2 Identifying the Penetration of Building Components and Related Details

A penetration is a special case of the intersection query—it is an intersection in which one of the two

intersecting components is a building service component such as a duct. Moreover, additional information

above and beyond what is reported for a standard intersection is needed. While there are other types of

building services such as plumbing or electrical system components, we consider only duct penetrations

as a representative example. A duct penetration on a wall is essentially an intersection where one of the

intersecting components is a duct and the other is a wall. For identifying a duct penetration on a wall, the

Penetration query employs the Intersects query predicate (Section 6.1.1) to first determine if a

penetration occurs. Where a penetration exists, the Penetration query predicate provides additional

detailed information about the penetration: its location (i.e., the corner points of the penetration region in

the xy-plane as well as its location on the wall) and its area and volume. A sample output from the

‘penetration query’ is provided below. Figure 9 shows the instance of the duct penetration on the wall and

(c) 3D view of the intersection
identified in (a) showing its
dimensions (a) A wall to wall intersection between walls 133152 and 133315

(b) Detailed 2D view of the
intersection identified in (a)
showing its location

 28

its location relative to the wall boundaries (or edges). The location of the duct on the wall with respect to

the wall’s four edges is also indicated in the diagram.

<Penetration>

<Wall gml:id="133152"/>

<Duct gml:id="149164"/>

<area uom=#sq-ft>0.39</area>

<volume uom=#cu-ft>3.95</volume>

<location>

<gml:Point srsName="gml:CartesianCS">

<gml:pos>-34.24 42.04</gml:pos>

</gml:Point>

<gml:Point srsName="gml:CartesianCS">

<gml:pos>-34.24 40.54</gml:pos>

</gml:Point>

<gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.27 42.04</gml:pos>

</gml:Point> <gml:Point srsName="gml:CartesianCS">

<gml:pos>-33.27 40.54</gml:pos>

</gml:Point>

</location>

<locationOnWall>

<distanceFromWallTop uom="#ft">2.25

</distanceFromWallTop>

<distanceFromWallBottom uom="#ft">6.25

</distanceFromWallBottom>

<distanceFromWallLeft uom="#ft">8.75

</distanceFromWallLeft>

<distanceFromWallRight uom="#ft">19.75

</distanceFromWallRight>

</locationOnWall>

</Penetration>

 29

Figure 9 Example of duct penetration and its location in relation to the wall boundaries (sides) indicated

6.2.3 Identifying the Spacing between Features

“Spacing” between components, or features, is an important concept that is useful for selecting

appropriate construction methods, and can impact the constructability of a design [44]. Consistency, or

uniformity, of the spacing of components, reduces field errors and costs in the building stage.

We use the spacing between columns as an illustrative example to show how we use the

Proximate query predicate (Section 6.1.2) to identify the spacing between proximate columns. The

Spacing query uses the output of the Proximate query predicate to identify the proximate columns for

each column on each level of a building. The Spacing query then calculates both the clear (or face-to-

face) and centre-to-centre spacing between a column and its proximate columns on a level-by-level basis.

Figure 10 presents the face- to-face spacing for all proximate, on-grid columns, on Level 1 of a building

design plan.

 30

Figure 10 Spacing of proximate, on-grid columns on Level 1

The Spacing query also identifies the minimum or maximum spacing (or distance) between

proximate columns on a level-by-level basis. In the XML excerpt presented below, output from the

Spacing query is provided. The query returns, for each level in the building, the minimum and maximum

face-to-face and centre-to-centre spacing.

<spacings>

<Spacing>

<level>1</level>

<faceToFace>

<minimum uom="#ft">11.48</minimum>

<maximum uom="#ft">18.04</maximum>

</faceToFace>

<centreToCentre>

<minimum uom="#ft">16.40</minimum>

<maximum uom="#ft">22.97</maximum>

</centreToCentre>

</Spacing>

<Spacing>

<level>2</level>

<faceToFace>

 31

<minimum uom="#ft">11.98</minimum>

<maximum uom="#ft">37.73</maximum>

</faceToFace>

<centreToCentre>

<minimum uom="#ft">16.40</minimum>

<maximum uom="#ft">41.67</maximum>

</centreToCentre>

 </Spacing>

</spacings>

6.2.4 Assessing the Feature Alignment

We use the horizontal alignment of columns as an example to illustrate the use of different query

predicates. As described in Section 4.4, the horizontal alignment of columns can be assessed using

different criteria. One of the criteria for defining the horizontal alignment of columns is based on the

location of columns in the x-y plane (i.e., the floor) with respect to the grid lines. Based on the location

data extracted from Revit, the Alignment query first determines if columns in a given design are on- or

off-grid, and consequently, provides additional related information, such as the distance from related grid

lines. For a building design based on a rectangular grid layout, a column is said to be “on-grid” if it

intersects two perpendicular gridlines (i.e., an x-and y-gridline). Figure 11 shows the sample results of on-

grid and off-grid columns on part of a floor plan view. If a column is on-grid, the x- and y-gridlines to

which the on-grid column is aligned, are reported in the query results.

