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Abstract. Debugging control software for Micro Aerial Vehicles (MAV) can 

be risky out of the simulator, especially with professional drones that might 

harm people around or result in a high bill after a crash. We have designed a 

framework that enables a software application to communicate with multiple 

MAVs from a single unified interface. In this way, visual controllers can be 

first tested on a low-cost harmless MAV and, after safety is guaranteed, they 

can be moved to the production MAV at no additional cost. The framework is 

based on a distributed architecture over a network. This allows multiple 

configurations, like drone swarms or parallel processing of drones' video 

streams. Live tests have been performed and the results show comparatively 

low additional communication delays, while adding new functionalities and 

flexibility. This implementation is open-source and can be downloaded from 

github.com/uavster/mavwork 
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1   Introduction 

"Fail early, fail often" is a wise mantra. The earlier you find the mistakes in your new 

idea, concept or system design, the sooner you can fix them and get your path to 

success. This is especially applicable in the field of visual control, where dynamic 

systems are controlled using images from one or more cameras as feedback. Visual 

control algorithms that work fine on the simulator may fail catastrophically in the real 

world. In this paper, we propose a flexible unified software framework for visual 

control of Micro Aerial Vehicles (MAV). 

In the last few years, personal MAVs have been hitting the consumer market. 

Currently, our framework supports the Parrot AR.Drone [10] and the AscTec Pelican 

[11], while support for other vehicles like [12], [13] and [14] is still in progress. The 

Parrot AR.Drone is sold as a toy at amateur-affordable prices. It has out-of-the-box 



onboard cameras and Inertial Measurement Units (IMU). No user software can be run 

on board; any control algorithm lies off board, on a wirelessly linked computer. 

Whereas the overall quality is low compared to a professional MAV, it can be 20-40 

times cheaper. In addition, it can be bought at several toy stores and taken straight to 

the lab without worrying about delivery delays. Furthermore, because of its low cost, 

taking risks is acceptable: if you crash and break one, you can just buy a new unit. For 

these reasons, it is worth to be taken into account as prototyping platform, especially 

when developing algorithms for MAV swarms with many units, where the total cost 

might be prohibitive with more professional MAVs. 

AscTec Pelican is a professional solution and, consequently, much more expensive. 

It can carry additional payload and its frame is modular, so extra hardware may be 

mounted, like laser range finders or processing boards. It comes with an Atom board 

powered by a 1.6 GHz processor with 1 Gbyte RAM. Thus, the user is able to load 

and run programs on board. Unlike the AR.Drone, it has a GPS receiver, a barometric 

altimeter and a magnetometer (AR.Drone 2.0 also has the latter), but it does not have 

any cameras by default or a sonar altimeter, like AR.Drone does. 

Both MAVs have Software Development Kits (SDK) that enable applications from 

third-party developers to communicate with the drones. In the case of the AR.Drone, 

the application is run on an external workstation and it sends commands and receives 

information from the sensors, the camera and the IMU through a WiFi link. For the 

Pelican, there is an onboard server that communicates with the Atom board through a 

serial link. However, both SDKs are too limited for our research requirements, as they 

only supports a single point-to-point link between a program and the drone, thus, a 

program can only communicate with a single drone. Besides that, we would like to 

work with networked communication schemes like those shown in Fig. 1. 

The required new functionalities are provided by the proposed software framework, 

while increasing the isolation between the application and the hardware platform, and 

opening the possibility to easily port applications among MAVs from different 

manufacturers with either on-board or off-board computing. 

In section II, other related works are explored. In section III, we introduce some 

general guidelines of the framework architecture, while a specific implementation is 

discussed in section IV. In section V, some test results of this implementation are 

presented and, in section VI, they are discussed. Section VII concludes the paper. 

2   Related work 

The AR.Drone SDK already offers an API for developing third-party applications 

[18]. Examples of research works with the AR.Drone are [7], [8] and [9]. However, 

by the time this paper is written, it does not support communications with multiple 

drones across a network. In the Pelican case, the autopilot board comes with a server 

that can send information and accept commands through a serial port, but it does not 

offer any networking either. 

