
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Xu, Jingxin, Deman, Simon, Sridharan, Sridha, & Fookes, Clinton B.
(2012) SAIVT-QUT@TRECVid 2012 : interactive surveillance event detec-
tion. In Over, Paul (Ed.) TRECVid 2012 Proceeding, NIST, Gaithersburg,
USA.

This file was downloaded from: http://eprints.qut.edu.au/57884/

c© Copyright 2012 (please consult the authors).

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10916409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Xu,_Jingxin.html
http://eprints.qut.edu.au/view/person/Deman,_Simon.html
http://eprints.qut.edu.au/view/person/Sridharan,_Sridha.html
http://eprints.qut.edu.au/view/person/Fookes,_Clinton.html
http://eprints.qut.edu.au/57884/

SAIVT-QUT@TRECVid 2012: Interactive
Surveillance Event Detection
Jingxin Xu, Simon Denman, Sridha Sridharan, Clinton Fookes

Image and Video Laboratory
Queensland University of Technology

GPO Box 2434, Brisbane 4001, Australia
Emails: {j15.xu, s.denman, s.sridharan, c.fookes}@qut.edu.au

Abstract—

1) Briefly, what approach or combination of approaches did
you test in each of your submitted runs? —- We have
only submitted 1 run to detect the events of ‘PeopleMeet’,
‘PeopleSplitUp’ and ‘Embrace’. In our approach, the long
video sequence is divided into a set of non-overlapping
clips with a small temporal interval. Particle trajectories
are approximated directly from the MPEG motion vector.
The dense particle trajectories are further segmented into
a sparse set of dominant trajectories. A histogram-based
feature descriptor is proposed based on the angles among
the piecewise trajectory-segments. A modified version of
labelled LDA is applied to train a set of topics with a subset
of topics reserved for the event of interest, and remainder
used for the background activities. In the detection process,
the system outputs the likelihood ratio, which can be
viewed as a one-dimensional time series signal. The event
of interest is detected using a watershed-like algorithm.

2) What if any significant differences (in terms of what
measures) did you find among the runs? —- We only
submitted a single run.

3) Based on the results, can you estimate the relative contri-
bution of each component of your system/approach to its
effectiveness? —- We have achieved real time performance
by directly extracting features from compressed domain
and limiting the size of the feature histogram to an
acceptable size. We apply a modified version of labelled
LDA to learn the feature for the event of interest which
helps overcome the problem of the database only being tem-
porally annotated (i.e. no location information). Following
detection, the continuous tiny clips are grouped using a
watershed-like algorithm to detect the event temporally.

4) Overall, what did you learn about runs/approaches and
the research question(s) that motivated them? —- Our
system achieves a level of performance similar to, or slightly
above the state-of-the-art approaches for the detection of
the ‘PeopleMeet’ and ‘PeopleSplitUp’ events. However, the
results for the detection of the ‘Embrace’ event are poor.
This is because the angles between piecewise representative
trajectories fail to capture the features for the ‘Embrace’
event well. The proposed approach is also limited by
the need to have the persons of interest moving within
the sequence, as stationary people do not generate any
trajectory features. However, the proposed feature from the
compressed domain allows our system to run very fast, such
that each iterative search (using pre-computed feature) can
be completed within 1 seconds.

I. INTRODUCTION

In this paper, we propose an approach which attempts to
solve the problem of surveillance event detection, assuming
that we know the definition of the events. To facilitate the
discussion, we first define two concepts. The event of interest
refers to the event that the user requests the system to detect;
and the background activities are any other events in the video
corpus. This is an unsolved problem due to many factors as
listed below:

1) Occlusions and clustering: The surveillance scenes
which are of significant interest at locations such as
airports, railway stations, shopping centers are often
crowded, where occlusions and clustering of people
are frequently encountered. This significantly affects
the feature extraction step, and for instance, trajectories
generated by object tracking algorithms are usually not
robust under such a situation.

2) The requirement for real time detection: The system
should process the video fast enough in both of the
feature extraction and the detection step to facilitate real
time operation.

3) Massive size of the training data set: Suppose there is
an event that lasts for 1 minute in a video with a frame
rate of 25fps, the number of frames for this events is
60× 25 = 1500. If we want to have a training data set
with many positive instances of the event, the video is
likely to be very large in size (i.e. hundreds of thousands
of frames or more). How to handle such a large data set
is a problem frequently encountered in this application.

