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Abstract. This  paper  describes  the  use  of  property  graphs  for  mapping  data  between  AEC 
software  tools,  which  are  not  linked  by  common  data  formats  and/or  other  interoperability 
measures. The intention of introducing this in practice, education and research is to facilitate the 
use of diverse, non-integrated design and analysis applications by a variety of users who need to  
create customised digital workflows, including those who are not expert programmers. Data model 
types are examined by way of supporting the choice of directed, attributed, multi-relational graphs 
for such data transformation tasks. A brief exemplar design scenario is also presented to illustrate 
the concepts and methods proposed, and conclusions are drawn regarding the feasibility of this  
approach and directions for further research.

1. Introduction
There is a clear and urgent need for new approaches to information exchange that address the 
persistent  lack  of  interoperability  and  integration  in  building  design,  analysis  and 
construction. The continuing and active discourse amongst AEC practitioners and researchers 
alike highlights current limitations in both process and technology that commonly challenge 
design  collaboration.  We  propose  that  bottom-up,  user-controlled  and  process-oriented 
approaches to linking design and analysis tools are more appropriate than current top-down, 
standards-based and model-oriented  strategies,  because  they provide  degrees  of  flexibility 
critical to the process(es) of design (Coons 1963). This approach emerged out of discussions 
at  the  “Open  Systems  and  Methods  for  Collaborative  BEM  (Building  Environment 
Modelling)” workshop held at the CAAD Futures Conference in July 2011, and was further 
developed into a proposal for a platform (Toth et al, 2012). This paper does not intend to give 
a comprehensive overview of the proposed platform, but instead focuses on critical aspects of 
overcoming interoperability hurdles.

The  proposed  platform  is  based  on  existing  scientific  workflow systems  that  enable  the 
composition and execution of complex task sequences on distributed computing resources 
(Deelman et al, 2009). These systems exhibit a common reference architecture and consist of 
a graphical user interface (GUI) for authoring workflows, along with a workflow engine that 
handles  invocation  of  the  applications  required  to  run  the  solution  (Curcin  and Ghanem, 
2008). Workflows are represented as networks of nodes and wires that can be configured and 
reconfigured by users as required. Nodes perform some useful function; wires support the 
flow of data, linking an output of one node to an input of another node. We consider three 
types  of  nodes:  process  nodes,  input/output  (IO) nodes  and control  nodes.  Process  nodes 
perform data analysis and transformation procedures. They have a number of typed input and 



output ports for receiving and transmitting data files, as well as meta-parameters that can be 
set by the user to guide task execution. IO nodes and control nodes are simpler types of nodes 
not  associated with specific  design task related computational  procedures,  but  rather  with 
providing functionality related to workflow initiation, execution and completion. In this paper 
we focus primarily on the role of process nodes in workflows, and the development  of a 
strategy to support custom data transformation procedures.

Process nodes can be further classified into tool nodes and mapper nodes. Tool nodes wrap 
existing applications to make their functionality and data accessible to the workflow; while 
mapper nodes apply transformation procedures to data sets in order to map the output from 
one tool node to the input for another. Figure 1 shows a conceptual diagram of an example 
network in which a parametric CAD system node is connected via a set of mapper nodes 
(denoted by ‘M’) to EnergyPlus [1] and Radiance [2] simulation nodes. The CAD system 
node encapsulates a procedure that starts the CAD system, loads a specified model, and then 
generates a model instance by setting certain parameter values. The resulting geometric output 
undergoes  two  separate  transformations  that  map  it  into  both  EnergyPlus  and  Radiance 
compatible  formats.  The  simulation  nodes  then  read  in  this  transformed  data,  run  their 
respective simulations, and generate output data in the form of simulation results.

 Figure 1: Example network of nodes. A parametric CAD system is linked to Radiance and 
EnergyPlus via a set of mappers (M). End users may contribute the white components, node 

developers will build the grey components, and the black components are existing tools.