With regards to the communications between the application and the drone, 

reference [15] points to an existing open project by ETH Pixhawk. It offers a 

communication architecture for MAVs that is based on a library for message 



transmission over a network [16], but it does not have native support for the Parrot 

AR.Drone or any other low-cost MAV. On the other hand, there is a driver for 

AR.Drone by Brown University [17] for the Robot Operating System (ROS) that was 

used in [9]. Nevertheless, it does not implement either access control to the drone or 

parameter configuration. Moreover, we would like our framework to remain 

lightweight, without burdening the new developer with the installation of heavy and 

complex packages like ROS. The framework implementation presented in this paper 

tries to fill the gap left by the other alternatives. So far, it has already enabled some 

research works like [1], [2], [3], [4] and [5].  

Fig. 1. New communication schemes provided by our framework. In (a), a point-to-point 

scheme, also allowed by the AR.Drone SDK; in (b), an application controls an MAV swarm; in 

(c), multiple researchers may share the same MAV resources -one at a time-; in (d) ,video is 

broadcasted over a cluster for parallel processing. 

 



3   Framework architecture 

In this section, we define a general model for the implementation of our framework 

architecture. These are guidelines and requirements that are extensible to any MAV, 

any packet network and any application programming language. In the next section, 

the model will be applied to the supported MAVs, to specific network technologies 

and a C++ API. 

To give network capabilities to the drone, a proxy-based architecture has been 

defined. The architecture is depicted in Fig. 2. The proxy is responsible for 

connecting a single drone with the network. With one proxy per drone, all drones can 

share the network as communication mean. At the application side, we define an 

Application Programming Interface (API). Thanks to this API, the application is able 

to communicate with the proxies of the different drones that it aims to control.  

It is worth to notice that the framework components do not have fixed running 

locations. If the MAV lets the user run software on board, the proxy can stay there. 

Then, the control application can reside either onboard, communicating locally, or 

off-board, through a wireless link. 

Otherwise, if the MAV does not let the user run software applications on board, 

which is the case for the AR.Drone, the proxy is run off board, and the control 

application can be executed either on the same platform or on any other that is 

connected through a network, as seen in Fig. 1. 

Regarding portability, while the proxy depends on the drone manufacturer, the 

Application Programming Interface (API) library is platform-independent. In other 

words, the proxy isolates the application from the drone specifics. In this way, there is 

no need to update all control applications every time the manufacturer releases a new 

SDK version. Most times, updating the proxy will be enough. Another advantage of 

this isolation, is the possibility of porting the API to programming environments or 

languages not supported yet by the manufacturer's SDK. For instance, a Matlab API 

could be programmed, despite not existing any specific software by the manufacturer. 

3.1   Communications 

The communication link between the proxy and the MAV depends on the 

manufacturer specification and it may vary between different models. It is the 

manufacturer who defines the communication protocol of the drone and it will not be 

discussed in this paper. Our framework is responsible of the link between the proxy 

and the application. This link is formed by four independent communication channels, 

named: command, feedback, video and configuration. These channels are logical, not 

necessarily physical, as they are established over the network. They just represent an 

information flow between both network nodes. To implement the channels, no 

specific communication protocols are defined as mandatory; there are only 

recommendations. 

 



Fig. 2. System architecture. The framework interconnects the visual controller with each MAV 

through a network. The total system follows a cascade control structure. Usually, there are 

high-frequency controllers on board that maintain the MAV's attitude and altitude as desired, 

while the visual controller closes an outer loop with lower frequency. The network link for the 

control loop is formed by three low-delay independent channels. Configuration channel is not 

intended to close a control loop, but to read and change configuration parameters occasionally. 

The network between the proxy and the application may fail. A cable might break, 

a router might stop or a WiFi link might lose the signal. Both ends of the link must be 

robust to these situations and implement self-recovery mechanisms, which must be 

transparent to the application. The application will be notified of a failure situation 

but will not have to perform any actions to fix it. In case of stateless protocols        

–those not requiring to establish a connection– there is no extra effort to be done, as 



packets will continue to be transmitted after the network is recovered. Nevertheless, 

the application must be notified if packets do not arrive at expected times. Oppositely, 

connected protocols must automatically try to reconnect until the network is restored, 

besides informing the application of the link state. 

3.1.1 Command channel 

 

The command channel transports all the control actions from the application to the 

proxy: a signature, a sequence number, the desired access level and drone-specific 

commands defined by the implementation (desired attitude, etc.). The signature 

identifies the packet as a command channel packet and may be used as a start token. 

