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Abstract  
The design and construction community has shown increasing interest in adopting building information 

models (BIMs). The richness of information provided by BIMs has the potential to streamline the design 

and construction processes by enabling enhanced communication, coordination, automation and analysis. 

However, there are many challenges in extracting construction-specific information out of BIMs. In most 

cases, construction practitioners have to manually identify the required information, which is inefficient 

and prone to error, particularly for complex, large-scale projects. This paper describes the process and 

methods we have formalized to partially automate the extraction and querying of construction-specific 

information from a BIM. We describe methods for analyzing a BIM to query for spatial information that 

is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our 

approach integrates ifcXML data and other spatial data to develop a richer model for construction users.  

We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The 

validation results demonstrate that this approach provides a richer representation of construction-specific 

information compared to existing BIM tools. 
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1 Introduction  

In recent years, the design and construction community has increasingly adopted building information 

models (BIMs), also called building product models. BIMs are object-oriented information models that 

contain rich geometric (e.g., dimensions), topological (e.g., connections), and semantic (e.g., material 

properties) information of a building, enabling enhanced communication, coordination, analysis, and 

quality control [1]. BIM results in a faster and more cost-effective project delivery process, and creates 

higher quality buildings that perform at reduced costs [2].  

Although much focus has been given to the designer’s use of BIM, contractors are also using 

BIM to support various construction management (CM) functions. However, there remain many 

challenges in getting construction-specific information out of a BIM, limiting the usability of these 

models for construction and other downstream processes. Consider the following example scenario from 

the Engineering Design Centre (EDC) project studied at the University of British Columbia (UBC) 

campus. 

Scenario 1: Forming trades on the job site need to know in advance, the size, location and type of 

“openings” and “penetrations” on concrete walls, slabs and beams, for forming and shoring. Drywall 

and masonry trades also require similar information on the layout and construction of walls. Mechanical, 

electrical and plumbing (MEP) trades require this information in order to layout, position, and route 

building service components and to ensure that design, construction, and operational requirements are 

met. All of these trades not only need to collaborate with each other, but more importantly, must be aware 

of any changes in structural and architectural designs in order to accurately account for those changes in 

the execution of their work. Today, construction practitioners working for these trades must manually 

analyze and interpret design drawings and related documents to identify these kinds of construction-

specific design conditions. Then they typically mark-up or annotate these conditions in the drawings, as 

shown in Figure 1; they must repeat this same process each time a design changes. 

  
Figure 1 Annotated drawings of the size and location of openings on walls (left) and penetrations on a slab (right) 

by a site superintendent on a local project that we studied 
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 The existence of penetrations and openings are just a few examples of the design conditions that 

are important to construction practitioners. Others noted in the literature and confirmed in our case studies 

include spacing, horizontal and vertical alignment, and design uniformity (or variation). Consider another 

project scenario that we observed in the Chemical and Biological (Chem-Bio) Building project at UBC. 

Scenario 2: The “columns” in the Chem-Bio Building have considerable variation in orientation, size 

and shape and location both within a floor and from floor to floor (Figure 2). Columns located at the 

same grid intersections also have varying size and/or shape from floor to floor. Due to variation in the 

size, shape, location, and orientation of columns in a floor or from floor to floor, the formwork contractor 

for this building would be motivated to: (a) find the unaligned columns in a floor and from floor to floor 

(i.e., check for horizontal and vertical alignment of columns); (b) locate off-grid columns, if any; (c) 

identify the maximum and minimum spacing of columns or bay sizes; and (d) identify the uniformity in 

location and size of columns from floor to floor. The practitioners working for the general contractor and 

subcontractors in the Chem-Bio project manually analyzed and interpreted architectural, structural 

and/or  mechanical drawings and other design documents to identify these kinds of design conditions for 

constructability analysis, cost estimating, MEP coordination, and methods selection.  

5
6

7
6

8
8

6
7

6
5

2
1

1
3

3

1
1

2

11
4

4
4

4

4
4

11

15
16

16
16

16
16

Main Floor

5
6

7
6

8
8

6 7
6

52
1

1
3

3
1

1
215 16

16
16 16 16

11

11

4
4

4
4

4 4

5
6

7
6

8
8

6
7

6
5

2

1

4
4

4
4

4

11

2
1

1
1

1
1

11
4

550 dia
750 dia

300x1200

300x1110

750 dia

400x1200

400x900

400x860

400x1200

300x1500

500 dia

Second Floor

Third Floor

400x1200

920

40
0

400

11
20

920

30
0

300

10
70

300x1110
920

30
0

300

10
70

Same column 
locations can have 
different sizes in 
different floors   

Same column 
locations can have 
same size in floors 2 
and 3 

400x1200

400x1200

400x1200

 
Figure 2 Variation in column size, shape, and location in a floor and from floor to floor in the Chem-Bio Building  
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Current BIM tools provide some support for identifying a few of these kinds of spatial design 

conditions. For example, Autodesk® Navisworks® Manage (hereafter “Navisworks”) is often used on 

BIM projects to support building system coordination to help identify design conditions like the ones 

shown in Figure 1. Navisworks provides sophisticated functionality for detecting conflicts between 

systems and managing the resolution of these conflicts over time, which is very important for design 

coordination. However, Navisworks is not able to differentiate between a conflict and a penetration, and it 

does not provide any information on the location and size of the opening or penetration, which is what the 

practitioner really needs. Solibri Model Checker® (SMC) is another sophisticated BIM analysis tool that 

provides some support for analyzing a BIM from different perspectives, including construction. SMC can 

visualize and analyze a BIM for its integrity, quality, and for compliance with a given set of design 

requirements, which may include code checking, quantity takeoff, and conflict detection [3]. However, 

similarly to Navisworks, SMC is unable to provide the necessary support for practitioners for the spatial 

analysis of a BIM described in the second scenario. To summarize, current BIM analysis tools do not 

provide support for spatial analysis of a BIM to find information that is required by construction 

practitioners but that is currently represented implicitly in a BIM, and that must be derived by analyzing 

the geometry and topology of objects [4-6].  

Recently, researchers have tried to address these challenges by (a) developing a semantic or 

ontological model as a gateway to accessing BIM or Industry Foundation Classes (IFC) data [7-10], (b) 

deploying task specific algorithms or models to derive certain topological relations and information [11-

13] , and (c) providing query facilities, especially spatial queries [14-16]. These approaches provide some 

solutions that meet the needs for their particular purpose. However, each of these approaches will not 

satisfy the unique requirements of practitioners for the problems we are trying to address. Specifically, 

they do not provide sufficient ‘flexibility’ to configure queries by non-expert construction practitioners to 

meet their varied requirements and preferences of different construction management functions (e.g., cost 

estimating, site management, method selection, etc.).  

This research aims to address these practical and technological challenges by developing and 

implementing a novel framework that combines feature extraction with query processing to leverage 

BIMs for a broad range of CM functions. The overall framework involves ontology-based feature 

modeling, automatic feature extraction and spatial querying of a BIM by combining ifcXML and spatial 

XML data. In this paper, we focus more on the spatial analysis and querying of a BIM. Our approach 

combines domain-specific knowledge with a Geographic Markup Language (GML) schema and custom 

XQuery spatial predicates to support domain users in specifying spatial queries on the underlying BIM to 

extract the desired construction information. This paper makes the following contributions: 

• We develop and implement an integrated framework to answer spatial queries on a BIM. 
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• We define different types of construction-specific spatial queries and formalize the domain 

knowledge by providing the structure and language to specify these queries. 

• We create an application to extract spatial data from an underlying BIM data model (i.e., 

(Autodesk Revit). 

• We extend a GML application schema for representing information extracted from a BIM model 

in a common syntax and schema. 

• We develop custom XQuery spatial query predicates to create the mappings from the domain 

concepts to the underlying BIM data and describe the process for querying some representative 

spatial queries. 
 

2 Related Work  

This section describes relevant background research on representing building information, reasoning 

approaches for analyzing a BIM, GML and XQuery-based spatial query languages. 

 

2.1 Building Information 

Building information consists of non-spatial and spatial information. Non-spatial information relates to 

the geometry, material and other characteristics of the building components. Spatial information describes 

various spatial relationships between building components, or between components and spatial elements, 

i.e., the site, building, storey, and space of a building [17]. Much of the research on spatial/topological 

relationships relates to the concepts and technologies developed in the area of Geographic Information 

Systems (GISs). According to Clementini and Di Felice [18], spatial relationships fall into one of the 

following three basic categories: 

• Topological relationships (e.g., adjacent, overlap): these describe whether or not two objects 

intersect, and, in the former case, how they intersect. 

• Orientation relationships (e.g., north-of, south-of): these describe object location with respect to a 

reference.  

• Distance relationships (e.g., very close, close): these describe the distance of an object with 

respect to a reference. 

Topological relations are among the most extensively researched spatial relationships in the field 

of GIS. Egenhofer and Franzosa [19] have formalized nine topological spatial relations, called the “9-

intersection model” (9IM) that occur between polygonal areas in the plane (spatial regions). They are: 

disjoint, touch, equals, inside or contains, covers or is covered by, overlap with disjoint boundary, and 

overlap with intersecting boundary. These relationships are defined in terms of the intersections of the 

boundaries and the interiors of two sets. The 9IM was later extended to the Dimensionally Extended 9-
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Intersection Model (DE+9IM) by [20]. The DE+9IM forms the basis for the formal definitions of 

topological relationships in the Open GIS Consortium Standard [21]. There are, however, many 

hindrances to fully using GIS-based tools and formalisms to spatial reasoning about a BIM, due to 

geometric and semantic differences which exist between BIM and GIS models [22]. 