4) Difficulty in separating the event of interest from back-
ground activities: The events of interest often co-exist
with a set of background activities. Temporal ground-
truth typically very ambiguous, as it does not distinguish
the event of interest from a wide range of co-existing
background activities. However, it is not practical to
annotate the locations of the events in large amounts of
video data. This problem becomes more serious in the
detection of multi-agent interactions, since the location
of these events can often not be constrained to within a
bounding box.

5) Challenges in determining the temporal boundaries of
the events: An event can occur at any arbitrary time

with an arbitrary duration. The temporal segmentation
of events is difficult and ambiguous, and also affected
by other factors such as occlusions.

Fig. 1. Sample Images from the Data set (CAM3) for the events of interest.
Top: Embrace; Middle: PeopleMeet; Bottom: PeopleSplitUp

Our approach attempts to address all issues above using the
TRECVid 2012 SED data set for experiments. Three events
are selected to detect, which are Embrace, PeopleMeet and
PeopleSplitUp. Figure 1 shows an example of each from the
data set. In our system, we use the MPEG motion vector [1]
in the compressed domain to replace optical flow as the raw
input. The long video sequence is cut into short (i.e. a few
seconds) temporal clips. Within a clip, particle trajectories are
approximated using MPEG motion vectors. We segment these
dense particle trajectories into a sparse set of representative
trajectories for the dominant motion flows in the sequence. By
extracting the angle between every pair of trajectories, a bag-
of-words descriptor is built. We limit the size of vocabulary
to ensure computational efficiency.

A modified labelled LDA [2] approach is used to extract the
features for the events of interest from a noisy background in
the training data set. A watershed-like algorithm is proposed
to segment the continuous tiny temporal clips into a large clip
and detect the temporal boundaries of the event. This approach
addresses all of the problems outlined above:

1) the proposed feature does not rely on object tracking
and is robust in crowded scenes with occlusions and
clustering of individuals;

2) using MPEG motion vectors allows the data set to be
processed rapidly with limited storage and achieve real
time performance;

3) the size of the vocabulary is limited, ensuring real time
performance and allowing the model to be trained within
a short time with limited memory;

4) the smallest unit in our application is a short video clip,
which reduces the number of training samples compared
to the alternatives of using a frame or a spatio-temporal
patch as the smallest unit;

5) the feature for the events of interest are learnt using
a modified labelled LDA [2] that is able to handle
the events of interest co-existing with the background
events, and determine whether the video clip contains
the event of interest at a clip level; and

6) the temporal boundaries of events are determined using a
watershed-like algorithm to group the continuous small
uniform clips that contain the events of interest.

The proposed system can not only be used for real time
surveillance event detection, but can also be used as an
efficient search engine which allows the user to search for the
event of interest and output the times when the query event
occurs. For 15 hours video files with preprocessed feature
extraction, a result can always be returned within 1 seconds
in our experiments. Furthermore, we have achieved promising
results when detecting the PeopleMeet and PeopleSplitUp
events. It should be noted that although we are participating
in the interactive event detection task, our system in fact is
more like an application for retrospective event detection. The
human operator is only required to tell the computer what
event to detect, and the detection process is conducted in a
fully automatic manner (i.e. there is no subsequent process
where the human operator filters the returned events to remove
false alarms).

II. FEATURE EXTRACTION FROM THE COMPRESSED
DOMAIN

This section presents the feature extraction process for our
system. In our approach, the MPEG motion vectors are used
as the initial data from which to extract the feature [1], [3].
While optical flow can serve the same purpose as the MPEG
motion vectors, the MPEG motion vector has several practical
advantages.

It is assumed that in a typical real world surveillance system
where a CCTV camera network is installed; each camera
works simply as a sensor (i.e. data is not processed by the
cameras), and data captured by the sensors is transmitted
over a network a set of servers for storage and possible
further processing (i.e. analytics). The data transmitted over
the network is typically encoded in a compressed video format
(i.e. MPEG-4). In such a situation, if an analytics algorithm
running on the server requires optical flow for feature ex-
traction, there is a large computational cost in extracting the
video into an image sequence and computing optical flow.
Directly extracting features from the compressed domain saves
significant computational cost and storage space.