Data mapping can be approached in a number of ways, ranging from an ontological approach, 
where a common ontological data structure is imposed on data exchanges, to an open-world 
approach,  where  the  user  is  expected  to  resolve  data  format  issues  manually  -  a  process 
known as ‘shimming’ (Altıntaş, 2011). In the AEC industry, the most prominent solution to 
this  issue is  the current  evolution of Building Information Modelling (BIM), which tends 
toward the all-encompassing ontological end of the spectrum, with the Industry Foundation 
Classes  (IFC)  as  its  embodiment.  However,  IFC –  like  any  standardised  ontology –  has 
significant  epistemological,  practical  and  technical  limitations  (Bowker  and  Starr  1999, 
Kiviniemi  2005,  Pazlar  and Turk  2008).  Therefore,  rather  than  reading  and writing  to  a 
common representational  structure,  we propose  that  tool  nodes  be  coupled  more  flexibly 
through mapper nodes that allow direct data exchange via any data or file format. 

The applicability of a particular mapping approach may also depend on the specific design 
scenario and, more importantly to us, on the skills of the designer. In this research, we are  
focusing on communities of users with limited programming skills, with the goal to develop a 
mapping  approach  that  allows  such  non-programmers  to  easily  create  and  share  custom 
mappings in a collaborative manner. To achieve this goal, the mapping approach must be both 
flexible  and user-friendly.  It  must  be  flexible  so  that  users  can  apply  the  same mapping 
approach to any type of data. This approach must therefore be semantically agnostic. It must  



also be user-friendly to the extent that it supports users with limited programming skills in the 
process of creating and debugging mappers.

There will however always be cases where complex mappings need to be defined that require 
more advanced programming skills. Consider the example in Figure 1. The output from the 
CAD  system  cannot  be  easily  mapped  to  either  the  input  for  EnergyPlus  or  input  for 
Radiance.  Instead,  an additional  step is  required  that  performs Boolean operations  on the 
polygons.  For EnergyPlus,  surface polygons need to be sliced where there are changes in 
boundary conditions (as each surface can only have one boundary condition attribute), and 
then infer what these boundary conditions are, i.e. internal, external or ground contact. For 
Radiance, surface polygons need to have holes cut where there are windows. These additional 
steps may have to be performed by a scripted mapper, denoted the PolygonSlicer. 

The need for this additional mapper illustrates the difference between mappers that perform 
relatively straightforward manipulations of the data structure and data content, and mappers 
that perform more complex data transformations requiring specific computational functions. 
While we aim to support users of different skill levels to create these mappers, this may not 
always  be  possible  with  scripted  mappers,  which  would  typically  need  to  be  created  by 
developers with programming skills. Ideally, such scripted mappers should be developed to 
apply to a wide variety of situations and contexts, so as to be easily reusable.

2. Data models for data mappers
With regards to creating mappers, a distinction can usefully be made between three steps: data 
reading,  data  transformation,  and  data  writing.  Reading  and  writing  data  to  specific  file 
formats and databases are functions that can be generated mainly using existing technology, 
specifically, parser generators and serialiser generators. Therefore, we focus here on the data 
transformation step, which requires more in-depth interpretation. An explicit model for data 
transformation is needed to relate constructs in the source representation to constructs in the 
target representation (Kilian, 2006). This may involve deriving new data as well as discarding 
data that is superfluous in the target format. The aim of the transformation is to create a target 
data set that is as close as possible to the target file format, so that serialisation is reduced to a  
very simple formatting procedure, which can be fully automated.

When  transforming  data,  the  data  model  provides  ways  of  organising  information  at  an 
abstract  level,  including  defining  the  data  structure,  the  data  constraints,  and  the  data 
operations. Two approaches to data modelling are the  general-purpose approach versus the 
domain-specific approach. A general-purpose model organises data using generic constructs 
that are often highly domain independent. Due to this generic nature, the range of data that 
can be described tends to be very broad. It offers a way of defining a data structure that is  
very flexible but relies on human interpretation of semantic meaning. 

A domain-specific model represents domain-specific information using semantic constructs 
related  to  a particular  domain.  The model  may be defined using either  a  Data Definition 
Language (DDL) or  a  Domain  Specific  Modelling Language (DSML).  Due to  the highly 
specific nature of the constructs, the type of information that can be described tends to be 
relatively  narrow.  However,  this  manner  of  representing  information  supports  automated 
interpretation of semantic meaning. 

In  many cases,  domain-specific  models  are  defined  on top  of  a  general-purpose  one,  by 
specifying  additional  constraints  on  the  general-purpose  model.  An example  is  the  many 
different XML schemas defined on top of the XML data model using the XML Schema DDL. 