Spatial relationships play a critical role in building design and construction. Researchers have 

recognized many important spatial relations and/or defined generic conceptual schemas and constructs 

between building components [11,17,23-25]. Such relationships include topological relationships, such as 

adjacency, intersection and containment relationships, orientation or directional relationships, and 

distance relationships between components. For the past decade and a half, IFC has undertaken a global 

effort to develop a model schema that is able to support a semantically-rich representation of information 

pertaining to the life cycle of a building. IFC defines multiple spatial relationships (mainly topological) 

that may occur between the objects or elements of a building. The IFC product model, however, has not 

explicitly defined directional and distance relationships between objects [4]. The expectation is that 

standard schemas such as IFC could be used by BIM tools and software applications to reason about the 

spatial and non-spatial information required by design and construction professionals.   

 

2.2 Reasoning Approaches on Building Information Models 

Pre-defined BIM schemas, such as IFC, provide a standardized structure to construct and interpret a BIM. 

It is, however, up to the applications to structure the needed information on top of BIM and/or provide 

reasoning support to facilitate the extraction of construction-specific information. Some related studies 

use dedicated algorithms such as in Nguyen and Oloufa [11] and the perspective approach [6] to derive 

certain topological or spatial relationships among building components from a 3D solid model. Other 

studies employ IFC-based models or IFC Model Servers to generate application-specific views 

[12,13,26,27]. Researchers have developed ontologies on top of IFC models to add reasoning dimension 

to the IFC model to access IFC data [7]  and support knowledge integration and management [8-10].  

Query-based approaches provide increased generic support to rapidly generate task-specific views 

of a product or BIM model. They act on the predefined model schemas or they support the definition of 

schemas to query a product model database [6]. Some research efforts provide a means to describe query 

information to handle partial model data from the IFC Model Server. Two such efforts are the Partial 

Model Query Language [28] of the Secom IFC Model Server and the Product Model Query Language of 

the EuroStep Model Server. They provide query support for the retrieval of explicitly defined IFC 

properties and spatial relationships. Lou et al. [29] investigate generic CAD query languages that enable 

engineers to query a model for geometric features in the mechanical engineering domain. Kriegel et al. 

[16] introduced spatial database technology to perform spatial queries (e.g., distance queries) and spatially 
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index CAD data of 3D CAD models. Recent research has extended the application of spatial concepts and 

language developed in the GIS community to the architecture, engineering and construction (AEC) sector 

to develop a 3D spatial query language to extract partial models that fulfill certain spatial constraints [4]. 

Beetz et al. [15] have defined application or knowledge-based models for transforming IFC model 

information to ontologies which they use for processing building information through generic query and 

reasoning algorithms. However, existing query-based approaches and languages are not widely used in 

AEC practice today [6], possibly because they lack a simple, generic, formal and expressive framework 

which enables practitioners to explicitly define construction queries. Our research builds on and shares 

many common features with previous research to provide rich, expressive and flexible query support for a 

variety of knowledge-intensive construction tasks.   

Our research and the existing work discussed above share a similar goal, which is to support the 

data access or information extraction from a BIM model. We however do this in a distinctive way. We 

provide a mechanism to schematically integrate spatial and non-spatial BIM data into a single, common 

representation using GML application schema and use XQuery and XQuery spatial predicates to extract 

practical and meaningful construction-relevant information. We leverage and extend 2D topological query 

predicates developed in the GIS community to solve practical problems. We employ an ontology of 

design features and query specifications that capture the knowledge needed by domain practitioners to 

specify semantic-based spatial queries on BIM data. Our research thus builds on the existing work on 

spatial queries for BIMs, such as the work of [4]. We extend this work by including a much broader set of 

semantic information (object attributes and relationships) available in BIM, and by leveraging XQuery as 

a spatial query language to demonstrate the practical applications of query languages. 

 
2.3 Geography Markup Language (GML)  

Geography Markup Language (GML) is an XML grammar defined by the Open Geospatial Consortium 

(OGC) to describe geographical features. It is by no means the first language developed to describe 

spatial data, but it is the first to gain widespread acceptance by the GIS community as demonstrated by its 

approval by the OGC [30]. GML provides a non-proprietary, open-source and standard representation of 

spatial data (up to three dimensions), units of measure, and coordinate reference systems. The GML 

specification also specifies rules for extending the standard to create a domain-specific application 

schema.  

The basic constructs of the GML data model are a feature (i.e., a real world object) and its 

properties (i.e., attributes of a real world object or a relationship between objects). The GML model 

differs from the traditional GIS model in what is modeled as first-class objects. Instead of representing 

geometric information such as points, lines or areas as in the GIS model, objects in the GML model 
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describe meaningful, real-world objects that have some significance to the domain for which they are 

defined. Specific features are not defined in the core GML schemas, but instead in application schemas 

that extend GML. GML can be extended to provide data interoperability for a particular community 

through what are called application schemas. A GML application schema is a vocabulary that represents 

the spatial (and non-spatial) objects that are important to a specific target community. It is usually a 

smaller, more manageable subset of GML that is targeted for a particular set of uses within the domain 

[31]. For example, cityGML is a general-purpose application schema that models built structures and 

landscapes including water bodies, vegetation and elevation. cityGML provides constructs for describing 

buildings but does not support the level of detail needed to support the type of analysis required by AEC 

practitioners [32].  

 
2.4 XQuery-based Spatial Query Languages 

XQuery [33] is the standard language for querying XML. XQuery is a general-purpose XML query 

language. While it provides substantial support for queries involving non-spatial attributes, it provides no 

native support for queries of a spatial nature [34]. It is therefore necessary to extend XQuery with custom 

spatial query predicates to support queries over GML [35]. A handful of XQuery-based spatial query 

languages such as GML-QL, CXQuery, GQuery, and GQL for GML have been proposed in the research 

literature [34,36-38] particularly in the context of GIS.  

We base our work on the core topological relationships specified by the 9-IM and extend it for the 

AEC application domain. However, we do not, in our framework, implement all nine of the topological 

relationships identified by the 9-IM in our first implementation but only those that were necessary for 

creating the more complex spatial query predicates representing the spatial relationships important to 

construction practitioners: Intersects, Touches and Disjoint (Section 6.1). Our approach uses custom 

XQuery predicates to articulate the mappings between integrated BIM data represented in GML and the 

domain knowledge. 

   

3 Research Framework and System Architecture 

Figure 3 graphically illustrates our generic research framework of the system developed for automated 

extraction and querying of design features from a BIM. In the first step (Create Feature-based Model), 

the prototype application, ‘Feature Extractor’ that we created transforms the input IFC-based BIM model 

into a project-specific feature-based model (FBM) that explicitly represents the features that are important 

to a particular construction practitioner or domain. For this step, we formalized a feature ontology to 

generically represent construction-specific design conditions, which is described in detail in [39].  
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In the second step (Query Features), users configure queries that operate on the project-specific 

feature-based model. The system takes the query input from the user and executes the application 

‘Feature Query Analyzer’ that we created to process queries. For this step, we developed query 

specifications to formalize the language and structure of the user-driven queries in relation to a BIM. The 

query specifications define a query vocabulary and attributes to specify different types of spatial and non-

spatial queries. In this paper, we focus on how spatial data that is not available in ifcXML is extracted 

directly from an underlying BIM application (Revit in our case) and how we extend the GML application 

schema to answer spatial queries on features.  
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Figure 3 A generic research framework for extracting and querying a BIM 

 

Figure 4 shows the system architecture of the different components developed for answering spatial 

queries on features over BIM data, i.e., an Autodesk Revit model. Providing spatial query support 

requires three key components: (a) capturing the knowledge required by construction domain practitioners 

in a formal, human-readable and machine-interpretable manner, (b) a mechanism to store both spatial and 

non-spatial data in a common format, (c) and a way to automatically transform or map the BIM 

application’s internal representation of design data to the construction domain practitioners’ view of a 

BIM. Our feature ontology and query specifications represent the first component that captures the 

construction view of a building design, and hence represents the domain model held by construction 

practitioners. We use XML as the common compatible format or syntax to store both spatial data 
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extracted from Revit and non-spatial ifcXML data. The mappings from BIM objects to concepts in the 

domain model are implemented as XQuery spatial query predicates. 

  

 
Figure 4 A system architecture for spatial analysis of a BIM 

 

4 Specification of Construction-specific Spatial Queries 

Construction practitioners require different types of queries, have different ways of expressing queries, 

and different levels of knowledge specifications are needed for describing queries. Our goal with this 

research is to provide a formal and structured way to specify queries on features formalized in the feature 

ontology and represented in the FBM. These queries analyze feature instances and feature attributes 

instantiated in the FBM to identify spatial information that is relevant to construction practitioners. 

 The systematic schematization or organization of knowledge of a domain is essential to represent 

information about the domain and make inferences about it [40]. The knowledge needs to be represented 

and structured to enable users to flexibly define queries and extract the relevant and specific information 

required. The end users should be shielded from the underlying data models of a BIM, query language, or 

database systems [13]. In this research, a feature ontology and query specifications provide knowledge 

structures, or schemas, for extraction and querying of design features from a BIM. They control the 

functions for creating the feature-based model and for querying the features. Query specifications provide 

controlled and structured vocabularies to specify queries. They represent the underlying domain 

knowledge for the formulation and processing of different types of queries by encoding the knowledge 

Domain Specific Knowledge

Query SpecificationsFeature Ontology

Information: GML
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into computer-interpretable query templates which the practitioners can specify during the querying [39]. 

The following sections highlight the types and characteristics of the spatial queries that we formalized and 

implemented and that are relevant to construction practitioners. We also include the domain concepts that 

are relevant to specify those queries.   

 

4.1 Component Intersection and Penetration Queries 

Component intersection and penetration queries identify the interaction between features. Component 

intersection queries identify the intersection between component features. They represent the 

physical/geometric interaction or connectivity between components that may involve conditions, such as 

a face of one component overlapping or attaching the face or edge of another component in a vertical 

plane, a component abutting another component, a component crossing another component, or a 

component supporting or supported by another component for vertical load transfer. Component 

intersections can occur between components of the same type, such as intersections between walls (wall 

to wall intersection) or between different types (e.g., wall to column intersection). Other information 

about the component intersection, such as type of intersecting components (e.g., masonry wall 

intersecting dry wall, dry wall intersecting the round column), relative dimension and characteristics (e.g., 

fire-rating) of intersecting components, is also important to construction practitioners. 