If a column is not on-grid, it is described as “off-grid,” and the closest x- and y-gridlines to it, as

well as the distance from them to the column, are reported. The query accepts as input, both the column

and the axis (i.e., x or y), for which the closest gridline is desired, and reports the corresponding distance

from the off-grid column. The identification of column locations in relation to gridlines, can thus provide

insightful information about the horizontal alignment of columns.

 The alignment query makes use of the On-grid query predicate to determine if columns are on- or

off-grid and identifies additional information. If a column is on-grid, the grid intersection to which it is

aligned is returned. The query predicate alignedToGridIntersection shown below determines x- and y-

gridlines to which an on-grid column is aligned. Figure 11 also shows exterior and interior on-grid

columns that are horizontally aligned.

declare function artifact:alignedToGridIntersection($column)

{

let $alignedToGridIntersection := (

 32

if (artifact:ongrid($column))

then concat(artifact:alignedToGridline($column,"x"),

 "-",artifact:alignedToGridline($column,"y"))

else "null"

)

 return $alignedToGridIntersection

};

Figure 11 On-grid and off-grid columns on part of Level 1

 If a column is not on-grid, it is described as off-grid, and the Alignment query provides additional

related information, such as the closest x- and y-gridlines as well as the distance from them. In the first

step, the closestGridline query predicate takes as input both the column and the axis (i.e., x or y) for

which the closest gridline is desired.

declare function artifact:closestGridline($column,$axis)

{

let $distToGridlines := (

 (: for all gridlines, find distance from column to the gridline :)

 for $gl in doc($gridsXMLFile)/grids/ gridline[gridlineAxis=$axis]

 return

<closestGridline>

 33

 <gridline>{$gl/name/text()}</gridline>

 <distance uom="#ft">

{artifact:distanceToClosestGridline

($column,$gl,$axis)}

 </distance>

</closestGridline>

),

 $minDistance := min(($distToGridlines/dist)),

 $closestGridlines := (for $g in $distToGridlines

where $g/dist = $minDistance

return $g/gridline/text())

 return $closestGridlines

};

 The distanceToClosestGridline query predicate is then used in the ‘closestGridline’ query

predicate to help determine which gridline is closest to the off-grid column. This distance is also reported

for the gridline that is returned by the closestGridline predicate.

declare function artifact:distanceToClosestGridline($column, $gl, $axis)

{

let $distance := round(fn:abs(round(number($column/

centrepoint[@axis=$axis])*10000) div 10000

- round(number($gl/gridlineValue)*10000) div 10000)*100) div 100

return $distance

};

 An example of the output of the ‘alignment query’ for an off-grid column 84202 in Figure 11 is

presented below. This column is at the offset distance of 1.64 ft. from the grid line 6.

<column id="84202">

 <closestXGridline>

 <xGridline>6</xGridline>

 <distance uom="#ft">1.64</distance>

 </closestXGridline>

</column>

 34

6.2.5 Assessing the Design Uniformity of Features

It is important for construction practitioners to have some idea of where the variability of a design exists

and some measure of the degree of this variability. In the initial implementation, we use vertical

alignment of columns as a representative uniformity query. The uniformity query identifies non-uniform

columns, i.e., those columns in the base floor (level 1) whose location changes in the floor(s) above it. In

our initial version, we considered uniformity across floors only for on-grid columns. The

nonUniformColumns query predicate is presented below.

declare function artifact:nonUniformColumns($referenceLevel)

{

let $columns := artifact:onGridColumns($referenceLevel),

$levels := artifact:getBuildingLevels($columnsXMLFile)

for $column in $columns

for $level in $levels

order by $level, $column/id/text()

return

if(empty(index-of(artifact:onGridColumns($level), $column/text())))

then <nonUniformColumn level= "{artifact:getComponentLevel($level)}">

{$column}</nonUniformColumn>

else ()

};

We thus far described how we created and implemented different query predicates for answering

different types of spatial queries, which are practically important to construction. The following section

describes the evaluation studies that we conducted to assess the validity of our research.

7 Evaluation Studies

The evaluation of the research presented in this paper has two components: validating the knowledge

formalized, and evaluating our approach for identifying construction-specific information for the scope of

the features examined. For our evaluation, we accomplished this by completing interviews with

construction experts, and conducting a retrospective analysis along with a descriptive and interpretative

analysis. In this paper, we provide an overview of these evaluation studies but a more detailed description

of the evaluation can be found in [39].

