
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Wyss, Martin & Corke, Peter I. Active text perception for mobile robots.
(Unpublished)

This file was downloaded from: http://eprints.qut.edu.au/57664/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10916246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Corke,_Peter.html
http://eprints.qut.edu.au/57664/


Active Text Perception for Mobile Robots

Martin L. Wyss1 and Peter Corke2

Abstract— Our everyday environment is full of text but
this rich source of information remains largely inaccessible
to mobile robots. In this paper we describe an active text
spotting system that uses a small number of wide angle views
to locate putative text in the environment and then foveates
and zooms onto that text in order to improve the reliability
of text recognition. We present extensive experimental results
obtained with a pan/tilt/zoom camera and a ROS-based mobile
robot operating in an indoor environment.

I. INTRODUCTION

The ability to read text in an environment provides humans
with rich semantic information that is used almost uncon-
sciously for high-level navigation tasks. The huge amount
of such text in the world in the world attests to its utility
for tasks such as place name (room 1107), place functional
description (bathroom), navigation (street sign, building di-
rectory) or driving hints (speed limit, curve ahead). To date
robots have not been able to access this source of semantic
information and often rely on a second tier of informational
infrastructure such as QR codes or RFID tags. However a
widespread rollout of robot navigational infrastructure would
be costly to implement and therefore quite unlikely to occur.
A preferred solution is to allow robots to read the text that
is already in place for human benefit.

The problem of reading so-called text in the wild is much
harder than the problem of recognising text in a scanned
document or book. Wild text has a wide variety of fonts and
orientations sometimes varied on a character by character
basis for artistic reasons. We can make no assumptions about
the orientation of text, lighting can be variable and non
fronto-parallel viewing can lead to character distortion and
different sized characters within words.

To date there has been relatively little work on text reading
for robots but what has been reported[9], [12], [13] is
consistently limited by poor optical character recognition
(OCR) performance on wild text, that is, the returned text
string is a corrupted version of the world text. The reports
also consistently agree that a significant contributor to this
problem is poor image resolution — it has been repeatedly
shown that as the text size in the image falls below a certain
number of pixels performance degrades very rapidly.

In this paper we describe and evaluate the first active
perception system for mobile robot text detection. We use
a pan/tilt/zoom camera to foveate on potential text regions
identified in a wide-angle view of the scene. By applying
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Fig. 1. Guiabot equipped with the pan-tilt-zoom camera.

Fig. 2. Active vision text reading setup.

the camera’s optical zoom we are able to have words fill the
image which allows for greatly improved OCR performance.
With an 18× optical zoom we are able to achieve a 3×
improvement in ability to correctly read wild text. We present
a brief description of the novel active-vision algorithm but
devote most of the paper to an extensive experimental
evaluation of this system. The robot operates in an indoor
work environment with modest light levels and is integrated



with onboard mapping and localization subsystems.
The next section reviews relevant prior work in text

detection and recognition, active vision and robotic text
reading. Section III describes the architecture of our system
and the active-vision algorithm. In Section IV we describe
detailed experiments that evaluate different aspects of our
system’s performance. Finally, in Section V we present our
conclusions and discuss some areas for future work.

II. PRIOR WORK

Robotic text reading is commonly divided into text detec-
tion (which parts of the scene contain text), text recognition
(what is that text) and layout and spelling correction typically
organised in a linearly pipeline. In order to progress the field
the Int. Conf. on Document Analysis and Recognition (IC-
DAR) has run a series of robust reading and text localisation
competitions in 2003, 2005 [2] and 2011 [3]. The latest
competition revealed that the wining participant reached a
recall for text detection of 62.5% and a precision of 83.0%.
However when combined with text recognition, even after
spelling correction, the best result was a recall of 41.2% of
the ground truth words. We can conclude that the problem
is hard but text recognition is harder than text detection.

The cue for text in a region of the image is presence
of high image frequencies. Many approaches are based on
the use of weak classifiers based on Haar-like features[5],
as originally for the problem of face detection, which are
combined using boosting to create a strong classifier. Chen
et al. [6] extended this by defining additional features based
on x- and y-direction image gradient. A different approach is
the stroke width transform[7] which highlights close parallel
edges that are indicative of text[9].

The most recent robust reading competition [3] indicates
that optical character recognition (OCR) is still less robust
than text detection. Reasons for a bad recall rate are small
text size, the angle of observation and complex font styles.
Mirmehdi et al. [10] and Posner et al. [12] both mention an
optimal character height of at least 20 pixels for successful
OCR. A commonly used OCR engine is the open-source
package Tesseract[11] which has been used in the systems
described by [9], [12] and [13]. To compensate for errors
introduced at the OCR stage it is common to apply spelling
correction, typically based on a database of words and the
edit-distance distance metric[9], [12].