Penetration queries are used to find the instances of penetrations on building components which 

are formed by the building service elements entering or passing through them. Examples include a duct, 

pipe or cable penetrating a wall or slab. A penetration is a special case of intersection or clash (or conflict) 

detection. However, current tools do not differentiate between a conflict, an intersection, or a penetration. 

Moreover, additional information above and beyond what is reported in current conflict detection tools is 

needed. For example, the size and location of the penetration of a building service element on the wall 

(i.e., its distance from each side of the wall, the ceiling and floor) is equally important as minimum 

clearances of building services from walls and ceilings must be met and additional work may be needed 

to prevent moisture penetration or heat exchange [41]. Knowing where these penetrations occur will 

result in a more accurate cost estimate [42].  

4.2 Location Queries 
Location queries identify the location of features relative to some frame of reference, such as the location 

of columns with respect to related grid lines. Some examples of location queries that practitioners ask are:  

• Identify on-grid or off-grid columns;  

• Identify the location of off-grid columns with respect to the proximate grid intersections;  
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• Identify the location of penetrations and openings on walls from wall boundaries (top, bottom, 

right, and left edges), floor level, and from the intersection boundaries, such as wall to wall 

intersection/s or wall to column intersection/s.  

Being able to quickly identify the location of features is critical for construction planning, 

constructability assessment, and facility management [39,43]. For instance, knowing the location of 

all of the penetrations will result in more accurate cost estimates of the work [42]. Through 

consultations with construction practitioners and case studies, we captured the following query 

attributes for characterizing the location queries. Figure 5 illustrates location specific terms or 

parameters: 

1. Location Type: This represents a practitioner’s preference for querying either the ‘horizontal’ or 

‘vertical’ location of features. The location of openings and penetrations on components can be 

characterized as either horizontal or vertical assessed relative to a stated reference. The location 

of columns, for example, is generally assessed horizontally, relative to related grid lines.  

2. Relative Reference:  This attribute allows practitioners to specify the reference for the horizontal 

or vertical location of a feature. For instance, as shown in Figure 5, the horizontal and vertical 

location of duct penetrations on walls (similar terminology applies for openings on components) 

can be specified in a number of ways. The vertical location of a penetration can be defined based 

on: the distance from the top of the host wall, or from the bottom of the host wall, and the 

distance to the floor level. The horizontal location of a penetration can be designated from either 

edge of the host wall. It can also be referenced from the intersection of the host component with 

other components, such as a wall to wall intersection or a wall to column intersection.  

3. Target Location: This attribute allows practitioners to specify the location of interest of the 

selected feature, either as the ‘feature centre’ or ‘feature boundary,’ referred with respect to the 

selected relative reference. For instance, the user defines the ‘target location’ of duct penetration 

as the ‘feature centre’ to specify that the location of all duct penetrations be measured up to the 

centre of each penetration. If specified as the ‘feature boundary,’ the location of duct penetrations 

is measured to the proximate boundary of the penetration from the relative reference. 
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Figure 5 Illustration of the different attributes required to locate penetrations on walls, based on a lab in the Chem-

Bio Building project, UBC 

4.3 Spacing Queries 
Spacing queries identify the distance between (or spacing of) proximate features of the same type or 

different types. A sample spacing query is: “Identify the maximum and minimum clear spacing between 

proximate columns.” Spacing between features, such as column spacing, opening spacing, and so forth, 

can impact construction planning, constructability assessment and formwork method selection [44]. We 

acquired the spacing knowledge that practitioners consider in characterizing the spacing query and 

formalized it to help them specify queries on spacing. Some important query attributes that we formalized 

include the following: 

1. Spacing Direction: This attribute designates the direction of spacing, depending on the type of 

relating and related feature, the spacing will be assessed in the ‘horizontal’ direction (horizontal 

spacing) or ‘vertical’ direction (vertical spacing). For components, such as columns, which are 

normally placed relative to rectangular grid lines, the spacing is assessed in the horizontal 

direction, and can be further evaluated as spacing along the X- or Y-axis. The spacing of 

openings or penetrations could be assessed in the horizontal or vertical direction.  

2. Type of Spacing: This attribute denotes the practitioners’ preference for identifying the spacing 

between features as ‘centre to centre’ or ‘clear’ spacing.  

3. Aggregate Function: This attribute is used to specify the further needed quantification of the 

results from the spacing query, and includes functions such as ‘maximum’, ‘minimum’, 

‘average’, ‘percentage variation’, etc. For instance, a formwork practitioner would generally ask 

for the maximum and minimum spacing of proximate columns in a floor.  
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4.4 Alignment Queries 
Alignment queries are used to identify the orientation and/or placement of the instances of a feature with 

respect to some criteria. The purpose is to identify the unaligned features, if any, that may be present in a 

given design. The proper alignment of features, such as the column alignment in a floor, or from floor to 

floor, is crucial for the constructability of a design and installation of the façade and curtain walls [43,44]. 

A potential alignment query that a practitioner might ask is: “Identify columns that do not align 

horizontally or vertically.” The queries on column alignment seek to answer questions about specific 

aspects of the layout, position, or orientation of columns in a floor (horizontal alignment) or from floor to 

floor (vertical alignment). This requires specific practitioner knowledge about how they might define 

what it means for columns to be aligned.  For instance, each of the following three rules (or criteria) or 

combination thereof, can be used by practitioners to define the horizontal alignment of columns: 

1) Related columns located on the same grid line;  

2) Related columns’ centres are collinear; and  

3) Related columns’ respective faces, or edges, are equidistant from the relevant column reference 

line.  

 According to the first criterion, if the same grid line intersects a set of columns, then the columns 

are considered to be horizontally aligned along the direction of that grid line. The second criterion relates 

to the co-linearity of the columns’ centre. According to this definition, if the centre of the related columns 

are collinear, or lie on the same line, connecting their individual centre, then the columns are considered 

horizontally aligned along the axis of the grid line, to which such columns belong. The third criterion 

stipulates that, if related columns’ respective faces or edges are the same distance from the relevant 

column reference line, then these columns are horizontally aligned along the direction of that line. The 

reference line could be the related grid line.  

 

4.5 Design Uniformity Queries 

Design uniformity queries are used to identify or gain insights about the consistency (or variation) of 

design features on a particular building floor or from floor to floor of a building (see Figure 2). Design 

uniformity is an important factor for practitioners as it can influence the method selection, constructability 

of a structure [44,45], and technical and economic feasibility of using a particular construction method 

[46]. Practitioners normally use non-spatial information such as size and/or dimension attributes (width, 

thickness, diameter, length, depth, height), spatial information (e.g., location, spacing) or both types of 

information to characterize design uniformity queries of features (e.g., the variation in the openings’ size 

and location on walls, change in column size, and location from floor to floor).  
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Design uniformity queries generally fall into two categories: (i) identifying the cluster of similar 

components or features; and (ii) recognizing non-uniform features. The first category identifies or creates 

a grouping of similar features based on simple geometric or nominal attributes, and calculates some 

measure of variation, such as count, percent count, etc. An example query that practitioners might ask is: 

“Show me the variation in wall types and height in a building.”  The process of filtration and grouping of 

components based on feature attributes creates clusters of similar walls, which is very useful information 

to practitioners [39]. Additionally, component similarity can also be evaluated by combining nominal and 

quantitative attributes and by using a simple matching approach [47]. The second category of design 

uniformity involves assessing the uniformity of features by incorporating the spatial information and/or 

combining nominal (e.g., material), geometric (e.g., size, shape) or spatial or topological attributes (e.g., 

location, spacing). A typical query of this type that practitioners might ask is: “Identify columns that have 

a change in size, shape or location from floor to floor.” 

 

5 Spatial Data Extraction and Representation 

Much of the spatial information needed to process spatial queries is not available using IFC or any of the 

other export mechanisms available for Revit [48,49]. Thus, we had to extract that information through the 

Autodesk Revit API, particularly the relative location of building objects. The Revit API is an application 

programming interface that provides a way to programmatically access the Revit’s internal representation 

of BIM data — all BIM building element objects as well as their properties including the spatial data, 

which is hidden within each building object in a building project. This facilitates more sophisticated 

analysis of a building project and, for our purposes, the ability to answer custom spatial queries.  

In order to extract the spatial information needed to answer the spatial queries that are important 

to construction practitioners, we first have to determine what spatial data Revit stores for the building 

objects such as walls, columns, and ducts, and how it is organized within its data model. We also require 

spatial information about the project’s grid in the xy-plane. Moreover, an application to extract the spatial 

data is needed (Section 5.2). 

 

5.1 Spatial Data Representation of Building Objects in Revit  

The objects in a building project, such as columns, walls, ducts and gridlines, are represented as elements 

in Revit. All of the elements in a building project are stored in a single Elements list and are associated 

with a Document object — a Revit project file [50]. Each building object stores its own spatial 

information. The most basic representation of a building object’s location in Revit is either as a point or a 

line, which identifies the ‘centre’ of the building object. If the object’s location is a point as is the case 

with columns, it will have an instance of the Revit LocationPoint class. If the location is a line, as is the 
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case with walls, the object will have an instance of the LocationCurve class.  

A LocationPoint object has a single 3D coordinate in the project’s Cartesian coordinate system 

and a LocationCurve object has two or more 3D coordinates. If the object is not curved, the 

LocationCurve will store two points that represent the endpoints of the centreline that describes the 

object’s location in 3D space; otherwise it will store several points to approximate the line. The 

LocationCurve also contains a Function parameter that describes the object’s trajectory through 3D space 

as a mathematical expression. Because the location of each object — either in the form of a LocationPoint 

or a LocationCurve — is in the same coordinate system this information can be used to determine the 

relative locations of two objects. Therefore, topological relationships between objects can be deduced 

[51]. However, the distances calculated between points in this coordinate system does not necessarily 

represent the actual distance between building object instances in the units specified by the user because 

Revit converts all location information into the internal units it uses [52].  