 35

7.1 Detailed Interviews with Construction Experts

We conducted interviews with four construction domain experts to examine the query knowledge

formalized in this research. We interviewed the experts in reference to four building projects: The Wayne

and William White Engineering Design Centre (Figure 1), The Chem-Bio Building (Figure 2), The

Discovery Green Building, and The Fipke Centre for Innovative Research Project. The experts assessed

the degree of relevance (or importance) of different types of spatial and non-spatial design conditions

related to building components in general and specific to walls and columns, and component

intersections, penetrations, and openings. They provided expert opinion on what spatial and non-spatial

information or queries they typically ask or look for in a given design and how or under what conditions

they would impact construction most. The interviewed construction experts included a Project Manager, a

Site Superintendent, a Formwork Manager, and a Chief Estimator. The Project Manager played the role of

the generalist, surveying the design conditions from the perspectives of component layout, component

installation, constructability, cost estimating, methods selection, and construction planning. The

Formwork Manager had the perspective of formwork cost and constructability in the construction and

erection of concrete formwork. The interview with the Site Superintendent reflected the viewpoint of the

general contractor for managing construction operation, trade coordination and all aspects of a project on

site. The Chief Estimator that we interviewed represented the general contractor which provides CM

services to clients in British Columbia and Alberta.

We used sets of close-ended questions to interview the Project Manager and asked him to indicate

the relevance of each design condition. We also sought open-ended explanations and additional

information from the experts. We conducted face-to-face interviews, and directed open-ended questions

to the three other experts, to understand the relevance of different design conditions and gathered detailed

information about the specific design conditions that were present, or of particular concern, in the

referenced projects. We used visual aids, probing questions, example scenarios, and structured sets of

questions to guide the interviews, and to reduce any potential misunderstanding in terms of our

questioning. We recorded all interviews and later analyzed the transcripts of these interviews.

Rather than describe in detail all the results of the interviews that are available in Nepal [39], here

we focus on representative spatial design conditions related to features “column,” “component

intersection” and “penetration” and the experts’ assessment of these features (see Table 1).

 36

 Table 1 Expert opinion on spatial design conditions related to the features “column,” “component intersection,” and

“penetration”.

Spatial Design Conditions
Relevance/Importance

Significant Moderate Little Irrelevant

Off-grid vs. on-grid columns □ ■ □ ○ ○ ●

Spacing of columns in the X or Y-direction □ ■ ○ ●

Maximum spacing of columns □ ○ ■ ●

Minimum spacing of columns ■ □ ○ ●

Centre-to-centre spacing between columns ■ □ ○ ●

Clear spacing between columns ■ □ ■ ○ ●

Horizontal alignment of columns ■ ■ □ ○ ●

Vertical alignment of columns ■ □ ○ ●

Uniform size/shape of columns in a floor and from floor to floor ■ □ ○ ●

Uniformity in the location of columns from floor to floor ■ □ ○ ■ ●

Uniform spacing of columns in a floor □ ■ ○ ● ■

Uniform spacing of columns from floor to floor □ ■ ○ ●

Existence of different types of wall-to-wall intersections □ ■

Existence of different types of wall to column intersections ○ ■ □ ■

Component intersections details:

Depth of component intersection ■ ■

Size of component intersection ■ ■

Area of component intersection ■

Volume of component intersection ■

Existence of wall/slab penetrations (e.g., duct, conduit, pipe) ■■ □ ○ ●

Penetration details:

Size/dimension of penetration ■ □ ○ ●

Depth of penetration ■ ■

Area of penetration ○ □ ■ ●

Volume of penetration □ ■

Perimeter of penetration □ ○ ■ ●

Horizontal location of wall penetrations ○ □ ■ ●

Vertical location of wall penetrations ○ ■ □ ■ ●

Horizontal location of slab penetrations ■ ○ ■ □ ●

Uniform location of penetrations □ ○ ■ ●

Spacing of penetrations □ ■ ●

Uniform spacing of penetrations ■ ■ □ ○ ●

■ Project Manager; □ Formwork Manager; ○ Site Superintendent; ● Chief Estimator

The existence of off-grid columns, as opposed to on-grid columns is moderately relevant to the

project manager, and has, in general, “moderate” or “little” impact on formwork construction according

 37

to the Formwork Manager. However, the existence of off-grid columns was of particular of concern to the

Formwork Manager in the Discovery Place project. He was also concerned about the spacing of façade

columns, as well as the maximum spacing of columns. Due to the variation in column shape, size, and

location, the horizontal and vertical alignment of the columns was a significant issue in the Discovery

Place project. In the EDC project, however, the alignment of columns was not that challenging for the

Site Superintendent since there were only two types of columns with uniformity in their location.

