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The Structures of COPI-Coated
Vesicles Reveal Alternate Coatomer
Conformations and Interactions
Marco Faini,1 Simone Prinz,1 Rainer Beck,2 Martin Schorb,1 James D. Riches,1* Kirsten Bacia,3

Britta Brügger,2 Felix T. Wieland,2† John A. G. Briggs1,4†

Transport between compartments of eukaryotic cells is mediated by coated vesicles. The
archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural
studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat
components assemble regular cages with the same set of interactions between components.
Detailed three-dimensional structures of coated membrane vesicles have not been obtained.
Here, we solved the structures of individual COPI-coated membrane vesicles by cryo–electron
tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat
protein complex, coatomer, was observed to adopt alternative conformations to change the number
of other coatomers with which it interacts and to form vesicles with variable sizes and shapes.
This represents a fundamentally different basis for vesicle coat assembly.

Cellular transport vesicles are formed by
conserved protein coats (1–3). Detailed
structural information about vesicle coats

assembled on a membrane bilayer has remained
elusive. The clearest insights into the architecture
of vesicle coats have been obtained by applying
electron microscopy (EM) to coat protein com-
plex COPII and clathrin protein cages, assembled
in vitro from outer coat protein components in the
absence of membranes (1, 4, 5). The cages have
point group symmetries and discrete size dis-
tributions (6), whereas in vivo formed clathrin-
coated vesicles are surrounded by cages that can
deviate from point group symmetry (7). In both
cases, each cage subunit makes the same set of
interactions with the same number of partners.
The clathrin cage vertex consists of three-fold
triskelions, whose arms intertwine to form two-
fold symmetrical edges with some flexibility; in
COPII, four rod-like edges of the cage converge
at each two-fold vertex (fig. S1, A and B).

In the COPI system, which transports cargo
within the Golgi and from the Golgi to the endo-
plasmic reticulum (ER) (8), the membrane-binding
inner coat components are recruited to the mem-
brane en bloc with the outer coat components as a
single heptameric complex, called coatomer (9).
Cytosolic coatomer is a highly flexible complex,

precluding high-resolution structural study (10).
To obtain structural information on the COPI coat,
we studied COPI-coated membrane vesicles.

COPI-coated vesicles were formed by recon-
stituting budding in vitro with giant unilamellar
vesicles (GUVs) as donormembranes togetherwith
recombinantly expressed heptameric coatomer
complex (11), the small guanosine triphosphatase
Arf1, a guanine nucleotide–exchange factor, and
guanosine 5′-O-(3′-thiotriphosphate). The budding
reaction was plunge-frozen without further puri-
fication and analyzed by cryo–electron tomog-
raphy. Large numbers of coated vesicles were
formed, ranging in shape from spherical to slight-
ly elliptical (F1 Fig. 1, A and B). Vesicle membranes
were covered with a fuzzy coat ~14 nm thick.
The mean vesicle diameter at the membrane was
45 nm T 6 nm (n = 244) (Fig. 1C), comparable
with observations carried out in vivo (12) and in
vitro (13, 14). In control incubations in the pres-
ence of guanosine diphosphate, no coated vesi-
cles were produced.

The variable size and shape of the vesicles
precluded averaging of whole vesicles to obtain a
high-resolution three-dimensional (3D) structure.
We thus applied subtomogram averaging to an-
alyze the repetitive unit of the coat. Subvolumes
were extracted at vesicle surfaces and were it-
eratively aligned and averaged in an unbiased,
reference-free manner (15–17). This procedure
was performed on two independent budding
reactions, converging to the same structure: a three-
fold symmetrical arrangement of leaf-shaped
densities surrounding a central platform ( F2Fig. 2A
and fig. S2, A to C). Three leaves form a triad,
which is ~32 nm across. Subtomogram averaging
of further data sets yielded a 3D structure of the
triad at 26 Å resolution (Fig. 2, B to D; fig. S3;
and movie S1). The triad contacts the mem-
brane below each leaf (Fig. 2C, black arrowhead)
and below the central platform (Fig. 2C, white
arrowhead).