Through this channel, data packets are transmitted periodically. Low delays are 

valuable in this channel because control loops depend on it and delays generally harm 

loop stability [6]. So, low delays are favored by dropping in the receiver any 

malformed packets or assuming as lost packets those that did not arrive on time. As a 

rule of thumb, it is better to lose a packet and receive as soon as possible the next one 

with the most up-to-date information than to retry the transmission of a lost packet by 

delaying future ones with more current data. Because of that, datagram protocols, like 

UDP over an IP network, are suitable for implementing this mechanism because they 

do not have automatic retransmission of faulty packets. At the proxy side, if a packet 

is lost or it arrives after a previously sent one, it is discarded. Instead of asking for a 

retransmission or reordering packets after a sequence error, the proxy expects that a 

new packet with up-to-date command information will eventually arrive. The purpose 

of the sequence number is to determine if a packet has arrived out of sequence. 

An MAV can only be commanded by one control application at a time. Therefore, 

no concurrent access is allowed on this channel. When the channel is in a free state, 

any application willing to control the MAV can lock it by sending an initialization 

packet for write access. After that, no other control packets from other applications 

are processed until the original application unlocks the channel or stays inactive for a 

time longer than a pre-configured threshold. It is also possible for the applications to 

define their role as "only listening", so the framework never gives them control. This 

is achieved with the access level field. 

3.1.2 Feedback channel 

 

In the feedback channel, navigation information flows from the proxy to the 

application. The content of each feedback packet is: signature, sequence number, 

granted access level and drone-specific information defined by the implementation 

(proxy-to-drone link health, battery level, measured attitude, etc.). The signature 

identifies the packet as pertaining to this channel and may be used as start token. Like 

in the command channel, packet dropping at the receiver –based on the sequence 

number– is encouraged in order to minimize delays in control loops.  

Through the feedback channel, the proxy can feed data to multiple applications 

simultaneously. It will do it with those that are only listening as well as with those 

that are willing to take control of the MAV. With the granted access level field, every 

application knows if it is allowed to control the MAV.  



3.1.3 Video channel 

 

In a video channel, video from a drone camera is transmitted to the control application. 

Like the feedback channel, multiple applications can request video channels from a 

proxy. While a feedback channel sample will usually fit in a network packet, a video 

channel sample, i.e. a video frame, will need to be encoded, packetized and 

transmitted with some transport protocol. Like for the other channel types, the lower 

the transmission delay is, the higher the stability margin of a visual control loop will 

be. Hence, implementations with compression-ready encodings, low-delay protocols 

and frame-dropping mechanisms would be preferred.  

The video channel transports periodic fragments with frame data that include a 

header with a signature (it may be used as a fragment start token), information about 

the video encoding and a timestamp, so the application knows how to decode the 

video stream and when each frame was captured. The timestamp must be as close as 

possible to the real capture time of a frame. If neither the camera nor the MAV 

provide this information, the proxy will give an estimation. When possible, 

timestamps of different channels must use the same clock reference. Although this 

reference is unknown by the application, sample times of different channels can be 

compared and ordered if needed. 

3.1.4 Configuration channel 

 

The configuration channel is used to read and write configuration parameters of the 

MAV from the application. It is intended for parameters that are not time-critical, 

such as allowed attitude ranges or video capture features, which are mainly changed 

at startup. In order not to disturb any other channels requiring a higher bandwidth and 

a lower delay, any fast changing parameters must be transferred through the command 

and feedback channels.  

When the application writes  a parameter through the configuration channel, it 

must have a confirmation that it has actually been changed in the MAV, as it might be 

safety-critical. Likewise, when reading a parameter, the application must know that it 

was actually read. Therefore, a connection-oriented transport protocol is required for 

this channel. For example, TCP on an IP network would suit these requirements. 

3.2 Application programming interface 

The API library enables the application to access the communication architecture 

programmatically. The control application processes the feedback information from 

the MAV and generates the commands to be sent in response, closing the loop. The 

API defines methods that are directly called to change these commands.  