According to the Site Superintendent we interviewed, the spacing of columns is more of an engineering

issue and the designer’s responsibility. However, on some jobs, he said that he tends to question and/or

provide feedback about what will work and what will not, in order to make sure that the design is

structurally safe and that the rebar trades are confident in terms of the spacing. The Formwork Manager

noted that the bigger the span, the easier the job, notwithstanding the fact that one needs to consider the

dead load of the building. Specifically, he said:

“If every grid bay is the same, it is far easier to build. Obviously you want to maximize the

spacing, but that is more (in the domain) of engineering.”

While many column-related queries on spatial design conditions listed in Table 1 are of concern

to practitioners, the consistency or uniformity of size, shape, and location of columns in a floor and from

floor to floor was the most important issue for the Project Manager, Site Superintendent and Formwork

Manager. For example, the formwork manager we interviewed expressed his level of concern as follows:

“I don’t care much whether columns are on grid or off-grid. What is really important is that grids

remain consistent. If you can get the grid line to stay the same or add up to the same value all the

time, it is easier for the trades to build and easier to design scaffolding for suspended slabs,

because it is always the same load. When grids are consistent, you can move fly tables from one

area to the next one, because that table is the same. In other words, if you keep the building

consistent, the costs drop. Same thing applies to floor height. If the columns are changing all the

time, you have to adjust column heights because it can’t be too high; when you go to pour the

concrete, you’ve got to be able see inside the column to get it to the perfect elevation. If you get

the same floor every time, you don’t have to change formwork. If you’re changing formwork, it

costs money. The more consistent the design is, the cheaper it is to build. If you’ve got a building

that goes around a circle or oval, and you want to do the glazing and do the concrete, how long

do you think the guys would take to put the slab edging? Of course, it takes way longer. Change

in column sizes costs money. You’ve got to design the load for every one of these redesign

columns; you got rebar issues. For every floor, the detailer has to change the detailing. For every

different size of column, I have to build different column forms. I have to pay someone to change

the forms or build the form. Contractors also like aesthetically pleasing buildings. If there are

 38

changes in size/shape of columns, to save or reduce concrete volume, and the volume is not that

much, that is not worth it.”

Regarding the experts’ opinion on queries related to the “component intersection,” the experts,

particularly the Formwork Manager, Site Superintendent, and Project Manager were very concerned

about wall-to-wall, wall-to-column and other types of component intersections. They said that these

intersections can impact the layout and detailing (or constructability), labour productivity, and

construction costs. For instance, the formwork manager articulated his concerns as:

“When you have corners, such as T, L, or whatever it is, it does look simple on paper, but it is

really complicated to build. Because I have to pour for a section of it, and (then) come back and

build a section tomorrow. So, I can’t pour all sections at the same time, which means I have lost

a day. Every time you introduce corners, keys, etc., it doesn’t look difficult on paper, but it is

difficult to build and costs more money. I have to keep this thing square and plumb.”

The Project Manager highlighted a few types of component intersections such as dry

wall/masonry wall to column intersection, masonry wall to slab intersection, block wall to beam

intersection that are important from the construction perspective. He further stated that practitioners

would also care the relative dimension, the material and other characteristics or properties (e.g., fire-

rating, load bearing) of the intersecting components. The Site Superintendent on the EDC project was

very concerned about the nature and extent of the intersections of concrete walls with other components,

such as pilaster, column, beam and slab, and column to beam intersection. Interestingly, the estimating

expert did not work at such level of detail to account for component intersections and related intersection

details in his estimate.

Table 1 also presents the experts’ feedback on different design conditions related to the feature

“penetration.” All of the experts agreed that the existence of penetrations is important for construction.

However, they expressed varying perspectives on the importance of different penetration-related queries.

The formwork manager acknowledged such divergence of opinions among the professionals and

remarked:

“Many people in the formwork business think that when there are openings or penetrations on

slab, there should not be contact footage area for formwork in the building, because there is no

concrete. But, actually, sometimes that kind of contact footage can be very difficult, because it

would take an incredible amount of scaffolding to take point loads.”

For the site superintendent in the EDC project, locating the exact size and location of all

penetrations on slabs and walls was a painful exercise as they were not explicit in the drawings. This was

 39

an issue of great concern because he consistently needed to instruct the work crews as to their locations.

Also, prefabricating the rebar cages had to be put on proper places. The site superintendent explained:

“If you don’t know where the penetrations or openings are going, it creates site coordination

problems.”

The relevance or impact of spatial design conditions on construction can also vary depending on

the nature and existence of other design conditions. For instance, the Project Manager revealed that a

vertical location of wall penetrations is aesthetically critical only when it is located below the suspended

ceiling finish. On the other hand, it is functionally critical when interstitial/attic space is “tight.” He

further stated that a horizontal location of slab penetrations is more critical when they are located nearer

to columns/walls.