The size of one leaf matched the expected
mass of one coatomer-Arf1 complex (17), where-
as its shape was comparable to that of the cy-
tosolic yeast coatomer complex (10) (fig. S4).
The crystal structure of the adaptor protein 2
(AP2) trunk domain (18), which is homologous
to the bd/gz-COP sub-complex (19), did not fit as
a rigid body into the leaf, which indicated con-
formational differences between crystallized AP2
and the assembled form of bd/gz-COP (17) (fig.
S5, A and B). Upon automated docking of the
triskelion-like crystal structure of an ab′-COP
fragment (20) into the triad, parts of ab′-COP
protruded from the density (17) (fig. S5, C andD).
This suggested that, within the assembled coat,
either the triskelion does not represent the struc-
tural form of ab′-COP or that the triskelion arms
are differently oriented. Upon automated docking
of a single copy of ab′-COP, the two highest-
scoring solutions were found within the leaf
of the triad such that the a-COP a-solenoid of
one solution superimposes on the homologous
a-solenoid in b′-COP from the other solution, and
vice versa, consistent with the described pseudo–
two-fold interaction between a- and b′-COP
(17, 20) (fig. S5, E and F).
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Fig. 1. COPI-coated vesicle budding reconstituted from giant unilamellar vesicles. (A) Section through a
cryo–electron tomogram of COPI-coated vesicles from an in vitro budding reaction. Scale bar, 100 nm. (B)
Central sections of vesicles showing variable size and ellipticity, and a fuzzy ~14-nm-thick coat. Scale bar,
50 nm. (A) and (B) were Gaussian filtered to ease visualization. (C) Average vesicle diameter measured at
the membrane. Distribution mean is 45 nm (n = 244).
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To generate “lattice maps” showing the ar-
rangement of triads on individual coated vesicles,
we placed triangles at the positions and rotational
orientations towhich triad subtomograms aligned
(15, 17) (F3 Fig. 3, A-D). This showed that the cor-
ners and edges of triads are arranged around lo-
cal three-fold symmetry axes in a triangular lattice
(Fig. 3, A and B). All vesicles also had local
positions at which the corners of two, instead of
three, triads met, either singly (Fig. 3C) or paired
(Fig. 3D). Because a triangular lattice is geomet-
rically flat, such two-corner positions are required
for assembly of a curved lattice. A relative in-
crease in number of three-corner over two-corner
positions, or of paired two-corner over single
two-corner positions, increases the diameter of
the resulting shell in any curved triangular lattice.
The relative numbers of triad patterns found on
vesicles of different sizes were consistent with
these geometrical principles. For example, two-
corner positions were more prevalent relatively
to three-corner positions in smaller vesicles with
higher membrane curvature (fig. S6A).

The distribution of triads over the vesicle sur-
face did not consistently conform to any point
group symmetry. Vesicle coats also contained
gaps in the triangular lattice (Fig. 3E). In some
cases, the triad arrangement around such gaps
precluded the addition of further triads, making
it unlikely that gaps resulted from disassembly,
prematurely arrested assembly, or unidentified
triads; instead, the arrangement suggested that
gaps formed during assembly and budding. Elec-
tron density seen at most gaps indicated that they
contained disordered protein density. Lattice maps
of COPI-coated buds that had not completed
scission were incomplete at the bud neck (Fig.
3F), which suggested that the gap represents a
“budding scar” and that formation of a complete,

closed protein coat is not required to mediate ves-
icle formation in the in vitro budding reaction.
Quantitative fluorescence microscopy shows that,
under certain conditions, a partially complete clathrin
coat can also internalize vesicles from the plasma
membrane (21, 22).

To derive structural information about the in-
teractions between triads, we calculated the po-
sitional and rotational coordinates of all positions
where the corners of three triads met (Fig. 3A),
positions where the edges of three triadsmet (Fig.
3B), single two-corner positions (Fig. 3C), and
paired two-corner positions (Fig. 3D). Structures
derived by averaging subtomograms extracted at
these positions (Fig. 3, G to N, and fig. S6B),
revealed that the central platform of the triad
and the cores of the leaves were consistent in all
structures, whereas the parts of leaves forming
corners and edges of the triad adopted different
conformations (Fig. 3, K to O). Where three triad
corners met, leaves formed a raised three-fold
connection (Fig. 3K, arrow). At single and paired
two-corner positions, the corner of the triad adopted
a different conformation (Fig. 3, M and N, ar-
rows). The connections between triad edges can
link three (Fig. 3L, arrowhead) or two triads (Fig.
3, M and N, arrowheads). Hence, dependent on
its position within the lattice, coatomer can form
homotrimeric or dimeric interactions. This vari-
able valency of interaction is achieved through
substantial conformational variability (Fig. 3O).