The first step in the proposed framework is dividing the
long entire video sequence into M uniform non-overlapping
video clips. The duration of each clip is set much smaller than
the usual duration of an event, and following classification a
higher level segmentation is performed on these short video
clips to group the video clips with the same event of interest.

The TRECVid data set contains video files encoded into
MPEG-2 (main profile) format, with the size of GOP the
(Group of Pictures) set to 12 frames. A GOP is a fixed length
sequence of ordered frames. In the TRECVid, the order is

IBBPBBPBB, where the I , P and B indicate I-frames,
P-frames and B-frames respectively. Rather than use a single
GOP, it is more suitable to set the video clip size to 12×N
frames where N is an integer 1 In our experiments, N is set fo
4, and thus the clip size is 48 frames, less than 2 seconds as
the video files have a 25fps frame rate. The motion vector
referred to in this paper is defined as the forward motion
vectors if the current frame is a P-frame or a B-frame, and
the inverse motion vector of the backward motion vector of
the preceding B-frame if the current frame is an I-frame.2 In
MPEG-2, the spatial unit of the motion vectors is called a
macro-block, which is a 16× 16 grid. The pixels in the same
macro-block are assumed to be undergoing the same motion.
There are also some macro-blocks (intra-blocks) which do not
have motion vectors and we assume the velocity is 0 at these
locations.

Given a video clip, particles are initialised at the centres
of the macro-blocks. Then the particles are propagated along
the pixel’s motion. This process results in a set of particle
trajectories. There are often a lot of noisy trajectories caused
by illumination variations and artifacts in the video files,
which are removed by thresholding according to the number of
stationary points within the trajectory. 3 If more than 25 of the
total 48 points are stationary, the trajectory is removed as the
motion is considered to be caused by noise.4 We then remove
all stationary points in the remaining trajectories, resulting in
the minimum length of a trajectory being 48−25 = 23 points.

The process stated above results in a set of dense tra-
jectories. A clustering algorithm is designed to segment the
trajectories into a set of representative trajectories. We first
normalize the trajectories to a uniform length, N , and selected
key points are sampled uniformly.5 Then, every trajectory is
represented as N key points.

Let a trajectory be represented as L =
{(x0, y0), (x1, y1), · · · , (xn, yn)}. Now the trajectories
are stored in a finite order set, A. Each trajectory is
represented as a0, a1, a2, . . . , aN . The data structure for this
set is a linked list. The first trajectory, a0, is selected and
then removed from A. The first representative trajectory, c0,
is set to a0. We then select the next trajectory from A, which
should be a1. The Euclidean distance between c0 and a1,
which is denoted as d(c0, a1), is computed. If d(c0, a1) < σ,
where σ is a threshold; a1 is said to be active and c0 is set
to c0 = c0 + a1. Then, we remove a1 from A, and select the
next trajectory from A. Let ak be the kth active element from
A, we then replace c0 with c0 = (m × c0 + ak)/(m + 1).
This process iterates through all elements from A, and the

1Note that 12 is selected as this is the length of the GOP.
2Due to the MPEG-2 standard, an I-frame doesn’t have motion vectors and

the frame before an I frame is guaranteed to be a B-frame.
3In a trajectory L = {(x0, y0), (x1, y1), · · · , (xn, yn)}, the point

(xk, yk) is defined as a stationary point if and only if xk = xk−1 and
yk = yk − 1, where k ≥ 1.

4The total number of points in a trajectory is 48 indicated by the clip size.
5The minimum length of a trajectory is 23, thus the N should not be larger

than 23. In our implementation, N = 5.

Fig. 2. Visualisation of trajectories generated using MPEG motion vectors.
Top: the dense particle trajectories; Bottom: the sparse representative trajec-
tories

resultant c0 is the first representative trajectory. If A is not
empty (i.e. (A 6= ∅)), this procedure is repeated to compute
the next representative trajectory. Algorithm 1 describes this
process, and Figure 2 shows the visualised results of the
dense particle trajectories and the representative trajectories
after the clustering algorithm.