The detailed interviews with the construction experts provide supporting evidence on what

knowledge about the spatial design conditions is required from a BIM and their degree of relevance from

different construction management perspectives. The next part of the validation provided evidence that

our system for extracting and querying design features is able to provide richer representations of

construction-specific information, both spatial and non-spatial, within a BIM compared to existing tools.

7.2 Retrospective Analysis

The retrospective analysis provided evidence that our approach is able to provide richer representations

and querying of construction-specific information required by construction practitioners. The purpose was

to demonstrate the soundness of our approach in comparison with state-of-the-art tools. In order to

conduct the retrospective analysis, we compiled, for each feature type, a list of spatial and non-spatial

queries that are significant to construction. They were compiled, based on a thorough review of the

literature and our detailed interviews with construction experts for the four projects studied. The compiled

sets of queries represent generally useful information for different construction domains, trades, (e.g.,

construction planning, concrete construction, interior construction, MEP coordination, and site layout)

and functions (e.g., cost estimating, method selection, and constructability). We used this compilation as a

“gold standard” set of queries that were desirable from the construction perspective. Then, we checked to

see whether our implementation and state-of-the-art tools, Solibri Model Checker and Navisworks (in

aggregate), supported these queries. These tools were selected because they provide the most advanced

support for analyzing a BIM from the construction perspective.

In comparing systems against such a gold standard, two metrics are commonly used to determine

the value of the system: precision and recall. In this case, precision measures how many of the queries in

a system are correct, while recall measures what fraction of correct answers from the gold standard are

returned by a given system. Because the different systems are made for very different purposes, we did

 40

not measure precision (e.g., it makes little sense to penalize the results of Navisworks for including all

clashes based on the geometry of the building components because Navisworks has the ability to work

with all the key 3D design file formats, but Navisworks does not have the functionality to leverage

semantically rich BIM data in more meaningful ways). Instead, we concentrated our evaluation using the

measure of recall. In order to provide a more precise and unequivocal evaluation process, we

differentiated the measure of recall into three categories: “full,” “partial,” and “none.” Table 2 shows the

recall results for querying different spatial design conditions identified in the interviews listed in Table 1

and the literature we reviewed. The full analysis results including the descriptive and interpretative

analysis of the results for these spatial and other types of queries are available in Nepal [39]. These results

provide evidence for the flexibility and the effectiveness of our approach for generating actionable and

insightful information to support knowledge-intensive construction tasks.

 41

Table 2 Recall results for querying different spatial queries on BIM

Relevant Design Conditions

State-of-the-Art Tools Our Approach

Full
Support

Partial
Support

No
Support

Full
Support

Partial
Support

No
Support

Maximum and minimum spacing between columns √ √

Clear vs. centre-to-centre spacing of columns √ √

Spacing of façade columns √ √

Horizontal and vertical alignment of columns √ √

Uniformity in column size/shape from floor to floor √ √

Uniformity in column location from floor to floor √ √

Uniformity in the spacing of columns in a floor √ √

Uniformity in the spacing of columns from floor to floor √ √

Off-grid vs. on-grid columns √ √

Uniformity of off-grid columns from floor to floor √ √

Column offset distance √ √

Location of exterior columns from the slab edge √ √

Intersection or connectivity of building components √

 √

T-, L, end-to-end, or overlapping wall intersections √ √

Non-perpendicular intersection of walls √ √

Location of intersection √ √

Depth of intersection √ √

Size of intersection √ √

Existence of wall/slab penetrations √

 √

Horizontal and vertical location of wall penetrations

√ √

Horizontal location of slab penetrations

√

 √

Uniformity in the size and location of wall/slab

penetrations

√

√

Size/dimension, area, perimeter of wall/slab penetrations √ √

Spacing of penetrations

√

 √

Uniformity in spacing of penetrations

√

 √

Table 3 summarizes the aggregated results of the retrospective analysis for querying different

spatial and non-spatial design conditions of different features using the measure of recall. We assigned

one point for each relevant design condition treated for a feature considered in this research study. We

also assigned one point each for the corresponding support provided by state-of-the-art tools and our

approach for querying that design condition. We aggregated the points for each feature type and across

the different level of support for both state-of-the-art tools and our approach, and came up with the values

shown in Table 3. These results suggest that our approach provides more significant support to extract the

kinds of construction-specific information we identified being important to construction than state-of-the

art tools. Specifically, state-of-the-art tools lack considerable support for identifying construction-relevant

 42

design conditions we identified; the only features on which they have greater than 50% recall are

“openings.” In contrast, our approach recalls roughly 80% of “opening” and 75% of “penetration” related

queries. While we still need to provide additional support to query around 35% of construction-specific

design conditions related to “wall,” “column,” and “component intersection” features, we considerably

provide a richer representation and querying of construction-specific information compared to existing

BIM tools.