A variant from the common pipeline is PICT [13] which
applies Histogram of Oriented Gradient (HOG) techniques to
recognize individual characters and uses a mass-spring model
to spatially organise them into words. They report more than
twice the recall performance of Tesseract.

The concept of active vision for robotics dates back to
[17], and can be considered to mimic the human eye which is
continually explore the world. Peniak et al. [15] suggest that
Mars-rovers should use active vision for obstacle avoidance.
A recent paper [16] discusses active perception for robotic
text reading but no robot-based results are provided. They
achieved a precision of 68% and recall of 59% (harmonic
mean of 63%) in 6.1 s.

(a) (b) (c)

(d) (e) (f)
Fig. 3. Stable bounding boxes detection. a) First image, b) Last image, c)
Voting result, d) After threshold, e) Contours, f) Stable BB

Posner et al. [12] described an early system for text
detection in natural images with a mobile robot and made
available an open-source text reading pipeline based on a
boosted classifier and the Tesseract OCR engine. They also
investigated semantics of spotted text in order to answer high
level image queries. [9] use a PR2 robot to read door signs
for room numbers and occupant names in an office environ-
ment. After building a map the three dimensional location
of observed text is placed into the map. Literate PR2[18]
is a ROS-based package for detecting and recognising wild
text and has achieved a precision of 45% and recall of 67%
(harmonic mean of 54%) in just 0.18 s.

III. ARCHITECTURE & ALGORITHMS

Our active text reading is based on open-source compo-
nents ROS, Literate PR2 and Tesseract[11]. Our goal is to
extract as much text from the world as possible, but we
not (yet) attempting to infer semantic meanings about places
from that text.

The approach is summarised in Algorithm 1. The robot
starts by scanning its environment using the widest angle
zoom setting and panning around the environment to cover
a specified azimuth range with minimal overlap typically
±90 deg with respect to the direction of travel.

The system then recursively searches stable text bounding
boxes foveating and zooming as it proceeds. When it encoun-
ters a bounding box of sufficient size, or at the zoom limit,
OCR is applied. This recursive, depth-first, investigation of
the image helps to minimise the motion of the camera and
thus reduces the active perception time.

Working in an indoor environment with low light levels
causes the camera to choose a high gain setting which results
in noisy images. The bounding box detector is based on
images edges and is therefore quite sensitive to image noise.
We look for temporal consistency in the bounding boxes by
examining a short sequence of Ns images see Figure 3 (we
chose Ns = 7). All pixels in all detected BB vote and the
result (c) is thresholded at 80% of the maximum (d) from
which contours parallel to the x- and y-axes are extracted
(e).

Before exploring a stable bounding box the camera has to
foveate on the centre of the box and then zoom. We deter-



Algorithm 1 Text scanning
procedure READTEXT

for ψ = ψmin → ψmax do . pan across the scene
ProcessBB

end for
end procedure

procedure PROCESSBB . Process a bounding box
for all b ∈ FindStableBB do

if readable then
text ← OCR(b)

else
θ, φ, ζ ← ZOOM(b) . determine pan/tilt/zoom
MoveCamera(ψ + θ, φ, ζ) . move the camera
R← ROI(b) . compute ROI
if zoom possible then

ProcessBB
else

text ← OCR(b, R)
end if

end if
end for

end procedure

function FINDSTABLEBB
V ← 0 . clear voting array
for i = 1→ N do

I ← image . acquire image
V ← UpdateVote(V , I) . update votes

end for
{bi} ← FindBoxes(V ) . Find boxes in voting array

return {bi} . return list of bounding boxes
end function

mine the largest zoom that allows the box to fill the image
vertically or horizontally and the pan/tilt angles necessary to
centre it in the image.

If the box has a very different aspect ratio to the image
we compute and apply a region of interest (ROI) mask to
prevent spurious detections and reduce processing time. In
some situations the camera is at a motion limit and the box
cannot be centred and we use a ROI to mask out the relevant
part of the image.

To embed text in the robot’s map we use localisation data
from the AMCL node and insert 2D text markers into the
map. To reduce map clutter we filter text against a list of
expected words. We also apply spatial clustering so that
similar words at similar locations are placed into the map
just once.

IV. EXPERIMENTAL SETUP & RESULTS

For the experiments we used an Adept Guiabot mobile
platform equipped with a SICK laser range sensor and
ultrasonic sensors. The platform’s low-level computer runs
Ubuntu/ROS and is connected via an onboard Ethernet
network to a MacMini/Ubuntu system that runs navigation

Recall Stable BB Read correctly
LMMono10 (Serif) 10% 100%
FreeSans (Sans Serif) 100% 50%
LMSansQuot8 (Sans Serif) 100% 90%

TABLE I
EVALUATED STATISTICS IN TEN RUNS OF THE ACTIVE VISION PROGRAM.