The application can gather the feedback information –video and navigation– in two 

ways. The first one consists in explicitly polling the data when needed. However, 

because of the asynchronous nature of the feedback channel, the data is not requested 

on demand to the drone, but periodically received. And, consequently, the request 

method returns the last sample that was received from the proxy. The second method 

for feedback retrieval is event-driven. The application registers a listener through the 



API and the listener gets a notification whenever the data is received from the proxy, 

so it can be processed immediately. Navigation data and video frame notifications are 

received independently, as they are transmitted through unrelated channels, due to 

their different bandwidth requirements. 

4. Framework implementation 

The framework model has been implemented for IP networks. So far, the 

implementation supports the AR.Drone and the Pelican, focusing on indoor 

environments. 

For the AR.Drone, a specific proxy was built over the manufacturer's SDK 

examples [18]. The proxy is a separate executable that runs off-board the MAV 

because the onboard computer is closed to third-party code. The manufacturer's point-

to-point communication with the drone is established via WiFi. 

For the Pelican, a generic proxy has been implemented in a modular fashion for 

Linux systems, using the C++ language. It runs on the Pelican's Atom board, which 

has a WiFi card. In fact, this generic proxy can be customized to any drone running 

Linux, by changing the modules that communicate with the autopilot and cameras.  

4.1 Channels 

Besides the mandatory fields defined by the framework model for communications 

and networking, drone-specific information is transmitted through the command and 

video channels. These fields conform a protocol in the application layer according to 

the OSI model. We call this protocol MAV1 and it also defines units and reference 

frames. The AR.Drone supports MAV1 natively, but the Pelican needs some 

additional hardware (Fig. 3) and software to behave equivalently. Specifically, we had 

to add a sonar for indoor altitude measuring and a down-facing camera for velocity 

estimation. Assuming the floor is flat, an algorithm was designed to estimate the 

ground speed from the optical flow in the image and the sensed attitude and altitude. 

Moreover, automatic take-off, hovering and landing modes were implemented in the 

Pelican proxy to comply with MAV1. 

The command channel is implemented using a UDP socket. Besides the mandatory 

information defined by the framework model, it carries the following payload data for 

the MAV: timestamp, required flying mode, attitude desired values and desired 

altitude rate.  

The feedback channel uses a UDP socket, too. In addition to the fields required by 

the framework, it transports the following information: timestamp, proxy-to-drone 

link health, current flying mode, battery level, measured attitude, measured altitude 

and measured velocity.  

As UDP is not a reliable protocol, command and feedback channels are provided 

with a periodic update mechanism. It means that, at the application side, as soon as 

commands are changed by the application, the API library transmits them to the drone 

through the proxy. When the application is not generating new commands, the API 

library keeps transmitting the last commands periodically to ensure that they 



 

Fig. 3. Additional hardware setup for the AscTec Pelican. Thanks to this hardware and the 

onboard proxy algorithms, the Pelican can comply with the MAV1 protocol and may be 

controlled as an AR.Drone. The circled elements are: front camera (red), down-facing camera 

for velocity estimation (yellow), altitude sonar (green). 

eventually arrive to the other end. The proxy has the same mechanism: new sensor 

readings are sent immediately, but if they are not available at a predefined minimum 

frequency, the last readings are periodically sent through the feedback channel to 

ensure that they arrive to the other end. In this way, there is constant activity in the 

channels and both ends know that they are linked. 

The video channel is implemented with a TCP socket. According to the model 

definition, this is not the most adequate protocol because it is not designed for real 

time, but for reliability. Nonetheless, the transparent streaming capabilities of the 

protocol make the video channel implementation straight-forward and delays may be 

diminished with some tuning. Anyway, we expect to use a more adequate protocol in 

future releases of the implementation.  

Each frame is transmitted over the video channel with its own encoding. Currently, 

the supported encodings are JPEG, raw 3-channel images with 8 bits per plane (for 

RGB cameras) and single-channel images with 16 bits per plane (for rangefinders). 

To pass the received video frame to the application, the API library has a triple 

buffering mechanism: the reception buffer, the frame-ready buffer and the processing 

buffer. The first one is continuously retrieving the frames from the network, 

preventing the TCP buffers from overflowing, which would time out the transmission 

at the proxy side and would be interpreted as a connection failure. Right after a frame 

is received, it is copied to the frame-ready buffer, to keep it accessible by other 

program modules, while the reception buffer is free to receive the next frame from the 

network. However, the frame-ready buffer is overridden as soon as a new frame is 

received, therefore any operation on this buffer should last less than a frame period. 