Structures of triads and linkages were placed
at the positions and orientations where they were
found in each vesicle and were merged to create
continuous density models of individual vesicles
( F4Fig. 4 and movie S2). These models suggest that
the COPI coat contains only small apertures (Fig.
4 and fig. S1). Sufficient membrane access for
fusion with a target membrane could only be

achieved after coat disassembly or through bud-
ding scars. In contrast, clathrin and COPII cages
form lattices with larger apertures (fig. S1).

In existing models for clathrin and COPII
vesicle coats, multiple identical subunits each
make the same set of interactions with the same
number of neighbors (1). Structural flexibility al-
lows formation of vesicles from different total
numbers of subunits. Based on these principles,
both clathrin-like (20) and COPII-like (23) mod-
els have been proposed for the assembled COPI
coat. We found instead that assembled coatomer
can adopt different conformations to interact with
different numbers of neighbors. By regulating the
relative frequencies of different triad patterns in
the COPI coat during assembly, for example, by
stabilizing particular coatomer conformations, the
cell would have a mechanism to adapt vesicle
size and shape to cargoes of different sizes.
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Fig. 2. Structure of a COPI triad. (A) Isosurface representation of a reference-free reconstruction of a
COPI-coated vesicle subvolume (fig. S2). Coat density is colored from yellow to blue according to radial
distance from the membrane (red). A triad consists of three leaf-like coatomer densities, arranged in a
pseudo–three-fold fashion (dotted triangle) around a central platform (yellow). (B) Top view, 26 Å res-
olution isosurface representation of a triad after three-fold symmetrization. Dotted triangle highlights
three-fold symmetry. Black outline indicates one leaf. Transparent surfaces indicate density from adjacent
triads. (C) Side view of the triad, showing contacts with themembrane below the platform (white arrowhead),
and below the leaf (black arrowhead). Scale bar, 10 nm. (D) Side views of the leaf outlined in (B).
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Fig. 3. Arrangement of triads in the vesicle coat and structures of triad
patterns. (A toD) Lattice maps where each triangle represents the position and
orientation of a triad identified during subtomogram averaging. Purple tri-
angles indicate characteristic triad arrangements: (A) where the corners of
three triads met, (B) where the edges of three triads met, (C) a single two-
corner position, and (D) a paired two-corner position. (E) Three coated vesicle
lattice maps with the budding scar oriented toward the reader. The triad
arrangement around the gap (green) precludes closing the gap by placing
further triads into the lattice. (F) Lattice maps of COPI vesicle buds, su-
perimposed on tomogram slices to show the shape of the membrane. The only
gap found is at the bud neck (oriented toward the top). Scale bar, 30 nm. (G to J)
Isosurface representations of structures corresponding to characteristic triad

patterns, superimposed on the purple triangles. Numbers in (I) and (J) indicate
the seven unique leaf conformations relative to the two-corner positions. (K toN)
As in (G) to (J) without superimposed triangles. Arrows and arrowheads indi-
cate triad corners and edges, respectively, where different conformations are
seen in different linkages. (O) Isosurface representations of each of the
different leaf conformations, these are averages of all leaves found at equiv-
alent positions indicated in (I) and (J). Leaf number 2 is the conformation at
the three-corner position. The leaf marked “avg” is the weighted average of
leaves 1 to 7. Densities are cut as in the black sector of Fig. 2B. The inner
region of the leaves, facing the platform (left side), is constant, whereas the
connections with other triads (arrow and arrowhead in avg) show significant
structural variability. Densities are colored as in Fig. 2.
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Fig. 4. The structures of COPI-coated vesicles. Iso-
surface representations of four COPI-coated vesi-
cles produced by positioning reconstructions of
triads and triad patterns (Figs. 2 and 3, K to N) at
the positions and orientations in space at which they
were identified during subtomogram averaging.
Densities are colored as in Fig. 2. Scale bar, 50 nm.
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