Fig. 4. Font evaluation with blue boxes indicating stably detected bounding
boxes. Note that the top font was not detected.

and stereo vision software. A third computer to run the
active text spotting system was placed onboard the robot
and connected to its local network. A Panasonic WV-SC385
performs the active vision task, it is a dome IP/Ethernet
camera with 18x optical zoom, pan-tilt, autofocus and depth
from focus function. At its lowest zoom setting the view
angle is 55◦. The camera has a web interface, thus the camera
parameters can be queried and set with HTTP get and post
methods. The video stream was subscribed with the ROS
package GSCAM.

We conducted a series of graduated experiments to eval-
uate the performance of bounding box detection, full text
reading pipeline and the active text perception.

A. Font Evaluation

As already mentioned the weakest part of the pipeline
will be the OCR so we wish to remove this factor from
our evaluation of the active text perception performance. We
active this by choosing a font that is reliably read by OCR.
We evaluated fonts from LibreOffice (LMMono10, FreeSans,
LMSansQuot8) which are shown in Figure 4. The camera
was placed 2m away from the text and perpendicular to the
text plane and the pipeline was run ten times. We evaluated
bounding box detection performance

Recall =
Num relevant retrieved BB

Total relevant BB
(1)

and OCR correct reading rate (CRR) performance is

CRR =
Num Correctly Read BB

Num BB Retrieved
(2)

Results are shown in table IV-A and indicates that the
LMSansQuot8 font was detected and read most consistently.
This is a sans serif font with good spacing between the
letters.



Font size in Point Font size in Pixels
160 30
130 24
100 19
72 14
60 12
48 10

TABLE II
MAP FROM FONT SIZE TO EFFECTIVE PIXEL SIZE.

Fig. 5. The bounding boxes can be retrieved reliably (blue line) for font
size greater than 48 points. The fraction of trials with no detection is given
by the red dashed line.

B. Bounding Boxes Recall as a Function of Text Size

The size of a character in the image depends on the
font size and the distance of the text from the camera. To
establish the minimal image character size (in pixels) for
further experiments we evaluate bounding box recall for a
range of font sizes between 160 and 48 points. The camera
configuration was as above and the pipeline was executed 25
times for each font size. Bounding box recall is

Recall =
box area intersection

biggest box
(3)

where intersection is the overlap between the computed box
and a defined ground truth box so as to penalise incorrect
box size estimates.

Figure 5 shows the average recall (solid blue line) and
the number of trials with zero recall (red dashed line). We
observe that the bounding boxes are reliably computed for
fonts larger than 72 points, which accordingly to table IV-B
correspond to 14 pixels in the image. For image size between
from 14 to 10pixels the recall becomes unstable and the
number of trials with zero recall starts to rise. At 10pixels no
bounding boxes are retrieved. As a rule of thumb bounding
boxes can be reliably computed for image character size of
13pixels or more.

C. Active Vision Text Reading

To evaluate the benefits of active vision system for text
spotting we use the same setup as for the previous experi-
ments but the OCR functionality is enabled. The evaluation
is executed with and without zooming and the pipeline is
executed 15 times for each case.

The results of the recall measure are presented in figure
6 and show that the correct recognition rate without zoom-
ing falls dramatically below 130points or 24pixels and is

(a)

(b)
Fig. 6. OCR recognition rate with (a) and without (b) zooming.

Fig. 7. True and actual depth from focus between 1.5 m and 15 m.

zero below 19pixels. With zooming enabled, recognition
performance is above 80% for all pixels sizes which spans a
size range of nearly a factor of three. Without zooming the
character height has to be at least 30pixels but with zooming
the minimum size can be as low as 12pixels.

D. Depth from Focus

The Panasonic camera publishes estimates of depth ob-
tained from focus — according to the data sheet in the
range 1.4 to 999.9m. We were intrigued by the possibility
of using this camera to not only recognise text but also to
report its distance from the camera, which is important when
placing text information into a map. We moved the text over
a distance range 1.5–15m from the camera which was kept
zoomed onto the text.

Figure 7 shows the actual (dashed line) and reported
distance with error bars. Up to 4m the standard deviation is
less than 25 cm but for distances of 12m the deviation is very
significant, more than 1m. While somewhat disappointing
the accuracy was sufficient for text on the walls of the
hallway where the robot operated.

E. Text Spotting with a Mobile Robot

This final experiment demonstrates that the developed
algorithms and programs are able to perceive text along a



Fig. 8. Ground truth map from the setup.