Algorithm 1 Trajectory clustering to find a set of representa-
tive trajectories
k = 0
A is a set stored in a linked list;
A(i)is the ith element from A;
size(A) is the size of A;
while (A 6= ∅)
{

ck = A(0);
m = 1;
for i = 0 to size(A)
{
ai = A(i);
if d(ck, ai) < σ

ck = (m× ck + ai)/(m− 1);
end if
remove ai from linked list A

}
k = k + 1;

}

Following trajectory clustering, a bag-of-words descriptor
is used to extract features for each video clip. Firstly, each
video clip is further divided into K uniform non-overlapping
sub-clips (in our implementation K = 4), which divides each
representative trajectory into K segments. For this reason,
K < N . As a sub-clip is in a very short duration, the flow
segments in a sub-video clip can be viewed as straight lines,
and if K = N − 1, this will be the case. The angles of every
two flow segments in a sub clip are computed, and quantised
into 36 bins, together with the distance between the mid-points
of every two flow segments. A weighted histogram of angles
is built for a sub clip.

Suppose we have two flow segments with an angle of θ
between them, and the distance between the mid- points is d.
Let h be the weighted histogram we are computing. We first
compute the index, i, of θ in h, as i = xθ/(2π)×36y (we
use the lower bounding integer as the index), and then update
the histogram with h[i] = h[i] + e−

d2

D , where D is a constant.
The histogram will be converted into integer type by using the
lower bound. We concatenate the histogram from each sub clip
into a single long histogram, preserving the temporal order of
the original clip. The histogram is the final extracted feature.

The suitability of this feature descriptor is addressed as
below:

1) If two trajectories are too far away in space, their
influence is minimal since the weighting decreases with
the distance.

2) If two trajectories are moving approximately in a similar
direction, their presence will be recorded in the bins
close to 0o.

3) If the angles are much larger than 0o, it may be indica-
tive that either meeting or splitting is happening.

4) When the ‘PeopleMeet’ event happens, the distances
between the trajectories become smaller and smaller in
temporal order, and thus the weight of the observation
in the histogram increases; when the ‘PeopleSplitUp’
event happens, the distances become larger and larger
in temporal order, and the weight of the observation
decreases. Since we concatenate the histograms in each
sub clip into a single histogram in temporal order, the
descriptor can distinguish between ‘PeopleMeet’ and
‘PeopleSplitUp’.

Weights used in computing the weighted histogram are
determined using a Gaussian smoothing function. After com-
puting the raw Euclidean distance, a normalization process
is performed. For an image with size a × b, the maximum
length is

√
a2 + b2. The raw distance is divided by this factor

to normalise distances. We set the variance in the Gaussian
function to 0.025 in our experiments.

In order to remove artifacts within the data set, possibly
introduced through either network transmission errors or video
encoding, we use FFMPEG to re-encode the video and use
the re-encoded video files for our experiments. Any remaining
artifacts or portions of the videos containing errors are ignored
by our algorithm.

III. LEARNING FEATURES FOR THE EVENTS OF INTEREST
USING LABELLED LDA

The temporal annotation of the TRECVid development data
set is publicly available. However, the events of interest co-
exist together with other activities and the temporal annotation
does not distinguish between the events of interest and the
background activities (i.e. the annotation does not contain any
location information). In this section show we outline how
using labelled LDA [2] to learn features for the events of
interest can help separate them from the background activities.

Labelled LDA [2] was originally proposed for text pro-
cessing. This model extends the original Latent Dirichlet
Allocation [4] to incorporate labels for each document, and
trains a topic for each label. In our application, we simplify
the video into a binary case (See Figure 3). Λ is the label,
which can be 0 or 1. Λ ≡ 0 indicates that the video clip
does not contain the event of interest and Λ ≡ 1 indicates
that the video clip does contain the event of interest. The K
topics are separated into two sets: the B background topics
and the (K −B) topics for the events of interest. If the video
clip contains the event of interest, all topics are activated;
otherwise, only the B background topics are activated.

Fig. 3. Labebed LDA [2]

In contrast to the original LDA algorithm, the Markov
Chain Monte Carlo (MCMC) algorithm is used for Bayesian
inference [5]. In this case, a topic is no longer a multinomial
distribution, but a Dirichlet distribution which is driven by the
Dirichlet parameter η. This allows us to simply integrate out θ
and β and only sample z. Please note that, in our implemen-
tation, the hyper parameters α and η are set manually, and β
is the parameter we learn. In the MCMC inference, we first
perform a random initialisation. Each topic is viewed as a
hidden state in a Markov model. A simple regular Markov
model is constructed and sequence of transition states is
generated from the transition probability matrix in the Markov
Model. Given the observations (words), we sample the topics
using the approach in [5][2]:

P (zi = j|z−i, w) ∝
nwi
−i,j + η

n−i,j +Wη

ndi
−i,j + α

ndi
−i. + Tα

, (1)

where nwj is the number of times the word, w, has been
assigned to the topic, j, and ndj is the number of times a word
appears in document d. Different from [5][2], T is the number
of active topics in a document. For the video clips which do not
contain the event of interest, T = K −B, otherwise T = K.