For longer processing times, the processing buffer is provided. When the frame-ready 

buffer gets new contents, all the video channel listeners are notified. One of them is a 

video processor module that copies the frame-ready buffer contents to its own 

processing buffer only after the last processing operation has finished. Meanwhile, the 

frames are dropped for that video processor. Multiple video processors can be freely 

initiated by the application, allowing concurrent frame processing with independent 

frame dropping for each processor. 

The configuration channel is implemented with a TCP socket, as low delays are not 

mandatory but reliability is. Each parameter operation is performed in a transaction 

consisting in a request and a response. Each request contains a signature, the request 



type, the parameter identifier and the parameter desired value. The desired value will 

only be interpreted by the proxy if it is a write request. The response is formed by a 

signature, a value indicating whether the last request was successful and the parameter 

value. The returned parameter value is only meaningful if the last request was for 

reading. 

4.2 Robustness 

At both communication ends, there is code responsible for keeping communication 

channels synchronized. If faulty behavior occurs, the corresponding channel is 

restarted, so both ends are automatically synchronized back. The channel behavior 

can be understood as faulty when a malformed packet is received or when packets are 

not received as frequently as expected. Every time this happens, the application is 

notified so it can react accordingly. For example, it could display an alarm on a user 

interface. However , the channel recovery mechanism is completely transparent and 

all efforts for the channel restoration are performed by the framework. 

At the application side, all the API errors are handled with C++ exceptions. This 

mechanism favors that errors show up during the development phase so they can be 

fixed early. In this API implementation, every thread has a last line of defense that 

catches all non-caught exceptions, writes the exception in a log file for debugging and 

prevents the thread from being terminated, so it can try to recover the normal state. 

4.3 Extra features 

The API library is able to interface with a Vicon positioning system. With this system, 

position and attitude information of MAVs can be gathered inside a delimited space. 

This information can be very useful, for instance, to close control loops or as ground 

truth for visual pose estimation algorithms. 

On the other hand, the API library provides data logging functionalities. The data 

logger can gather events generated by all the channels, the Vicon interface or other 

objects defined by the developer in the application. Hence, commands, navigation 

feedback, video feedback, Vicon data and developer-defined information can be 

stored in a disk for later analysis. The data logger runs asynchronously, so the delays 

of the disk write operations do not bother other ongoing threads.  

Finally, the API defines classes that help developing a controller by only overriding 

three methods. Two of them are automatically called whenever navigation or visual 

feedback is received from the MAV. The third method is called any time the 

framework requires the application to reset the configuration parameters; for instance, 

after the MAV is rebooted. A controller may be implemented inside the first two 

methods. The received information is used as input to the controller and the 

controller's output is sent to the MAV directly calling the appropriate API methods.  

To help writing the controller code, the API also exposes matrix data types that 

perform common algebraic operations. In addition, the images from the cameras are 

passed back with the encoding used by OpenCV, for easy integration with that library. 



5. Experimental results 

The total communication delay between the application and the drone will be the sum 

of the delays introduced by the API library, the network, the proxy and the proxy-to-

drone link. The drone manufacturer is accountable for the latter. The second one is 

given mainly by the physical network infrastructure. The API and proxy delays are 

responsibility of the framework implementation and must be measured.  

In order to measure the framework contribution to the delay, the proxy is run in the 

same host where the application resides, so the API-proxy link is established through 

local sockets. Timestamps are added to channel packets at the sender and the time 

lapse is calculated at the receiver. As both processes run on the same computer, they 

share the same clock reference and time calculations can be performed without 

additional synchronization. 

Regarding the proxy-to-application delay, the timestamps are obtained right after 

receiving the data from the drone, so all proxy processing time is also taken into 

account. The arrival time is acquired right after releasing the data to the application. 

For the application-to-proxy delay, the timestamps are taken right after issuing the 

commands to the API and the arrival time is calculated at the proxy, before sending 

the commands to the drone through the point-to-point link. The test was run with the 

AR.Drone proxy, on an Acer Aspire 5750G with a Intel Core i7-2630QM 2GHz 

processor and 8 Gbytes of DDR3 RAM. The Operating System was Linux Ubuntu 

11.04. During the test, the data logging was disabled. The packet frequency for the 

command and feedback channels was set to 32 Hz. The video frame rate was 15 

frames per second in average (this is determined by the AR.Drone) and the video 

channel frames were encoded as raw RGB with eight bits per plane. The test 

application consists on a simple visual teleoperation interface with a waypoint-based 

path controller. The test duration is 5 minutes. 