The Revit API stores two pieces of spatial information about a wall: the wall’s centreline — a 

line that follows the trajectory of the wall (i.e., wall’s location in the xy-plane) — and its height (i.e., 

wall’s location in the z-direction). The centreline of a Wall is represented in the Revit model as a Curve 

object which is a specialization of the LocationCurve object. The Curve object stores an array of 3-

dimensional points which can be accessed using the object’s Tessellate function. The array representing 

the centreline of a straight Wall will contain two points which identify the two endpoints of the Wall’s 

centreline. The array representing a curved wall will contain multiple points — the greater the curvature 

of the wall, the greater the number of points that are required to adequately capture its location [53].  

The Revit API defines the geometry of a column by two spatial properties: a centrepoint and a 

height. The centrepoint represents the location of the centre of the column in the xy-plane: the intersection 

of the midpoint of the column in the x-dimension with the midpoint of the column in the y-dimension. It 

is modeled as a Location-Point object which contains an XYZ 3D coordinate point; the z-coordinate is the 

same as the z-value of the level (or floor) where the Column is located. The height represents the height of 

the column in the z-direction [53].  

Gridlines which are required for spatial queries, such as for determining column’s location, are 

modeled in Revit as instances of Revit’s Grid class. A Gridline’s location is represented in the same 

manner as the centreline of Wall: as an array of two (or more) points that are extracted from the 

LineCurve object using the Tesselate function. It is assumed for this research that Gridlines are straight 

lines. The name of the gridline is a property of the Grid class; gridline’s axis property, gridAxis, is a 

derived value providing information about the axis of the gridline. The gridline’s value, gridlineValue, is 

also derived and is the value of the x-or y-coordinate corresponding to the axis of the gridline.  
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5.2 Spatial Data Extraction Application  

We created an application to extract spatial data for Walls, Columns and Gridlines from Revit’s BIM data 

model using the Revit API.  This application was developed in Microsoft Visual Studio using C#, a 

.NET-compliant language, a requirement for working with the Revit API [51]. The application is 

essentially organized as three different external tools — ColumnLocation, WallLocation, and 

GridLocation — that are available from the Tools menu item in the toolbar in Revit’s interface. Each Tool 

extracts the spatial information discussed in Section 5.1 for the building object it is named after (e.g., the 

WallLocation tool extracts the centreline and height, as well as length for all walls in a building project 

file). This information is output in an XML file. 

  

5.3 Extending GML Schema to Answer Queries 
This section describes how we extended GML to create an application schema to answer queries. 

 

5.3.1 Representing Location  

Several geometric types are provided by GML, including one-, two- and three-dimensional types. In the 

initial version of our application schema, only two-dimensional spatial information is encoded for the 

features specified in the domain specific knowledge. The location of a feature is therefore described in 

terms of points and/or lines.  

GML provides two geometric types to represent a single point: the PointType and the 

PointPropertyType. If the point is encoded as a first-class object, the PointType should be used. 

However, in most cases the location of a feature should be encoded as a property of the feature; in this 

case the PointPropertyType is required. A Column’s location is specified by the centrepoint of the base of 

the Column. We model the centrepoint as a property of the Column; it is represented as a 

PointPropertyType in our application schema. The location of an Intersection and the location of a 

Penetration are also represented using the Point-PropertyType: each of the eight corners of the rectangular 

cuboid (or box) that represents the three-dimensional intersection of a Column and a Wall, a Wall and a 

Wall, or a Duct and a Wall (i.e., a Penetration) is a point. For example, the schema element for the 

centrepoint of a Column has the following structure:  

 
<element name="centreOf" type="gml:PointPropertyType"  minOccurs="1" maxOccurs="1"/> 

  

The minOccurs and maxOccurs attributes are optional. They specify the minimum and 

maximum number of occurrences of an element. Columns must have exactly one centrepoint; 
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therefore, both the minOccurs and maxOccurs attributes in the schema fragment for the centrepoint of 

a Column have a value of 1. 

  The GML CurveType and CurvePropertyType represent a line; the former type is used for an 

object and the latter for a property. In our research, the location of Walls and Ducts are represented using 

the CurvePropertyType. For instance, the schema element for the centreline of a Wall or Duct is provided 

below. As was the case with a Column’s centrepoint, Walls and Ducts must have exactly one centreline 

specifying their location.  

 
<element name="centreLineOf" type="gml:CurvePropertyType"  minOccurs="1" maxOccurs="1"/> 

  

GML’s PointPropertyType and CurvePropertyType specify geometric types for the properties 

of features such as Walls, Columns and Intersections. However, when an application schema is 

instantiated with the information from a particular building model, these types are replaced with specific 

geometry object types. In an instance of a GML application schema, GML’s PointPropertyType is 

replaced with GML’s Point type. The following excerpt is an instance of the centreOf property of a 

Column that is encoded as a subelement of the Point using the GML pos property.  

  
<centreOf> 

<gml:Point srsName="gml:CartesianCS">  

<gml:pos>-33.75 20.79 0.00</gml:pos> 

</gml:Point> 

 </centreOf> 

  
GML’s pos property is a direct position, which is a location in space whose coordinates are speci-

fied relative to some coordinate reference system (CRS) — a system of coordinates that uniquely 

identifies a point in the space defined by that system. The srsName attribute is used to specify the CRS 

that should be used to interpret the coordinates encoded by a pos property [54]. Typically the srsName 

attribute is specified on the geometry object — in this case a Point — containing the pos property and not 

on the pos property itself as is demonstrated in the instance of a centreOf schema element above [54]. The 

CRS in our research is a three-dimensional Cartesian Coordinate system. GML 3.2.1 provides a concrete 

CartesianCS type which is used in an instance of our GML application, as shown in the excerpt above.  

Similarly, GML’s CurvePropertyType can be replaced with several associated GML curve 

object types in an application schema instance including the LineString, Curve, OrientableCurve and 

CompositeCurve types [55]. A LineString is the GML type that represents a straight line. It is encoded as 

a set of coordinates referred to as control points each of which are a direct position. In our research, the 
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location of Walls and Ducts are described using their centreline and are represented using a LineString 

object. An example of an instance of the centreline element follows:  

 

<centreLineOf> 

<gml:LineString srsName="gml:CartesianCS"> 

<gml:posList dimension="3">-33.75 20.79 0.00 -33.75  

50.79 0.00</gml:posList>  

</gml:LineString> 

</centreLineOf>  

 

The control points of a LineString are represented as a single subelement of a LineString using 

the GML posList property, a list of double numbers. The posList property does not delineate individual 

points in the posList. To ensure that the points in the posList are interpreted properly, a dimension 

attribute is provided to specify the number of coordinate entries for each point.  

 

5.3.2 Representing Features and Feature Collections 

Each real-world object identified in the domain knowledge is modeled as a GML feature in our GML 

application schema. A GML feature is defined by creating a global element whose type is derived from 

the GML AbstractFeatureType. A global element is simply a child element of the schema element (i.e., 

<xs:schema>).   

For each feature in the domain knowledge — Wall, Column, Duct, Intersection, etc. — a GML 

feature collection is modeled in the GML application schema. For example, there is a feature collection 

called “walls” that acts as a container for a feature Wall in the domain knowledge. 

  
<element name="walls">  

<complexType>  

<complexContent>  

<extension base="gml:AbstractFeatureType">  

<sequence>  

<element ref="artifact:Wall"  

maxOccurs="unbounded"/>  

</sequence> 

 </extension>  

</complexContent>  

</complexType>  

</element> 
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The walls feature collection is itself a feature — it extends GML’s AbstractFeatureType — and it 

contains GML objects, each of which must be a GML feature. Each feature in the collection is modeled as 

a property (i.e., subelement) of the collection and its type must extend GML’s 

AbstractFeatureMemberType as shown in the following schema definition of a Wall. 

  
<element name="Wall">  

<complexType>  

<complexContent> 

 <extension base="gml:AbstractFeatureMemberType"> ... 

  </extension>  

</complexContent>  

</complexType>  

</element> 

  

5.3.3 Representing Feature Relationships  

In GML, a Feature Relationship is not modeled as a Feature, but instead as a property on a Feature or the 

Features participating in the relationship. This is contrary to the practitioners’ view of a design and the 

corresponding representation provided in the Feature Ontology in which spatial relationships such as 

Penetrations and Intersections are modeled as first-class objects or features. Therefore, to maintain the 

semantic model of a building held by construction practitioners, spatial relationships are modeled as GML 

features in our application. For example, the Intersection spatial relationship is modeled as an element 

instead of as a property of an element or elements: 

  

<element name="Intersection">  

<complexType>  

<complexContent>  

<extension base="gml:AbstractFeatureMemberType">  

<sequence>  

<element ref="artifact:Wall"/>  

<choice minOccurs="1" maxOccurs="1">  

<element ref="artifact:Wall"/>  

<element ref="artifact:Column"/>  

</choice>  

<element name="location"  
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type="artifact:IntersectionLocationType"/>  

<element name="area" type="gml:MeasureType"  

minOccurs="0"/>  

<element name="volume" type="gml:MeasureType"  

minOccurs="0"/> 

 </sequence>  

</extension> 

 </complexContent>  

</complexType> </element>  

 
5.3.4 Units of Measure (UOM)  

It is important to qualify a numerical measurement with units. Failing to do so introduces ambiguity and 

can easily lead to the incorrect interpretation of numerical measurements. The GML schema, units.xsd, 

provides seven base units of measure (UOM) as defined by the International System of Units (SI) [54]. 