In the detection process, we use the learned β to compute
the likelihood ratio,

P (w,Λ = 1)

P (w,Λ = 0)
=

∏
(
∑
P (Λ = 1)× P (z|Λ = 1)× P (w|z))∏

(
∑
P (Λ = 0)× P (z|Λ = 0)× P (w|z))

,

(2)
where P (w|z) can be obtained directly from β. P (z|Λ) is
easily computed by marginalising β. P (Λ) is computed by
counting the number of documents with different labels in the
training data set. Then, we can output the likelihood ratio as
the score for every video clip. In our experiments, we set the
number of topics to 10, with 3 topics for the event of interest.

The usage of labelled LDA for video event detection differs
from its’ application to text processing [2] in the following
ways:

1) In [2], the number of labels can be larger than 2 and
each label maps to one topic. In our application, it is a
binary classification problem. We only have two labels,
and a set of topics. One label maps to all of the K topics,
and the other label maps to a subset of these K topics.

2) In [2], it is stated that it was computationally intractable
to compute the posterior probability (the probability of
a label under the condition of a known bag of words).
However, in our application, since we only have two
labels, it is computationally tractable to compute the
likelihood (joint probability). As a result, we use the
likelihood ratio as the score, which is different from the
method used in [2].

Recently, [6] proposed a weakly supervised joint topic model
to solve the problems of background events and events of
interest co-occurring, and some interesting results on traffic
surveillance have been demonstrated. This approach differs
from our proposed system in that [6] learns a distinctive hyper
parameter (the Dirichlet parameter, α) for the event of interest.
As a result, both the event of interest and the background
activity share the same set of topics, and the event of interest
is viewed as a specified distribution of topics. However, a
Dirichlet parameter can generate varies Dirichlet distributions,
and it only determines the probability of what the Dirichlet
distribution (i.e. the topic distribution) looks like. Thus the
event of interest represented in this way is more ambiguous
compared to our approach. However, [6] addresses the problem
of a limited number of positive training samples. As the set of
topics is shared, only one parameter will need to be learnt
for the event of interest. The selection of which of these
two similar approaches to choose should be governed by the
number of positive samples in the training data set. Due to the
large number of positive examples in the TRECVid data set,
the approach in [6] is not suitable for the TRECVid data set.

IV. TEMPORAL EVENT DETECTION

The sequence of likelihood ratios is viewed as a one
dimensional time series signal. To detect the event of interest
and decide the temporal boundaries, we need to detect a signal
in this time series data stream. The larger the likelihood ratio
is, more likely that the short video clip contains the event of
interest.

We first detect the local maxima which are above a thresh-
old, γ. The number of local maxima is the number of events,
and these local maxima are the final likelihood scores for
the event. To determine the boundary of the events, we set
a lower threshold and use a watershed-like algorithm, where
the active local maxima are the seeds and we flood the are
surrounding the maxima to reach the lower threshold (See
Figure 4). In order to reduce the computational time in the
detection step, we simplify the detection of boundaries for
two merged detected events as follows: the flooding process
stop when the boundary score is higher than γ. 6

Fig. 4. Temporal Event Detection - Locating the temporal boundaries of the
events.

In this way, we can perform a temporal event detection
and output the scores and times (start and end points) of the
event. It should be noted that, we do not explicitly attempt to
detect the beginning and end of an event, and this approach
is intended to avoid these situations:

1) the system detects a single event as multiple disjoint
events; and

2) the system detects merges multiple events into only a
single detected event.

Finally, the detected video segments are sorted by their
scores in decreasing order. The system returns a list of ranked
video segments (the filename and time spans) and their scores
as the output. 7

V. EXPERIMENTAL EVALUATION

All experiments are conducted on a single core of a 2.66Ghz
Intel Xeon processor (i.e. we do not use multiple threads).
Our proposed approach is implemented using in C++, making
use of the VXL and ffmpeg libraries. All video files in the
development data set are used, however the video files are
separated into 5 subsets for the five different camera views
and a model is trained for each camera.