Table 3 Summary of the recall results for querying different spatial and non-spatial design conditions of features

Feature

Relevant
No. of
Design
Conditions
Treated

State-of-the-Art Tools Our Approach

Full Support Partial Support No Support Full Support Partial Support No Support

Count Percent
(%) Count Percent

(%) Count Percent
(%) Count Percent

(%) Count Percent
(%) Count Percent

(%)

Components
in general 22 4 18 6 27 12 55 4 18 8 36 10 45

Wall 29 8 28 4 14 17 59 15 52 4 14 10 34

Column 20 2 10 0 0 18 90 8 40 5 25 7 35
Component
intersection 22 2 9 4 18 16 73 13 59 1 5 8 36

Opening 15 5 33 4 27 6 40 9 60 3 20 3 20

Penetration 12 2 17 0 0 10 83 8 67 1 8 3 25

8 Conclusions and Future Work

The rapid development of BIM offers many opportunities to support various aspects of design and

construction. While the richness of design information offered by BIM has helped on the delivery of

better quality buildings, the ability to extract construction-specific information out of BIM is critical to

support construction and other downstream processes. Construction practitioners today have an increasing

need for quickly and easily deriving information out of a BIM, delivered in a way that meets their

expectations. In an effort to address these deficiencies, this paper developed mechanisms for querying

construction-specific spatial information from a BIM.
Our approach in particular helps to extract and query spatial information that is normally

implicitly represented in a BIM and that must be manually identified by practitioners. We described the

process of extracting spatial data directly from a Revit model using the Revit API and representing it in

the GML application schema, which essentially provides a common syntax and schema for integrating

heterogeneous BIM data in a common XML format. We created custom spatial XQuery predicates to

support spatial queries over the BIM. The domain knowledge was captured in the ontology of design

features (i.e., feature ontology) and query specifications provide a construction view of a building design

for specifying queries.

 43

The automatic extraction of needed information from a BIM through query mechanisms can help

to quickly identify the required information in a declarative way. The query-based approach can

complement or provide support in decision making process in construction in many ways. It (a) can

quickly identify cost incurring features of a design to support cost estimating; (b) improve the consistency

and accuracy of information extracted from a BIM; (c) identify constructability issues prior to

construction and provide constructability feedback to designers and owners; (d) support decision-making

tasks related to purchasing, methods selection, site layout and management, components installation, and

trade coordination; (e) make BIMs more accessible to construction. These benefits can help to improve

construction efficiency and productivity, particularly for large complex projects. The query-based

approach could be useful to design analysis and facility management operations as well.

Further research is needed to provide adequate support to visualize the extracted features in the

corresponding 2D and 3D design views of a BIM and to formalize the structure and format of query

results, or outputs. More benefits could be realized by directly integrating queries with related

construction management applications, such as cost estimating, construction scheduling, and BIM

analysis tools (e.g., clash detection and design checker). We anticipate that spatial analysis of BIM would

soon become an integral part of BIM tools or specific construction applications that leverage a BIM. The

types of queries described in this research are by no means the complete representation of spatial queries

that practitioners might ask. We believe that the research presented in this paper initiates further dialogue

and provides a basis for its extension to provide additional, more comprehensive support to BIM users.

In the future, we envision adding other 2D topological query predicates and generalizing spatial

query predicates to both convex and 3D polygons to improve expressibility. We also intend to implement

spatial indexes to improve system performance, in particular for creating more automated mappings. The

automatic generation of a GML application schema is another area that we will focus on. The evaluation

of other query languages such as SPARQL, a language for querying RDF ontologies in the domain of

Semantic Web, also deserves attention. Of particular interest to our future work will be on the runtime

performance of our spatial query predicates.

The spatial reasoning about the features of a building is a complicated research effort, particularly

the reasoning about the uniformity of features from floor to floor and analyzing a design for qualitative

topological analysis. The application of spatial clustering could provide support for the spatial analysis of

features, and consequently, provide BIM users with an improved understanding of the spatial distribution

of components and their variation.

 44

References

[1] McGraw-Hill Construction, Building information modeling: Transforming design and construction to
achieve greater industry productivity, SmartMarket Report, McGraw-Hill Construction, NY, 2008.

[2] C.M. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building Information
Modeling for Owners, Managers, Designers, Engineers, and Contractors, Wiley and & Sons, Inc., 2008.

[3] Solibri Model Checker, Inc. (SMC), http://www.solibri.com/, 2010

[4] A. Borrmann, S. Schraufstetter, E. Rank, Implementing metric operators of a spatial query language
for 3D building models: Octree and b-rep approaches, J. Comput. Civ. Eng. 23 (2009) 34-46.