When a BIM model uses the Imperial system of measurement such as length measurements as feet, and 

other derived measures, such as square-feet and cubic-feet for area and volume respectively, they must 

explicitly be defined in the GML model. GML provides constructs to support the creation of user-defined 

UOM. While UOMs can be specified within an instance of a GML application schema, they are more 

often specified in a units dictionary to enable reuse and to make their definition explicit. We took this 

latter approach in our project. A units dictionary is simply an XML file that contains a collection of GML 

Definitions for UOM. 

 

6 Developing Query Predicates for Spatial Analysis 

This section describes several of the query predicates we developed to support querying the 

BIM. 

6.1 2D topological Query Predicates 

We implemented the Overlaps, Touches, and Disjoint query predicates that were defined in the 9IM 

model [19]. These predicates are Boolean functions; they take as input two building components. The 

overlaps and touches predicates are used to check whether two building components intersect and are 

collectively termed as the Intersects query predicate. The Disjoint and Intersects predicates are 

converses of each other: two building components are disjoint if they do not intersect. 

 

6.1.1 Intersects and Disjoint Query Predicate   

In the initial phase of our implementation, we focused only on the spatial relationships between walls 

(i.e., Wall-to-Wall intersections) and a Wall and a Column (i.e., Wall-to-Column intersections) with 
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particular focus on non-circular column type. A standard algorithm used to determine if two objects 

intersect, touch or are disjoint is the Separating Axis Theorem (SAT). The SAT states that two 2D objects 

are disjoint (i.e., do not intersect) if there exists some line — the ‘separating line’ — onto which their 

projections are disjoint [56]. In other words, if there is some line that can be placed between the two 

objects, they won’t intersect. The separating line is perpendicular to the ‘separating axis’ of the two 

objects as illustrated in Figure 6. A simplifying assumption that can be made for the SAT theorem is that 

the objects are axis-aligned. In this case, the theorem is known as the Axis-Aligned Rectangle Test [57]. 

As the majority of Walls and Columns in a building are axis-aligned (i.e., their centreline is parallel to the 

x-or y-axis), we make this assumption. 
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Figure 6 Application of the Separating Axis Theorem (SAT) with respect to two walls 

 

Determining if a Wall is aligned to the x-axis (i.e., is horizontal) can be accomplished by testing 

whether the x-value of the points defining a Wall’s centreline are the same (i.e., y varies and x is 

constant); alignment to the y-axis can be determined in the same manner. The query to determine if a 

Wall is aligned to the x-axis is presented below. Determining if a column is axis-aligned can be similarly 

ascertained. 

 
declare function artifact:isWallXAligned($wall) 

{ 

let $x1 := $wall/centreline[@size="2"]/point[@position="1"  

and @axis="x"], 

$x2 := $wall/centreline[@size="2"]/point[@position="2"  

and @axis="x"]  

return if($x1 = $x2) 

then true() 
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else false()  

};  

 

We implemented the Disjoint query predicate first, since the Intersects query predicate is 

defined using the Disjoint predicate. Because we assume that the building components are axis-aligned 

and are rectangular, determining if they are disjoint (or intersect or touch) means that we only need to 

store/compute the maximum and minimum x-and y-values of each of the intersecting 

components’defining points [49] . 

Because the Intersects and Disjoint query predicates represent inverse spatial relationships — two 

building components are disjoint if they do not intersect — the Disjoint query predicate can be used in 

defining the Intersects query predicate as follows: 

  
declare function artifact:intersects($wall1, $wall2) 

{  

let $isWall1Aligned := artifact:isWallXAligned($wall1) or 

artifact:isWallYAligned($wall1),  

$isWall2Aligned := artifact:isWallXAligned($wall2) or 

artifact:isWallYAligned($wall2)  

where $wall1/centreline[@size="2"] and (: wall1 is non-curved :) 

           $wall2/centreline[@size="2"] and 

      $wall1/centreline[@size="2"] and (: wall1 is non-curved :) 

      $wall2/centreline[@size="2"]  

return not(artifact:disjoint($wall1, $wall2)) 

}; 

 

In particular, the Intersects query predicate returns the logical negation of the Disjoint query 

predicate as demonstrated in the return statement of the Intersects predicate: “return not 

(artifact:disjoint($wall1, $wall2)).”  

The Touches query predicate can be implemented by slightly changing the Disjoint query 

predicate. In particular, the greater-than and lesser-than signs in the four test conditions in the return 

statement of the Disjoint predicate can be replaced with equals signs; this change creates a predicate that 

tests if two rectangular axis-aligned building components touch at one of their faces.  

 

6.1.2 Proximate Query Predicate 

The Proximate query predicate is used to answer queries about how objects are spaced (Section 6.2.3), 
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which this paper only considers between columns. We also assume, for the Proximate predicate, that the 

columns are on-grid (see Section 6.1.3) and that they are square, circular or rectangular in shape.  

A target column is proximate to a source column (an input column) if it satisfies two criteria: (1) 

the column is aligned to one of the gridlines that the source column is aligned to and (2) it is the closest 

such column along that gridline in a given direction (i.e., the positive or negative x-or y-direction from the 

input column). A column will have at least two and at most four proximate columns.  

An algorithm called ‘ray tracing’ is employed to identify proximate column candidates. Ray 

tracing is a common technique used in computer graphics to draw a 3D object. The path of a ray of light 

is followed from a source and the interaction of the ray with objects in the space generates the object’s 

image. Because this must be done quickly in order to draw a computer game or a movie, the algorithms 

for detecting ray-object intersections and locating the closest object in a particular direction from the 

source are quite fast. Ray tracing was used to determine the proximate columns for each on-grid column. 

In the context of the Proximate query predicate, the ray represents the gridline extending from the centre 

of a source column in either the north, south, east or west direction. The ray is defined by its origin and 

direction. Its origin is the centrepoint of the source column in the xy-plane, (x0, y0), and its direction is a 

two-dimensional unit vector, (xd, yd). The unit vector in the north direction is represented as (1, 0); a 

value of 1 for xd and 0 for yd indicates that the ray’s direction is in the positive x-direction. A candidate 

proximate column is represented by its centrepoint, (xT, yT) and its radius, rT. 

We represent all columns (circular, square and rectangular) as circles in the xy-plane because it 

simplifies the intersection test. The circle-ray intersection test involves only one comparison — the circle 

is represented as a single equation. A box-ray intersection would involve four comparisons because a box 

would be represented as four line equations and it would be necessary to check for an intersection of the 

ray with each of these lines. Our choice to represent all columns as circles is acceptable because all 

columns are on-grid and we are following a ray along a gridline; therefore, the point at which the 

column’s face and the circle representing the column intersects that gridline will be the same point. 

Given the equation for a ray and the equation for a the circle that represents a column, the ray will 

intersect the ‘target’ column if the quadratic equation formed by substituting the equation for the ray (a 

linear equation) into the equation for the circle representing the column has a solution. The XQuery 

provided below determines if a gridline (represented as a ray) that a source column is aligned to intersects 

a column in direction d, where d is north, south, east or west from the source column; the query is a 

Boolean one and thus outputs either a value of true or false.  

 
declare function artifact:isRayCircleIntersection($x0, $y0, $xT, $yT, $rT, $xd, $yd) 

{  
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let $B := 2 * ( $xd * ($x0-$xT) + $yd * ($y0-$yT)),  

     $C := ($x0-$xT)*($x0-$xT) + ($y0-$yT)*($y0-$yT) -$rT*$rT,  

            $discriminant := $B * $B -4 * $C,  

            $t0 := (-1 * $B -math:sqrt($B * $B -4 * $C)) div 2,  

            $t1 := (-1 * $B + math:sqrt($B * $B -4 * $C)) div 2  

return if ($discriminant > 0 and $t0 > 0 and $t1 > 0)  

    then true()  

                 else false()  

};  

If there is a real solution to the resulting system of equations, an intersection exists. This 

technique can be used to determine the proximate column of an on-grid column along the two gridlines to 

which the column is aligned in each of the four grid directions extending from the on-grid column’s 

centrepoint. The proximateColumn query predicate calls the proximateColumnCandidates query predicate 

which, for a given direction (xd, yd), returns all on-grid columns in the given direction. The 

proximateColumn query predicate determines the distance to each of these candidates and returns the 

closest one [49].  

 
6.1.3 On-Grid Query Predicate 

A column is On-grid (or horizontally aligned) if it is aligned to both an x-gridline and a y-gridline. The 

on-grid query is given below. Figure 7 shows different cases of on-grid and off-grid columns for a floor 

plan.  

declare function artifact:ongrid($column) {  
let $isXAligned := artifact:isAlignedToGridlineInterior($column,"x") or 

artifact:isAlignedToGridlineExterior($column,"x") $isYAligned := 
artifact:isAlignedToGridlineInterior($column,"y") or 
artifact:isAlignedToGridlineExterior($column,"y")  

$ongrid := $isXAligned and $isYAligned return $ongrid };  
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Figure 7 The designation of on-grid and off-grid columns on part of a floor plan 

 
6.2 Deploying 2D Topological Query Predicates for Answering Meaningful Queries 

In this section we describe how we employ different query predicates described above for answering 

some representative types of spatial queries. 

  

6.2.1 Identifying the Intersection between Building Components and Related Details 

We employ Intersects query predicate introduced in Section 6.1.1 to first determine if an intersection 

occurs. Where an intersection exists, the Intersection query predicate will return more detailed 

information about the intersecting region: its location (i.e., the corner points of the region), dimensions 

(i.e., width, length, height), area and volume. A sample output from the ‘component intersection’ query is 

provided below. Figure 8 shows the instance of wall to wall intersection graphically in 2D with some of 

the relevant details highlighted.  