6The traditional watershed algorithm finds the local minimum and floods
from the bottom to an upper threshold. Our algorithm is an inverse procedure
since it is seeded by the local maxima. Meanwhile, we incorporate some
simplifications to handle merged segments. This is why we call it watershed-
like, as it is similar to and motivated by the watershed algorithm, but with
significant differences.

7The distinctive large and small values are flattened into the range [0.08, 2],
and then normalised into the range [0, 1].

The computational cost of feature extraction depends on the
density of the crowd, as crowded scenes will usually result in
more particle trajectories and more representative trajectories.
To test the speed of the feature extraction, we randomly select
10 video files from the training data set. Each video file
lasts for approximately 2 hours. For all of the files, the CPU
time required for feature extraction is less than 1 hour, and
the maximum time from these 10 video files is 45:04. This
demonstrates that our system can perform extract features in
real time. Once the features have been extracted, the elapsed
time for each iterative search is within a 1 second (from the
time that the user tells the system what event to search for,
to the time that the system outputs the ranked list of video
segments of interest).

We conduct ten search trials for each event to demonstrate
the search speed. For the ‘PeopleMeet’ event, the elapsed time
ranges from 0.29s to 0.3s; for the ‘PeopleSplitUp’ event, this
search time required is between 0.3s and 0.32s; and for the
‘Embrace’ event, this search time ranges from 0.28s to 0.35s.
This indicates that our system can be used as either a real time
search engine, or a real time, alarm generating surveillance
system. Figure 5 shows a demonstration of a query in our
software system. 8

Figure 6 shows the DET curve for our proposed system.
Our system performs better for the ‘PeopleMeet’ and ‘Peo-
pleSplitUp’ events, than for the ‘Embrace’ event. This is
because our feature descriptor is built by using the angles of
every particle trajectory, which is naturally a better fit for the
‘PeopleMeet’ and ‘PeopleSplitUp’ events. The performance
gap between the ‘PeopleMeet’ and ‘PeopleSplitUp’ events can
be attributed to the parameters set for the system, in particular
the number of topics. The frequency of the ‘PeopleMeet’ event
is 29.46 ipH (instances per hour), while the frequency of
‘PeopleSplitUp’ is 12.27 ipH. The number of topics for the
event of interest should be higher for the ‘PeopleMeet’ event
to reflect the fact that the event is more common, and thus may
occur with greater variation. However, for all events the same
parameters (i.e. number of topics are used. If the parameters
for the detection of ‘PeopleSplitUp’ is appropriate for the data
set, then the parameters for ‘PeopleMeet’ is are likely to result
in under fitting occurring.

The system performance is evaluated by the Normalized
Detection Cost Rate (NDCR), where a lower NDCR indicates
better performance. The actual NDCR is the NDCR at the
operating point used for the submitted the results, and the min
NDCR is the NDCR at the selected operation point that max-
imises the performance, found by searching the DET curve.
Compared to the results in the preceding (2011) TRECVid
evaluation [7], our system has a lower actual NDCR (0.8898)
and a lower min NDCR (0.8482) for the ‘PeopleSplitUp’ event
that the first place time from 2011 (Team TokyoTech-Canon
[8] 9, actual NDRC = 0.9099, min NDRC = 0.9066). The
performance of the detection of the ‘PeopleMeet’ event falls

8To facilitate the illustration, the threshold is set lower than the one used in
the experiments for our submission so that there are fewer segments detected.

91st place means the lowest Actual NDCR

within the middle of the field in the 2011 evaluation, where
the leading system was proposed by Team PKUNEC [9].

Both of the approaches proposed by [8] and [9] are based
around a person detection and tracking framework. Then
human’s trajectories are used as the feature for a classifier.
Compared to our feature, [8] and [9] will have errors when
the detection or tracking algorithm fails. Meanwhile, they
haven’t addressed the issue of filtering out the background
activities that co-exist with the event of interest. However,
compared to [8] and [9], the feature in our approach will
fail in situations where only one of the two persons involved
in the activity is moving (a trajectory will not be detected
for the stationary person). For instance, it is possible for one
person to be standing in the scene waiting for another person to
meet him/her. In such a situation, there will be no converging
trajectories for this event.