Unfiltered map Filtered map
Fig. 9. Text spotting results from the mobile robot

hallway from a mobile robot. To eliminate the effects of
OCR weakness we placed words in a consistent font (100
point LMSansQuot8) along the hall way. We evaluate:

1) Recall of the expected BBs depending on the distance
to the text.

Recall =
relevant retrieved boxes

total relevant boxes
(4)

2) Correct text recognition rate depending on the distance
to the text.

3) Average displacement of the markers

-2 -1 0 +1 +2
BB Recall 53% 100% 100% 100% 47%

Correct read 75% 33% 72% 50% 29%
AVG initial char
size (pix)

14 18 20 18 14

Real dist. (m) 2.69 2.06 1.80 2.06 2.69
Angle ±138◦ ±119◦ ±90◦ ±61◦ ±42◦

TABLE III
STABLE BB RECALL AND CORRECT READING RATE DEPENDING ON THE

DISTANCE TO THE TEXT AND ANGLE.

4) Average scanning time.
Here the recall for the boxes is not calculated on ground truth
intersection, since it is difficult to define this for a dynamic
experiment. We consider that recall was 100% if the text was
retrieved from within a box otherwise it was 0%.

The robot uses a pre-learned map (from gapping) and is
programmed to stop every 2m and scan the environment
three times for text. A map of the environment is shown in
Figure 8, the stops are marked with a cross and the boxes
show the text which is placed in the world. The robot drives
past the signs at a distance of 1.2–1.8m.

All found text was placed into the unfiltered map and the
keyword filter was used to remove existing environmental
text — we are interested in the performance only against the
words we posted on the walls. The robot’s pan range was
set to 300◦ degrees in order to spot text that the robot has
passed.

The generated maps are shown in figure 9. The fil-
tered map shows arrows that indicate the view direction to
the word when it was detected. Most words are detected
multiple times from different robot locations. The average
displacement between text locations in the map and ground
truth is 64 cm most of which we attribute to errors in
distance obtained from depth from focus. Figure 10 shows
the word ‘Brisbane’ being triangulated from three different
robot poses.

Over the three scans the correct recognition rate of the
signs is 87.5%. The reason for not reaching 100% is that the
word “melbourne” was detected with a lower-case rather than
upper-case first letter which we consider an error. If the scans
are analysed separately then we achieve recognition rates of
75%, 75% and 62.5%. In table III the various performance
metrics are binned against the distance from the text at the
time of recognition. The real distance in meters and the
angle is calculated from the driving direction (the robot’s
orientation is parallel to the corridor).

The recall is stable plus minus one meter around the robot.
Further away the recall drops to about 50% and for a distance
of 3 m nothing is detected anymore, since the average pixel
size is about 11 pixels. The reason for the large sensitivity to
distance is the influence of this single consistently misread
word that falls into the larger distance bins. The recall of the
expected bounding boxes 1.8m from the robot was 100%
and the correct recognition rate for these bounding boxes is
72.2The average performance times per scan is 165 s and the
average time per stable bounding box is 15 s.



Fig. 10. The dotted lines point at the pose of Brisbane and the solid line of
Switzerland. The black arrows lay on a line which goes through the robots
pose and the ground truth image position.

The Recall and the correct recognition rate after three
scans are good results. The average pixel size shows that
without zooming none of the text could have been read, since
the maximum average pixel size is about 20 pixels and our
earlier experiment show that the pipeline does not recognize
any text below 24 pixels. The benefit of zooming is real and
significant.

The fact that Tesseract had problems reading the word
Melbourne twice in the 100% bounding box recall region
shows clearly that the OCR step is the weakest link in the
framework.

V. CONCLUSIONS

In this paper we describe an active text spotting system
that uses a wide angle views to locate putative text in the
environment and then foveates and zooms onto the text in or-
der to improve the reliability of text recognition. We present
extensive experimental results obtained with a pan/tilt/zoom
camera and a ROS-based mobile robot operating in an indoor
environment. The framework is able to spot stable text
regions and detect text in the environment up to a couple
of meters depending on the text size and font. The active
vision system increases the likelihood of recognizing the
spotted text correctly and we were able to achieve a 3×
improvement using active vision. We were also able to place
observed text in the robot’s map with an accuracy better than
1m. As in previous work we have found that weakest link
in the chain is the text recognition or OCR function.

Prospective areas for future work include optimising the
camera motion to reduce scan time and better early culling of
extraneous bounding boxes. The task could also be paralleled
with the active perception system queuing likely boxes to the
OCR engine for post hoc analysis. It would also be useful to
make the system operate with the robot moving. Early work
shows that text triangulation is promising and this should be
investigated further.
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