 
<Intersection> 

<Wall gml:id="133315"/> 

<Wall gml:id="133152"/> 

<location> 

<gml:Point srsName="gml:CartesianCS"> 

<gml:pos>-33.75 50.79 0.00</gml:pos> 

</gml:Point> 

  <gml:Point srsName="gml:CartesianCS"> 

<gml:pos>-33.75 49.98 0.00</gml:pos> 
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  </gml:Point> 

  <gml:Point srsName="gml:CartesianCS"> 

<gml:pos>-33.27 50.79 0.00</gml:pos> 

  </gml:Point> 

  <gml:Point srsName="gml:CartesianCS"> 

<gml:pos>-33.27 49.98 0.00</gml:pos> 

  </gml:Point> 

</location> 

<area uom=#sq-ft>0.39</area> 

<volume uom=#cu-ft>3.95</volume> 

</Intersection> 

 

 

 
Figure 8 Example of a wall-to-wall intersection and the details provided by the “intersection query” 

 

6.2.2 Identifying the Penetration of Building Components and Related Details 

A penetration is a special case of the intersection query—it is an intersection in which one of the two 

intersecting components is a building service component such as a duct. Moreover, additional information 

above and beyond what is reported for a standard intersection is needed. While there are other types of 

building services such as plumbing or electrical system components, we consider only duct penetrations 

as a representative example. A duct penetration on a wall is essentially an intersection where one of the 

intersecting components is a duct and the other is a wall. For identifying a duct penetration on a wall, the 

Penetration query employs the Intersects query predicate (Section 6.1.1) to first determine if a 

penetration occurs. Where a penetration exists, the Penetration query predicate provides additional 

detailed information about the penetration: its location (i.e., the corner points of the penetration region in 

the xy-plane as well as its location on the wall) and its area and volume. A sample output from the 

‘penetration query’ is provided below. Figure 9 shows the instance of the duct penetration on the wall and 

(c) 3D view of the intersection 
identified in (a) showing its 
dimensions (a) A wall to wall intersection between walls 133152 and 133315 

(b) Detailed 2D view of the 
intersection identified in (a) 
showing its location  
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its location relative to the wall boundaries (or edges). The location of the duct on the wall with respect to 

the wall’s four edges is also indicated in the diagram.  

 

<Penetration>  

<Wall gml:id="133152"/>  

<Duct gml:id="149164"/>  

<area uom=#sq-ft>0.39</area>  

<volume uom=#cu-ft>3.95</volume>  

<location> 

<gml:Point srsName="gml:CartesianCS">  

<gml:pos>-34.24 42.04</gml:pos> 

</gml:Point> 

<gml:Point srsName="gml:CartesianCS">  

<gml:pos>-34.24 40.54</gml:pos> 

</gml:Point> 

<gml:Point srsName="gml:CartesianCS">  

<gml:pos>-33.27 42.04</gml:pos> 

</gml:Point> <gml:Point srsName="gml:CartesianCS">  

<gml:pos>-33.27 40.54</gml:pos>  

</gml:Point> 

</location> 

<locationOnWall>  

<distanceFromWallTop uom="#ft">2.25 

</distanceFromWallTop> 

<distanceFromWallBottom uom="#ft">6.25 

</distanceFromWallBottom> 

<distanceFromWallLeft uom="#ft">8.75 

</distanceFromWallLeft> 

<distanceFromWallRight uom="#ft">19.75 

</distanceFromWallRight>  

</locationOnWall> 

</Penetration>  
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Figure 9 Example of duct penetration and its location in relation to the wall boundaries (sides) indicated 

 

6.2.3 Identifying the Spacing between Features  

“Spacing” between components, or features, is an important concept that is useful for selecting 

appropriate construction methods, and can impact the constructability of a design [44]. Consistency, or 

uniformity, of the spacing of components, reduces field errors and costs in the building stage. 

We use the spacing between columns as an illustrative example to show how we use the 

Proximate query predicate (Section 6.1.2) to identify the spacing between proximate columns. The 

Spacing query uses the output of the Proximate query predicate to identify the proximate columns for 

each column on each level of a building. The Spacing query then calculates both the clear (or face-to-

face) and centre-to-centre spacing between a column and its proximate columns on a level-by-level basis. 

Figure 10 presents the face- to-face spacing for all proximate, on-grid columns, on Level 1 of a building 

design plan. 
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Figure 10 Spacing of proximate, on-grid columns on Level 1 

 

The Spacing query also identifies the minimum or maximum spacing (or distance) between 

proximate columns on a level-by-level basis. In the XML excerpt presented below, output from the 

Spacing query is provided. The query returns, for each level in the building, the minimum and maximum 

face-to-face and centre-to-centre spacing.  

 
<spacings> 

<Spacing> 

<level>1</level> 

<faceToFace> 

<minimum uom="#ft">11.48</minimum>  

<maximum uom="#ft">18.04</maximum> 

</faceToFace> 

<centreToCentre>  

<minimum uom="#ft">16.40</minimum> 

<maximum uom="#ft">22.97</maximum>  

</centreToCentre> 

</Spacing> 

<Spacing>  

<level>2</level>  

<faceToFace> 



 31 

<minimum uom="#ft">11.98</minimum> 

<maximum uom="#ft">37.73</maximum>  

</faceToFace>  

<centreToCentre> 

<minimum uom="#ft">16.40</minimum> 

<maximum uom="#ft">41.67</maximum>  

</centreToCentre> 

 </Spacing> 

</spacings>  

 

6.2.4 Assessing the Feature Alignment 

We use the horizontal alignment of columns as an example to illustrate the use of different query 

predicates. As described in Section 4.4, the horizontal alignment of columns can be assessed using 

different criteria. One of the criteria for defining the horizontal alignment of columns is based on the 

location of columns in the x-y plane (i.e., the floor) with respect to the grid lines. Based on the location 

data extracted from Revit, the Alignment query first determines if columns in a given design are on- or 

off-grid, and consequently, provides additional related information, such as the distance from related grid 

lines. For a building design based on a rectangular grid layout, a column is said to be “on-grid” if it 

intersects two perpendicular gridlines (i.e., an x-and y-gridline). Figure 11 shows the sample results of on-

grid and off-grid columns on part of a floor plan view. If a column is on-grid, the x- and y-gridlines to 

which the on-grid column is aligned, are reported in the query results.  

If a column is not on-grid, it is described as “off-grid,” and the closest x- and y-gridlines to it, as 

well as the distance from them to the column, are reported. The query accepts as input, both the column 

and the axis (i.e., x or y), for which the closest gridline is desired, and reports the corresponding distance 

from the off-grid column. The identification of column locations in relation to gridlines, can thus provide 

insightful information about the horizontal alignment of columns.   

 The alignment query makes use of the On-grid query predicate to determine if columns are on- or 

off-grid and identifies additional information. If a column is on-grid, the grid intersection to which it is 

aligned is returned. The query predicate alignedToGridIntersection shown below determines x- and y-

gridlines to which an on-grid column is aligned. Figure 11 also shows exterior and interior on-grid 

columns that are horizontally aligned. 

 
declare function artifact:alignedToGridIntersection($column) 

{ 

let $alignedToGridIntersection := ( 



 32 

if (artifact:ongrid($column)) 

then concat(artifact:alignedToGridline($column,"x"), 

  "-",artifact:alignedToGridline($column,"y")) 

else "null" 

 ) 

 return $alignedToGridIntersection 

}; 

 

 
Figure 11 On-grid and off-grid columns on part of Level 1  

 

 If a column is not on-grid, it is described as off-grid, and the Alignment query provides additional 

related information, such as the closest x- and y-gridlines as well as the distance from them. In the first 

step, the closestGridline query predicate takes as input both the column and the axis (i.e., x or y) for 

which the closest gridline is desired. 

 
declare function artifact:closestGridline($column,$axis) 

{ 

let $distToGridlines := ( 

 (: for all gridlines, find distance from column to the gridline :) 

 for $gl in doc($gridsXMLFile)/grids/ gridline[gridlineAxis=$axis] 

 return 

<closestGridline> 
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  <gridline>{$gl/name/text()}</gridline> 

  <distance uom="#ft"> 

{artifact:distanceToClosestGridline 

($column,$gl,$axis)} 

  </distance> 

</closestGridline> 

), 

 $minDistance := min(($distToGridlines/dist)), 

 $closestGridlines := (for $g in $distToGridlines 

where $g/dist = $minDistance 

return $g/gridline/text()) 

 return $closestGridlines 

}; 

 

 The distanceToClosestGridline query predicate is then used in the ‘closestGridline’ query 

predicate to help determine which gridline is closest to the off-grid column. This distance is also reported 

for the gridline that is returned by the closestGridline predicate. 

 
declare function artifact:distanceToClosestGridline($column, $gl, $axis) 

{ 

let $distance := round(fn:abs(round(number($column/ 

centrepoint[@axis=$axis])*10000) div 10000 

- round(number($gl/gridlineValue)*10000) div 10000)*100) div 100 

return $distance 

}; 

 

 An example of the output of the ‘alignment query’ for an off-grid column 84202 in Figure 11 is 

presented below. This column is at the offset distance of 1.64 ft. from the grid line 6.  

 
<column id="84202"> 

 <closestXGridline> 

  <xGridline>6</xGridline> 

  <distance uom="#ft">1.64</distance> 

 </closestXGridline> 

</column> 
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6.2.5 Assessing the Design Uniformity of Features 

It is important for construction practitioners to have some idea of where the variability of a design exists 

and some measure of the degree of this variability. In the initial implementation, we use vertical 

alignment of columns as a representative uniformity query. The uniformity query identifies non-uniform 

columns, i.e., those columns in the base floor (level 1) whose location changes in the floor(s) above it. In 

our initial version, we considered uniformity across floors only for on-grid columns. The 

nonUniformColumns query predicate is presented below. 

 
declare function artifact:nonUniformColumns($referenceLevel) 

{  

let $columns := artifact:onGridColumns($referenceLevel),  

$levels := artifact:getBuildingLevels($columnsXMLFile)  

for $column in $columns  

for $level in $levels  

order by $level, $column/id/text()  

return  

if(empty(index-of(artifact:onGridColumns($level), $column/text())))  

then <nonUniformColumn level= "{artifact:getComponentLevel($level)}">  

{$column}</nonUniformColumn>  

else () 

};  

 

We thus far described how we created and implemented different query predicates for answering 

different types of spatial queries, which are practically important to construction. The following section 

describes the evaluation studies that we conducted to assess the validity of our research. 