Data mappings will typically need to transform both the data content and the data structure. In 
the case of domain-specific  models,  when the semantic  schemas for both the source data 
model  and  the  target  data  model  are  available,  the  definition  by  the  user  of  a  list  of 
semantically equivalent entities between these schemas may be sufficient. Based on this user-
defined  information,  a  mapping  procedure  can  then  be  automatically  generated  that  will 
transform the source data set to the target data set. In some cases, it may be possible to define 
such mappings using visual tools such as Altova’s XML MapForce [3] (Altova 2005) that 
generates XSLT/XQuery code based on a mapping between elements in two XML schemas. 
We denote  this  approach a  declarative  equivalency  mapping.  One key problem with  this 
approach is that only fairly simple mappings can be created using direct semantic mappings. 
More complex mappings may require a number of source entities to be processed in some 
way in order to be able to generate another set of target entities. 

Alternatively, the user may create data transformation rules using languages specialised for 
particular types of data models. We denote this approach a procedural query mapping. These 
specialised  languages include  data query languages and data manipulation  languages.  The 
former are used for retrieving data from a data set, and the latter for inserting and deleting 
data  in a  data  set.  In many cases,  the same language can be used for both querying and 
manipulation. A popular example is the Structured Query Language (SQL), which is used for 
both retrieving and manipulating data in relational databases. Other languages for retrieving 
and manipulating data include XQuery / XPath for data stored in XML data models,  and 
SPARQL for data stored in Resource Description Framework (RDF) data models. Although 
such languages  are  specialised  for  certain  data  model,  the  languages  themselves  are  still 
highly generic semantically.

For  creating  user-defined  mappings  within  workflows,  the  procedural  query  mapping 
approach is seen as being more appropriate since it is semantically agnostic and therefore 
highly flexible. In such a case, the input data and output data for each of the tools could be 
made to adhere to the same general-purpose model, and this commonality would allow the 
tools  to  be  more  easily  sharable.  The  user  could  download  diverse  tools  (and  possibly 
mappers) developed by different groups from a shared online repository, and then string these 
together into customised workflows (e.g., see the workflow in Figure 1). Each tool developer 
would specify a domain specific model for the input data, referred to as the input schema (and 
optionally also a domain specific model for the output data, referred to as the output schema). 
The user’s task would then be to write mappers, where necessary, that generate data sets that 
adhere to the input schemas of the selected tools.

So  far,  the  tools  that  have  been  considered  have  been  design  tools  such  as  parametric 
modelling  software  and  simulation  programs.  However,  any  existing  tools  that  can  be 
wrapped  could  be  included  in  the  tool  library.  Two types  of  tools  that  would  likely  be 
desirable are spreadsheet tools (such as Microsoft Excel) and data analysis and visualisation 
tools (such as Tableau Desktop [4]). In addition, existing data mapping tools could also be 
leveraged for creating specialised types of mappings. One example already mentioned above 
is Altova’s Mapforce tool. Another example would be FME Desktop by SafeSoftware [5] 
(SafeSoftware 2008), which allows users to visually construct data mappings for geo-spatial 
data types by selecting and configuring predefined sets of data transformers. Although such 
mapping tools may be useful in certain cases, a more general approach to creating mappings 
would nevertheless still be needed.

With respect to the procedural query mapping approach, we have considered various general-
purpose data models and query languages from the point of view of applicability and ease of 



use. The three main data models that were considered are relational data models using SQL, 
XML data models using XQuery, and property graphs using Gremlin [6].

Relational data models organise data into table structures consisting of rows and columns, 
XML data models organise data into hierarchical trees consisting of elements and attributes, 
and property graphs organise data into network structures consisting of vertices and edges. Of 
the three, the property graph is the least well known, and is a directed graph data structure 
where  edges  are  assigned  a  direction  and  a  type  and  both  vertices  and  edges  can  have 
attributes called properties. This allows property graphs to represent complex data structures 
with many types of relationships between vertices. In graph theoretic language, a property 
graph is known as a directed, attributed, multi-relational graph. Many other graph data models 
such as RDF graphs can be viewed as a special kind of property graph. Gremlin is a domain-
specific graph traversal language for navigating such graphs.