Table I shows the results compared with others from
TRECVid SED 2012 [10]. We compare our DCRs for the
three events with the average DCRs over all teams. Though we
participated in Interactive SED, our system in fact matches the
requirements of Retrospective SED. Thus in Table I, both the
average DCRs for Interactive SED and Retrospective SED are
shown. The performance of our system for ‘PeopleSplitUp’ is
clearly above average, while the performance of ‘PeopleMeet’
is close to the average performance. The performance for the
‘Embrace’ event is well below the state of the art.

CONCLUSION

In this paper, we have proposed a novel approach for
surveillance event detection. Our approach makes use of the
MPEG motion vector as the raw input for feature extraction
to ensure real time performance. Our feature does not rely
on object tracking, and thus is robust to crowded scenes.
We use a modified version of labelled LDA to learn the
features for the event of interest, given that we only have the
temporal annotation for the training data set. We have also
addressed the problem of temporal segmentation and detection
for the event of interest through the use of watershed like
algorithm. We achieve better or similar results compared to
state of the art approaches from the TRECVid SED 2011 for
the ‘PeopleSplitUp’ and ‘PeopleMeet’ event detection. It is
also worth noting that our system is capable of real time
performance, either for a retrospective search tasks or for
continuous operation from live footage. Despite the promising
results however, the accuracy is still far from being useful in
a real world application.

ACKNOWLEDGMENT

This research was supported by the Australian Re-
search Council’s Linkage Project "Airports of the Future"
(LP0990135). The authors also acknowledge the contribution
made by the many aviation industry stakeholders also involved
in this project. The authors would also like to thank Dr.
Patrick Lucey from Disney Research, Pittsburgh, and Dr.
Vikas Reddy from Queensland University of Technology for
technical discussions.

Fig. 5. A demonstration of an experiment run. The system first asks the user to select the event to detect. In this demonstration, the user selects ‘PeopleMeet’.
Then the system automatically outputs the segments of interest in order of relevance, with a format for filename − startf rame : endf rame|score|.
Finally the search time is shown. In this example, the search time is 0.27 seconds.

Fig. 6. DET curve for our proposed system

PeopleMeet PeopleSplitUp Embrace
Average DCRs of repSED 1.0834 0.9953 0.9562

Average DCRs of interactiveSED 1.0358 0.9183 0.8640
DCRs of Our Approach 1.0577 0.8898 1.0189

TABLE I
DCRS FOR OUR PROPOSED APPROACH COMPARED TO OTHER PARTICIPANTS OF TRECVID SED 2012.

REFERENCES

[1] P. Tudor, “Mpeg-2 video compression,” Electronics Communication
Engineering Journal, vol. 7, no. 6, pp. 257 – 264, dec 1995.

[2] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning,
“Labeled lda: a supervised topic model for credit attribution in
multi-labeled corpora,” pp. 248–256, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1699510.1699543

[3] C.-W. Su, H.-Y. Liao, H.-R. Tyan, C.-W. Lin, D.-Y. Chen, and K.-C. Fan,
“Motion flow-based video retrieval,” Multimedia, IEEE Transactions on,
vol. 9, no. 6, pp. 1193 –1201, oct. 2007.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, March 2003. [Online].
Available: http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993

[5] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” PNAS, vol.
101, no. suppl. 1, pp. 5228–5235, 2004.

[6] T. Hospedales, J. Li, S. Gong, and T. Xiang, “Identifying rare and subtle
behaviors: A weakly supervised joint topic model,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 33, no. 12, pp. 2451
–2464, dec. 2011.

[7] P. Over, G. Awad, M. Michel, J. Fiscus, W. Kraaij, A. F. Smeaton,
and G. Quéenot, “Trecvid 2011 – an overview of the goals, tasks, data,
evaluation mechanisms and metrics,” 2011.

[8] Y. K. K. S. N. Inoue, T. Wada, “Tokyotech+canon at trecvid 2011,”
2011.

[9] T. X. Z. X. P. P. Y. W. Y. T. H. Z. F. W. S. T. G. L. W. Z. X. Fang,
C. Su, “Pku-nec @trecvid2011 sed: Sequence-based event detection in
surveillance video,” 2011.

[10] P. Over, G. Awad, M. Michel, J. Fiscus, W. Kraaij, A. F. Smeaton,
and G. Quéenot, “Trecvid 2012 – an overview of the goals, tasks, data,
evaluation mechanisms and metrics,” 2012.