 

7 Evaluation Studies 

The evaluation of the research presented in this paper has two components: validating the knowledge 

formalized, and evaluating our approach for identifying construction-specific information for the scope of 

the features examined. For our evaluation, we accomplished this by completing interviews with 

construction experts, and conducting a retrospective analysis along with a descriptive and interpretative 

analysis. In this paper, we provide an overview of these evaluation studies but a more detailed description 

of the evaluation can be found in [39]. 
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7.1 Detailed Interviews with Construction Experts 

We conducted interviews with four construction domain experts to examine the query knowledge 

formalized in this research. We interviewed the experts in reference to four building projects: The Wayne 

and William White Engineering Design Centre (Figure 1), The Chem-Bio Building (Figure 2), The 

Discovery Green Building, and The Fipke Centre for Innovative Research Project. The experts assessed 

the degree of relevance (or importance) of different types of spatial and non-spatial design conditions 

related to building components in general and specific to walls and columns, and component 

intersections, penetrations, and openings. They provided expert opinion on what spatial and non-spatial 

information or queries they typically ask or look for in a given design and how or under what conditions 

they would impact construction most. The interviewed construction experts included a Project Manager, a 

Site Superintendent, a Formwork Manager, and a Chief Estimator. The Project Manager played the role of 

the generalist, surveying the design conditions from the perspectives of component layout, component 

installation, constructability, cost estimating, methods selection, and construction planning. The 

Formwork Manager had the perspective of formwork cost and constructability in the construction and 

erection of concrete formwork. The interview with the Site Superintendent reflected the viewpoint of the 

general contractor for managing construction operation, trade coordination and all aspects of a project on 

site. The Chief Estimator that we interviewed represented the general contractor which provides CM 

services to clients in British Columbia and Alberta.  

We used sets of close-ended questions to interview the Project Manager and asked him to indicate 

the relevance of each design condition. We also sought open-ended explanations and additional 

information from the experts. We conducted face-to-face interviews, and directed open-ended questions 

to the three other experts, to understand the relevance of different design conditions and gathered detailed 

information about the specific design conditions that were present, or of particular concern, in the 

referenced projects. We used visual aids, probing questions, example scenarios, and structured sets of 

questions to guide the interviews, and to reduce any potential misunderstanding in terms of our 

questioning. We recorded all interviews and later analyzed the transcripts of these interviews.  

Rather than describe in detail all the results of the interviews that are available in Nepal [39], here 

we focus on representative spatial design conditions related to features “column,” “component 

intersection” and “penetration” and the experts’ assessment of these features (see Table 1).  
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 Table 1 Expert opinion on spatial design conditions related to the features “column,” “component intersection,” and 

“penetration”. 

Spatial Design Conditions 
Relevance/Importance 

Significant Moderate Little Irrelevant 

Off-grid vs. on-grid columns  □ ■ □ ○ ○ ● 

Spacing of columns in the X or Y-direction  □ ■  ○ ●  

Maximum spacing of columns □ ○ ■ ●  

Minimum spacing of columns  ■ □ ○ ●  

Centre-to-centre spacing between columns  ■ □ ○ ●  

Clear spacing between columns   ■ □ ■ ○ ●  

Horizontal alignment of columns ■ ■ □ ○ ●  

Vertical alignment of columns ■ □ ○  ●  

Uniform size/shape of  columns in a floor and from floor to floor ■ □ ○ ●   

Uniformity in the location of columns from floor to floor ■ □ ○ ■ ●  

Uniform spacing of columns in a floor □ ■ ○ ● ■  

Uniform spacing of columns from floor to floor □ ■ ○ ●  

Existence of different types of wall-to-wall intersections □ ■   

Existence of different types of wall to column intersections ○ ■ □ ■  

Component intersections details:     

Depth of component intersection  ■ ■   

Size of component intersection  ■ ■  

Area of component intersection    ■ 

Volume of component intersection    ■ 

Existence of wall/slab penetrations (e.g., duct, conduit, pipe)  ■■ □ ○ ●   

Penetration details:     

Size/dimension of penetration ■ □ ○ ●   

Depth of penetration  ■ ■  

Area of penetration  ○ □ ■ ●  

Volume of penetration   □ ■ 

Perimeter of penetration  □ ○ ■ ●  

Horizontal location of  wall penetrations   ○ □ ■ ●  

Vertical location of wall penetrations ○ ■ □ ■ ●  

Horizontal location of slab penetrations ■ ○ ■ □ ●  

Uniform location of penetrations □ ○ ■ ●  

Spacing of penetrations   □ ■ ● 

Uniform spacing of penetrations ■ ■ □ ○  ● 

■ Project Manager; □ Formwork Manager; ○ Site Superintendent; ● Chief Estimator 

 

The existence of off-grid columns, as opposed to on-grid columns is moderately relevant to the 

project manager, and has, in general, “moderate” or “little” impact on formwork construction  according 
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to the Formwork Manager. However, the existence of off-grid columns was of particular of concern to the 

Formwork Manager in the Discovery Place project. He was also concerned about the spacing of façade 

columns, as well as the maximum spacing of columns. Due to the variation in column shape, size, and 

location, the horizontal and vertical alignment of the columns was a significant issue in the Discovery 

Place project. In the EDC project, however, the alignment of columns was not that challenging for the 

Site Superintendent since there were only two types of columns with uniformity in their location. 

According to the Site Superintendent we interviewed, the spacing of columns is more of an engineering 

issue and the designer’s responsibility. However, on some jobs, he said that he tends to question and/or 

provide feedback about what will work and what will not, in order to make sure that the design is 

structurally safe and that the rebar trades are confident in terms of the spacing. The Formwork Manager 

noted that the bigger the span, the easier the job, notwithstanding the fact that one needs to consider the 

dead load of the building. Specifically, he said:  

“If every grid bay is the same, it is far easier to build. Obviously you want to maximize the 

spacing, but that is more (in the domain) of engineering.”  

While many column-related queries on spatial design conditions listed in Table 1 are of concern 

to practitioners, the consistency or uniformity of size, shape, and location of columns in a floor and from 

floor to floor was the most important issue for the Project Manager, Site Superintendent and Formwork 

Manager. For example, the formwork manager we interviewed expressed his level of concern as follows:  

“I don’t care much whether columns are on grid or off-grid. What is really important is that grids 

remain consistent. If you can get the grid line to stay the same or add up to the same value all the 

time, it is easier for the trades to build and easier to design scaffolding for suspended slabs, 

because it is always the same load. When grids are consistent, you can move fly tables from one 

area to the next one, because that table is the same. In other words, if you keep the building 

consistent, the costs drop. Same thing applies to floor height. If the columns are changing all the 

time, you have to adjust column heights because it can’t be too high; when you go to pour the 

concrete, you’ve got to be able see inside the column to get it to the perfect elevation. If you get 

the same floor every time, you don’t have to change formwork. If you’re changing formwork, it 

costs money. The more consistent the design is, the cheaper it is to build. If you’ve got a building 

that goes around a circle or oval, and you want to do the glazing and do the concrete, how long 

do you think the guys would take to put the slab edging? Of course, it takes way longer. Change 

in column sizes costs money. You’ve got to design the load for every one of these redesign 

columns; you got rebar issues. For every floor, the detailer has to change the detailing. For every 

different size of column, I have to build different column forms.  I have to pay someone to change 

the forms or build the form. Contractors also like aesthetically pleasing buildings. If there are 
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changes in size/shape of columns, to save or reduce concrete volume, and the volume is not that 

much, that is not worth it.” 

 

Regarding the experts’ opinion on queries related to the “component intersection,” the experts, 

particularly the Formwork Manager, Site Superintendent, and Project Manager were very concerned 

about wall-to-wall, wall-to-column and other types of component intersections. They said that these 

intersections can impact the layout and detailing (or constructability), labour productivity, and 

construction costs. For instance, the formwork manager articulated his concerns as: 

“When you have corners, such as T, L, or whatever it is, it does look simple on paper, but it is 

really complicated to build. Because I have to pour for a section of it, and (then) come back and 

build a section tomorrow. So, I can’t pour all sections at the same time, which means I have lost 

a day. Every time you introduce corners, keys, etc., it doesn’t look difficult on paper, but it is 

difficult to build and costs more money. I have to keep this thing square and plumb.” 

The Project Manager highlighted a few types of component intersections such as dry 

wall/masonry wall to column intersection, masonry wall to slab intersection, block wall to beam 

intersection that are important from the construction perspective. He further stated that practitioners 

would also care the relative dimension, the material and other characteristics or properties (e.g., fire-

rating, load bearing) of the intersecting components. The Site Superintendent on the EDC project was 

very concerned about the nature and extent of the intersections of concrete walls with other components, 

such as pilaster, column, beam and slab, and column to beam intersection. Interestingly, the estimating 

expert did not work at such level of detail to account for component intersections and related intersection 

details in his estimate.  

Table 1 also presents the experts’ feedback on different design conditions related to the feature 

“penetration.” All of the experts agreed that the existence of penetrations is important for construction. 

However, they expressed varying perspectives on the importance of different penetration-related queries. 

The formwork manager acknowledged such divergence of opinions among the professionals and 

remarked: 

“Many people in the formwork business think that when there are openings or penetrations on 

slab, there should not be contact footage area for formwork in the building, because there is no 

concrete. But, actually, sometimes that kind of contact footage can be very difficult, because it 

would take an incredible amount of scaffolding to take point loads.”  

For the site superintendent in the EDC project, locating the exact size and location of all 

penetrations on slabs and walls was a painful exercise as they were not explicit in the drawings. This was 
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an issue of great concern because he consistently needed to instruct the work crews as to their locations. 