Typically, modelling and simulation of design problems requires data structures with highly 
complex relationship networks. Relational data models and XML data models are not able to 
represent such complex networks in an elegant way. Furthermore, the query languages used 
for these models are cumbersome when working with complex relationship networks. This is 
especially problematic in supporting users with little or no programming skills to understand 
these complex relationship networks. In the case of SQL, “join” clauses are required to relate 
data in multiple tables, while in XQuery, “idref” functions have to be used to relate data from 
different  parts  of  the  hierarchical  tree.  In  contrast,  property  graphs  use  an  inherently 
networked  data  structure  and  therefore  do  not  suffer  from  these  drawbacks.  Below,  an 
example  scenario  is  described  in  which  the  property  graph  data  model  was  used  as  the 
underlying general-purpose data model, and Gremlin as the query and manipulation language.

3. Example scenario
In order to demonstrate  the feasibility of our approach, we have implemented part  of the 
example scenario shown in Figure 1. A parametric CAD system is used to generate a model 
of a small building and EnergyPlus and Radiance  are used to evaluate building performance. 
In this scenario, we have used an existing workflow system called Kepler [7] (McPhillips et 
al, 2009) to connect the various tools together. The Kepler workflow is shown in Figure 2.

Figure 2: The Kepler workflow. The contents of the Mapper3 node is shown in Figure 5.

For this demonstration, the model is highly simplified, consisting of only two spaces stacked 
on top  of  each other,  each  with  a  window in  one  wall  (Figure  3).  In  total  there  are  14  
polygons, and each polygon is assigned a set of attributes that are used for generating the 
property graphs.

SideFX Houdini [8] is used as the parametric CAD system, but various other (parametric) 
CAD software could also be used. The main requirement for this system would be the ability 
to create a customised procedure to output the geometric data as a simple JSON file (using the 
GraphSON library [9]). Existing parsers can then be used to generate a property graph model 



from such a file. Similarly, EnergyPlus is used as the energy analysis simulation program and 
Radiance  is  used as the lighting analysis  program, but  other simulation  tools can also be 
considered for this purpose. The Houdini application, the EnergyPlus program, and the two 
Radiance programs have been wrapped in Python wrappers and scripted mapper nodes have 
been created to transform the inputs and output files into GraphSON files. 

Figure 3: The CAD model consisting of 14 polygons, each with three attributes (one unique ID called 
“uid”, one property called “prop_type”, and one relationship called “rel_is_in_group”).

In order to define the graph mappings, a set of nodes were created in Kepler to provide a set 
of basic mapping functions for mapping graph vertices and graph edges. These nodes have 
various  parameters  that  allow  users  to  customise  the  mappings.  When  these  nodes  get 
executed,  Gremlin  mapping  scripts  are  automatically  generated  based  on these  parameter 
settings. 

Three  different  types  of  mapping  nodes  were  created:  graph  manipulation  nodes,  vertex 
creation nodes, and iterator nodes. Graph manipulation nodes are used for merging, splitting, 
and filtering graphs. Vertex creation nodes are used for creating new vertices from scratch. 
Iterator nodes are used for iterating over the contents of an input graph and triggering certain 
actions.  For each type of node, a parameter called “select” allows users to specify a Gremlin 
selection filter on the input graph. For each entity (i.e. vertex or edge) in the filtered input 
graph, a particular action is triggered, which could be the creation or modification of vertices 
or edges. 

The mapping process from Houdini to EnergyPlus will be described in more detail. The first 
graph mapper maps the output from Houdini to the input of the PolygonSlicer. The second 
mapper maps the output of the PolygonSlicer to the input of EnergyPlus. In both mappers, the 
different GraphSON files are automatically parsed into and serialised from property graphs by 
existing  tools  and,  therefore,  the  user  only  needs  to  focus  on  the  transformation  of  the 
property graphs. Figure 4 shows the overall structure of the property graphs, and Figure 6 
shows the properties associated with three of the vertices in each property graph.

The first step is for the user to define the parametric model of the design together with a set of 
parameter values. The Houdini wrapper will trigger Houdini to generate a model instance and 
will  retrieve  the  geometric  data  for  that  instance.  The  geometric  data  will  then  be 
automatically restructured as a property graph and saved as a GraphSON file.  Points and 
polygons in the model will be mapped to vertices in the property graph. In addition, the user 
can influence the restructuring process by defining a set of attributes for the polygons in the 
parametric model. An attribute with the name “uid” (i.e. unique ID) is used to define the node 
name, attributes with names that starts with “prop_” will result in properties being added to 
the vertices, and attributes with names that start with “rel_” will result in relationships being 
generated between vertices.