Figs. 4 and 5 show the distribution of delays introduced by the framework in the 

command and video channels (the feedback  channel distribution is similar to the 

command channel one). Table I gives some numerical details about the delay 

distributions. Fig. 6 shows the time evolution of the delays. In all figures, delays are 

expressed as percentages of the channel period. The channel periods are 31.25 ms for 

command and feedback, and 66.7 ms for video. 

Table I. Characterization of channel delays 

Channel 

Delays (ms) Num. samples 

Mean a Min. Max. Total b 
Delay < 1% of 

channel period c 

Command 0.091 (0.29%) 0.013 1.739 9,771 99.93% 

Feedback 0.109 (0.35%) 0.025 1.670 9,828 99.73% 

Video 1.038 (1.56%) 0.310 1.936 5,011 0.22% 

a. Absolute delay in milliseconds and delay relative to channel period. 

b. Total number of delay samples. 

c. Samples lower than 1% of channel period (31.2 ms command and feedback; 66.7 ms video). 

 



Fig. 4. Distribution of the delays introduced in the command channel by the framework. The 

relative delays are percentages of the command channel period, i.e. 31.25 ms. The highest 

sample is 5.56%. 

Fig. 5. Distribution of the delays introduced in the video channel by the framework. The 

relative delays are percentages of the average video channel period, i.e. 66.67 ms. The highest 

sample is 2.9%, but the horizontal scale is set as in Fig. 4 for easy comparison. 

6. Discussion 

As seen in table I, the average delays introduced by the framework are considerably 

low, compared to the frequencies of the channels. For a visual controller, the impact 

of the framework in the reaction time would be the result of adding the visual and 

command channel delays, i.e. the time it takes to see an event plus the time to react 

accordingly. In average, it is a contribution of 1.129 ms to the total loop delay. 

Assuming a visual control loop at 15 frames per seconds, this represents a 1.7% of the 

loop period. 

In Fig. 6, there are spurious samples that might be caused by the fact that the 

implementation is not running on a real-time Operating System (OS). Instead, this OS 

has a preemptive scheduler that can interrupt a task anytime to yield some time for 

other tasks. Despite it might not cause problems during usual prototyping, it must be 

taken into account for high-frequency delay-sensitive applications. 
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Fig. 6. Evolution of relative channel delays introduced by the framework. Most of the time, 

command and feedback delays are below 1% of the channel period. Highest peaks reach 5%, 

but are very unusual. The video channel delay is always under 3%. 

7. Conclusion 

We have introduced a framework to interface visual controllers with Micro Aerial 

Vehicles (MAV) in a unified way. Thanks to the framework, control applications can 

work with MAVs from multiple manufacturers without changing the code. This 

allows faster and safer prototyping through pre-testing with low-cost drones before 

moving to the professional MAVs. In addition, the framework transforms any MAV 

into a network node, opening the door to new prototyping configurations, like drone 

swarms, distributed vision processing or MAV sharing by multiple researchers.  

First, a framework model with general guidelines has been presented, without 

regarding specific technology details, in order to leave it open to other 

implementations. The framework defines a distributed architecture that allows for 

multiple experimental setups like drone swarms, MAV sharing or distributed 

processing. Moreover, applications can communicate with the unified API in easy and 

efficient ways. Currently, there is a framework implementation based on the proposed 

model. It supports the AscTec Pelican, as professional drone, and the Parrot 

AR.Drone, as prototyping platform. More MAVs will be supported in the near future. 

In order to show the framework applicability to visual control loops, the introduced 

additional delays have been analyzed. In the experimental results, these delays are 

significantly low, compared to the loop periods. However, the timings are not 

deterministic because the implementation is not running on a real-time Operating 

System. Thus, its applicability is disregarded to controllers where safety is extremely 

critical. Anyhow, it does not affect the majority of applications. On the contrary, the 

framework has proven to be a useful tool for rapid testing and experimentation. This 

implementation is an open-source project available at github.com/uavster/mavwork 
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