[5] buildingSMART alliance & The Open Geospatial Consortium, Inc., A Request for Technology in
Support of an AECOO Testbed, Reference No. bSa/OGC RFT 08-001, 2008.

[6] J. Haymaker, M. Fischer, J. Kunz, B. Suter, Engineering test cases to motivate the formalization of an
AEC project model as a directed acyclic graph of views and dependencies, ITcon. 9 (2004) 419-441.

[7] P. Katranuschkov, A. Gehre, R.J. Scherer, An ontology framework to access IFC model data, ITcon. 8
(2003) 413-437.

[8] C. Lima, T.E. El-Diraby, J. Stephens, Ontology-based optimization of knowledge management in
econstruction, ITcon. 10 (2005) 305-327.

[9] Y. Rezgui, Ontology-centered knowledge management using information retrieval techniques, J.
Comput. Civ. Eng. 20 (2006) 261-270.

[10] R.J. Scherer, S.-. Schapke, A distributed multi-model-based management information system for
simulation and decision-making on construction projects, Adv. Eng. Software. 25 (2011) 582-599.

[11] T. Nguyen, A.A. Oloufa, Spatial information: Classification and applications in building design,
Comput.-Aided Civ. Inf. Eng. 17 (2002) 246-255.

[12] P. Chen, L. Cui, C. Wan, Q. Yang, S.K. Ting, R.L.K., Tiong, Implementation of IFC-based web
server for collaborative building design between architects and structural engineers, Autom. Constr. 14
(2005) 115-128.

[13] J. Reinhardt, J.H. Garrett Jr., Framework for providing customized data representations for effective
and efficient interaction with mobile computing solutions on construction sites, J. Comput. Civ. Eng. 19
(2005) 109-118.

[14] Borrman, A., van Treeck, C., and Rank, E., Towards a 3D spatial query languages for building
information models, in: Proc. of the Joint Int. Conf. of Computing and Decision Making in Civ. and
Building Eng., ICCCBE-XI, 2006.

[15] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming EXPRESS schemas into
ontologies, Artif. Intell. Eng. Des. Analysis Manuf. 23 (2009) 89-101.

[16] H.-. Kriegel, M. Pfeifle, M. Pötke, M. Renz, T. Seidl, Spatial data management for virtual product
development, Lect. Notes Comput. Sci., Springer-Verlag, NY, 2003, pp. 216-230.

 45

[17] M.K. Zamanian, S.J. Fenves, A referential scheme for modeling and identifying spatial attributes of
entities in constructed facilities, Res. Eng. Des. 6 (1994) 142-168.

[18] E. Clementini, P. Di Felice, A model for representing topological relationships between complex
geometric features in spatial databases, Inf. Sci. 90 (1996) 121-136.

[19] M. Egenhofer, R. Franzosa, Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 5 (1991)
161-174.

[20] E. Clementini, P. Di Felice, A comparision of methods for representing topological relationships, Inf.
Sci. 3 (1995) 149-178.

[21] Open Geospatial Consortium (OGC), OGC® Standards and Specifications,
http://www.opengeospatial.org/standards/, 2010.

[22] U. Isikdag, S. Zlatanova, A SWOT analysis on the implementation of building information models
within the geospatial environment in: A. Krek, M. Rumor, S. Zlatanova, E.M. Fendel (Eds.), Urban and
Regional Data Management, CRC Press, The Netherlands, 2009, pp. 15-30.

[23] B.-. Bjork, Basic structure of a proposed building product model, Comput.-Aided Des. 21 (1989) 71-
78.

[24] G. Augenbroe, An overview of the COMBINE project, in: Proc. of the 1st European Conf. on
Product and Process Modeling in the Building Industry, Dresden, Germany, 1994, pp. 547-554.

[25] R.D. Rush, The Building Systems Integration Handbook, The American Institute of Architects,
Stoneham, MA, 1986.

[26] S. Taneja, B. Akinci, J.H. Garrett, L. Soibelman, B. East, Transforming IFC-based building layout
information into a geometric topology network for indoor navigation assistance. in: Proc. of the 2011
ASCE Int. Workshop on Comput. Civil Eng., Miami, Florida.

[27] C.S. Han, K. Law, J. Kunz, Computer models and methods for a disabled access analysis design
environment, CIFE Technical Report No. 123, Stanford University, CA, 2000.

[28] Y. Adachi, Overview of partial model query language, in: Proc. of the 10th ISPE Int. Conf. on
Concurrent Eng. Res. A. 2003, pp. 549-555.

[29] K. Lou, S. Jayanti, N. Iyer, Y. Kalyanaraman, S. Prabhakar, K. Ramani, A reconfigurable 3D
engineering shape search system part II: Database indexing, retrieval, and clustering, in: Proc. of the
ASME Des. Eng. Tech. Conf., Vol. 1 A, 2003, pp. 169-178.