Also, prefabricating the rebar cages had to be put on proper places. The site superintendent explained: 

“If you don’t know where the penetrations or openings are going, it creates site coordination 

problems.”  

The relevance or impact of spatial design conditions on construction can also vary depending on 

the nature and existence of other design conditions. For instance, the Project Manager revealed that a 

vertical location of wall penetrations is aesthetically critical only when it is located below the suspended 

ceiling finish. On the other hand, it is functionally critical when interstitial/attic space is “tight.” He 

further stated that a horizontal location of slab penetrations is more critical when they are located nearer 

to columns/walls. 

The detailed interviews with the construction experts provide supporting evidence on what 

knowledge about the spatial design conditions is required from a BIM and their degree of relevance from 

different construction management perspectives. The next part of the validation provided evidence that 

our system for extracting and querying design features is able to provide richer representations of 

construction-specific information, both spatial and non-spatial, within a BIM compared to existing tools. 

 

7.2 Retrospective Analysis 

The retrospective analysis provided evidence that our approach is able to provide richer representations 

and querying of construction-specific information required by construction practitioners. The purpose was 

to demonstrate the soundness of our approach in comparison with state-of-the-art tools. In order to 

conduct the retrospective analysis, we compiled, for each feature type, a list of spatial and non-spatial 

queries that are significant to construction. They were compiled, based on a thorough review of the 

literature and our detailed interviews with construction experts for the four projects studied. The compiled 

sets of queries represent generally useful information for different construction domains, trades, (e.g., 

construction planning, concrete construction, interior construction, MEP coordination, and site layout) 

and functions (e.g., cost estimating, method selection, and constructability). We used this compilation as a 

“gold standard” set of queries that were desirable from the construction perspective. Then, we checked to 

see whether our implementation and state-of-the-art tools, Solibri Model Checker and Navisworks (in 

aggregate), supported these queries. These tools were selected because they provide the most advanced 

support for analyzing a BIM from the construction perspective. 

In comparing systems against such a gold standard, two metrics are commonly used to determine 

the value of the system: precision and recall. In this case, precision measures how many of the queries in 

a system are correct, while recall measures what fraction of correct answers from the gold standard are 

returned by a given system. Because the different systems are made for very different purposes, we did 
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not measure precision (e.g., it makes little sense to penalize the results of Navisworks for including all 

clashes based on the geometry of the building components because Navisworks has the ability to work 

with all the key 3D design file formats, but Navisworks does not have the functionality to leverage 

semantically rich BIM data in more meaningful ways). Instead, we concentrated our evaluation using the 

measure of recall. In order to provide a more precise and unequivocal evaluation process, we 

differentiated the measure of recall into three categories: “full,” “partial,” and “none.” Table 2 shows the 

recall results for querying different spatial design conditions identified in the interviews listed in Table 1 

and the literature we reviewed. The full analysis results including the descriptive and interpretative 

analysis of the results for these spatial and other types of queries are available in Nepal [39]. These results 

provide evidence for the flexibility and the effectiveness of our approach for generating actionable and 

insightful information to support knowledge-intensive construction tasks.  
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Table 2 Recall results for querying different spatial queries on BIM 

Relevant Design Conditions  

State-of-the-Art Tools Our Approach 

Full 
Support 

Partial 
Support 

No 
Support 

Full 
Support 

Partial 
Support 

No 
Support 

Maximum and minimum spacing between columns     √ √     

Clear vs. centre-to-centre spacing of columns     √ √     

Spacing of façade columns     √ √     

Horizontal and vertical alignment of columns      √   √   

Uniformity in column size/shape from floor to floor     √   √   

Uniformity in column location from floor to floor     √   √   

Uniformity in the spacing of columns  in  a floor     √   √   

Uniformity in the spacing of columns from floor to floor     √     √ 

Off-grid vs. on-grid columns     √ √     

Uniformity of off-grid columns from floor to floor     √ √     

Column offset distance     √     √ 

Location of exterior columns from the slab edge     √     √ 

Intersection or connectivity of building components    √ 
 

  √     

T-, L, end-to-end, or overlapping wall intersections      √     √ 

Non-perpendicular intersection of walls     √ √     

Location of intersection     √     √ 

Depth of intersection   √   √     

Size of intersection     √ √     

Existence of wall/slab penetrations √ 
 

  √     

Horizontal and vertical location of wall penetrations   
 

√ √     

Horizontal location of slab penetrations   
 

√ 
 

  √ 

Uniformity in the size and location of wall/slab 

penetrations 
  

 
√ 

 
√   

Size/dimension, area, perimeter of wall/slab penetrations     √ √     

Spacing of penetrations   
 

√ 
 

  √ 

Uniformity in spacing of penetrations   
 

√ 
 

  √ 

 

Table 3 summarizes the aggregated results of the retrospective analysis for querying different 

spatial and non-spatial design conditions of different features using the measure of recall. We assigned 

one point for each relevant design condition treated for a feature considered in this research study. We 

also assigned one point each for the corresponding support provided by state-of-the-art tools and our 

approach for querying that design condition. We aggregated the points for each feature type and across 

the different level of support for both state-of-the-art tools and our approach, and came up with the values 

shown in Table 3. These results suggest that our approach provides more significant support to extract the 

kinds of construction-specific information we identified being important to construction than state-of-the 

art tools. Specifically, state-of-the-art tools lack considerable support for identifying construction-relevant 
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design conditions we identified; the only features on which they have greater than 50% recall are 

“openings.” In contrast, our approach recalls roughly 80% of “opening” and 75% of “penetration” related 

queries. While we still need to provide additional support to query around 35% of construction-specific 

design conditions related to “wall,” “column,” and “component intersection” features, we considerably 

provide a richer representation and querying of construction-specific information compared to existing 

BIM tools. 

  
Table 3 Summary of the recall results for querying different spatial and non-spatial design conditions of features 

Feature 

Relevant 
No. of 
Design 
Conditions 
Treated 

State-of-the-Art Tools Our Approach 

Full Support Partial Support No Support Full Support Partial Support No Support 

Count Percent 
(%) Count Percent 

(%) Count Percent 
(%) Count Percent 

(%) Count Percent 
(%) Count Percent 

(%) 

Components 
in general 22 4 18 6 27 12 55 4 18 8 36 10 45 

Wall 29 8 28 4 14 17 59 15 52 4 14 10 34 

Column 20 2 10 0 0 18 90 8 40 5 25 7 35 
Component 
intersection 22 2 9 4 18 16 73 13 59 1 5 8 36 

Opening 15 5 33 4 27 6 40 9 60 3 20 3 20 

Penetration 12 2 17 0 0 10 83 8 67 1 8 3 25 

 

8 Conclusions and Future Work 

The rapid development of BIM offers many opportunities to support various aspects of design and 

construction. While the richness of design information offered by BIM has helped on the delivery of 

better quality buildings, the ability to extract construction-specific information out of BIM is critical to 

support construction and other downstream processes. Construction practitioners today have an increasing 

need for quickly and easily deriving information out of a BIM, delivered in a way that meets their 

expectations. In an effort to address these deficiencies, this paper developed mechanisms for querying 

construction-specific spatial information from a BIM.  
Our approach in particular helps to extract and query spatial information that is normally 

implicitly represented in a BIM and that must be manually identified by practitioners. We described the 

process of extracting spatial data directly from a Revit model using the Revit API and representing it in 

the GML application schema, which essentially provides a common syntax and schema for integrating 

heterogeneous BIM data in a common XML format. We created custom spatial XQuery predicates to 

support spatial queries over the BIM. The domain knowledge was captured in the ontology of design 

features (i.e., feature ontology) and query specifications provide a construction view of a building design 

for specifying queries.  
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The automatic extraction of needed information from a BIM through query mechanisms can help 

to quickly identify the required information in a declarative way. The query-based approach can 

complement or provide support in decision making process in construction in many ways. It (a) can 

quickly identify cost incurring features of a design to support cost estimating; (b) improve the consistency 

and accuracy of information extracted from a BIM; (c) identify constructability issues prior to 

construction and provide constructability feedback to designers and owners; (d) support decision-making 

tasks related to purchasing, methods selection, site layout and management, components installation, and 

trade coordination; (e) make BIMs more accessible to construction. These benefits can help to improve 

construction efficiency and productivity, particularly for large complex projects. The query-based 

approach could be useful to design analysis and facility management operations as well. 

Further research is needed to provide adequate support to visualize the extracted features in the 

corresponding 2D and 3D design views of a BIM and to formalize the structure and format of query 

results, or outputs. More benefits could be realized by directly integrating queries with related 

construction management applications, such as cost estimating, construction scheduling, and BIM 

analysis tools (e.g., clash detection and design checker). We anticipate that spatial analysis of BIM would 

soon become an integral part of BIM tools or specific construction applications that leverage a BIM. The 

types of queries described in this research are by no means the complete representation of spatial queries 

that practitioners might ask. We believe that the research presented in this paper initiates further dialogue 

and provides a basis for its extension to provide additional, more comprehensive support to BIM users. 

In the future, we envision adding other 2D topological query predicates and generalizing spatial 

query predicates to both convex and 3D polygons to improve expressibility. We also intend to implement 

spatial indexes to improve system performance, in particular for creating more automated mappings. The 

automatic generation of a GML application schema is another area that we will focus on. The evaluation 

of other query languages such as SPARQL, a language for querying RDF ontologies in the domain of 

Semantic Web, also deserves attention. Of particular interest to our future work will be on the runtime 

performance of our spatial query predicates. 

The spatial reasoning about the features of a building is a complicated research effort, particularly 

the reasoning about the uniformity of features from floor to floor and analyzing a design for qualitative 

topological analysis. The application of spatial clustering could provide support for the spatial analysis of 

features, and consequently, provide BIM users with an improved understanding of the spatial distribution 

of components and their variation. 
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