[30] G. S. Inc., GML Foundation Project: Developing and Managing Application Schemas, TR2003-232-
01, Technical Report, Galdos Systems Inc., 2003.

[31] Open Geospatial Consortium, Geography Markup Language (GML),
http://www.ogcnetwork.net/gml/, 2010.

[32] CityGML, CityGML Exchange and Storage of Virtual 3D City Models, http://www.citygml.org/,
2010.

 46

[33] World Wide Web Consortium (W3C), XQuery 1.0: An XML Query Language,
http://www.w3.org/TR/xquery/, 2007.

[34] R.R. Vatsavai, GML-QL: A Spatial Query Language Specification for GML,
http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/ vatsavai.htm/, 2002.

[35] J.E. Córcoles, P. González, Querying GML: A Pressing Need, in: H.A. Karimi (Ed.), Handbook of
Res. on Geoinformatics, IGI Global, 2009, pp. 11-19.

[36] A. Belussi, O. Boucelma, B. Catania, Y. Lassoued, P. Podestà, Towards Similarity-Based
Topological Query Languages, in: EDBT Workshop, Munich, Germany, 2006, pp. 675-686.

[37] Y. Chen, P. Revesz, CXQuery: A Novel XML Query Language, in: Int. Conf. on Advances in
Infrastructure for Electronic Business, Science, and Medicine on the Internet, 2002.

[38] G. Jihong, F. Zhu, J. Zhou, L. Niu, GQL: Extending Xquery to Query XML Documents, Geo-Spatial
Inform. Science. 9 (2006) 118-126.

[39] M.P. Nepal, Automated extraction and querying of construction-specific design features from a
building information model, PhD Thesis, Dept. of Civil Engineering, The University of British Columbia,
Vancouver, Canada, 2011.

[40] J.A. Galambos, Knowledge structures for common activities, in: J.A. Galambos, R.P. Abelson, J.B.
Black (Eds.), Knowledge Structures, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, pp. 21-47.

[41] A.R. Tabesh, S. Staub-French, Modeling and coordinating building systems in three dimensions: A
case study, Can. J. Civ. Eng. 33 (2006) 1490-1504.

[42] K.A. Bisharat, Construction Graphics: A Practical Guide to Interpreting Working Drawings. John
Wiley & Sons Inc., 2004.

[43] E. Allen, J. Iano, The Architect's Studio Companion: Rules of Thumb for Preliminary Design, 3rd
ed., Wiley, New York, 2002.

[44] M. Fischer, C.B. Tatum, Characteristics of design-relevant constructability knowledge, J. Constr.
Eng. Manage. (1997) 253-260.

[45] A.S. Hanna, J.H. Willenbrock, V.E. Sanvido, Knowledge acquisition and development for formwork
selection system, J. Constr. Eng. Manage. 118 (1992) 179-198.

[46] A.H. Udaipurwala, A.D. Russell, Hierarchical clustering for interpretation of spatial configuration,
in: Proc. of the ASCE Const. Res. Congress, San Diego, CA, 2005, pp. 1137-1147.

[47] S. Staub-French, M.P. Nepal, Reasoning about component similarity in building product models
from the construction perspective, Autom. Constr. 17 (2007) 11-21.

[48] J. Zhang, A. Webster, M. Lawrence, M. Nepal, R. Pottinger, S. Staub-French, M. Tory, Improving
the usability of standard schemas, Inf. Syst. 36 (2011) 209-221.

[49] A. Webster, A Semantic Spatial Interoperability Framework: A case study in the Architecture,

 47

Engineering and Construction (AEC) Domain, Master's Thesis, Dept. of Computer Science, The
University of British Columbia, Vancouver, Canada, 2010.

[50] M. Harada, A Closer look at the Revit Database with the Revit API, Technical Report, Autodesk Inc.
2007.

[51] Autodesk, Revit 2009 API Developer's Guide Version 1.0, 2009.

[52] T. Jeremy, Units, http://thebuildingcoder.typepad.com/blog/2008/09/units.html/, 2008.

[53] C. Kwan, Data management concepts for spatial data projects: A case study of the ARTIFACT
Project, Technical report, The University of British Columbia, 2008.

[54] R. Lake, D.S. Burggraf, M. Trninic, L. Rae, GML, John Wiley and Sons, 2004.

[55] C. Portele, OpenGIS Geography Markup Language (GML) Encoding Standard, Version 3.2.1 OGC
07-036. Technical report, Open Geospatial Consortium Inc., 2007.

[56] T. Tomas Möller, E. Haines, N. Hoffman, Real Time Rendering, A. K. Peters, 2008.

[57] P.J. Schneider, D.H. Eberly, Geometric Tools for Computer Graphics, Morgan Kaufmann
Publishers, 2003.