In this scenario, the user knows that in order to map to EnergyPlus, surfaces will need to be 
assigned different types and will also need to be grouped into zones. The user has therefore 



defined certain attributes in order to simplify this mapping process. Each polygon has been 
given a “uid” attribute, a “prop_type” attribute that will define a type for each surface, and a 
“rel_is_in_group” attribute that groups surfaces according to zones (see Figure 3).

The  user  then  needs  to  create  the  graph  mappers  using  the  graph  mapping  nodes.  The 
PolygonSlicer and the EnergyPlus simulator both have input graph schemas that specify the 
required structure of the graph and the required properties of the vertices. The task for the 
user  is  therefore  to  create  mappings  that  generate  graphs  that  adhere  to  these  schema 
constraints. Figure 4 shows the overall structure of the property graphs at each stage.

Figure 4: Simplified diagrammatic representation of the property graphs for. (Point data is not shown 
in order to reduce the complexity of the diagrams. In the actual graph, there are also 24 points, each 

with x,y, and z properties.)

In the first mapping, where the output of Houdini is mapped to the input of the PolygonSlicer,  
the  number  of  vertices  remains  constant,  but  the  edges  between  the  vertices  need  to  be 
reversed and the edge label changed from “is_in_group” to “has_a”. Iterator  nodes are used 
to  reverse  the  edges  and  to  add  “type”  properties  to  the  nodes.  The  PolygonSlicer  then 
transforms its input graph by dividing the surfaces for the ceiling of the lower zone (“c2”) and 
the  floor  of  the  upper  zone (“f7”)  so as  to  ensure  that  each  surface  has  a  homogeneous 
boundary condition. The PolygonSlicer also detects the relationships between the floors and 
ceilings, between the floors and the ground, and between windows and walls.

In the second mapping, where the output of the PolygonSlicer is mapped to the input of the 
EnergyPlus  simulator,  additional  properties  are added to the existing vertices  in  the input 
graph, and a number of additional vertices are also added to define a set of other objects 
required in the EnergyPlus input file. Vertex creator  nodes are used to create the additional 
vertices,  and iterator nodes are used to copy and modify existing vertices (Figure 5). The 
groups are mapped to EnergyPlus zones,  and the polygons to EnergyPlus  surfaces. In the 
process of mapping, the iterator node also transforms the edges that existed in the input graph 
into properties in the output graph. The output graph becomes a simple list of vertices under 
the “idf” root node. For example, in the input graph the window is connected to the wall with 
an edge,  while  in the output  graph the window is no longer  connected  but instead has a 
property that specifies the wall name.



Figure 5: The Kepler mapper that maps the output of the PolygonSlicer node to the input of the 
EnergyPlus node. See the “Mapper3” node in Figure 2. 

For each different surface type, a separate iterator node is created. For example, consider the 
“Iter_V_Ceilings” node in Figure 5. This node generates the ceilings of the two zones. Table 
1 shows the two main parameters for the node. The “select” parameter filters the input graph 
so that the remaining vertices all have an “Entity” property with a value of “polygon” and a 
“Type”  property with a value of  “ceiling”, and in addition have an outgoing “boundary_is” 
edge  that  points  to  another  polygon  (i.e.,  the  floor  above).  The  node  then  has  a  set  of 
parameters  that  define  name-value  property  pairs.  For  each  polygon  in  the  filtered  input 
graph,  the  iterator  node  will  generate  a  vertex  in  the  output  graph  with  the  specified 
properties.

Table 1:   The parameter names and values for the Iter_V_Ceilings node. Gremlin code is shown in 
italics, and makes use of two predefined local variables: ‘g’ refers to the input graph, and ‘x’ refers to 

the entity being iterated over (which in this case is a vertex).

Parameter Parameter value

Filter graph:
Select

g.V.has(‘Entity’,’polygon’).has(‘Type’,‘ceiling’).as(‘result’)
.out(‘boundary_is’).has(‘Entity’,‘polygon’).back(‘result’)

Generate vertices:
Vertex properties

Object                        :  ‘BuildingSurface:Detailed’
Name                          :  x.Name
Surface_Type                  :  ‘CEILING’
Construction_Name             :  ‘light ceiling’
Zone                          :  x.in(‘group_contains’).Name
Outside_Boundary_Cond         :  ‘SURFACE’
Outside Boundary_Cond_Object  :  x.out(‘boundary_is’).Name
Sun_Exposure                  :  ‘NOSUN’
Wind_Exposure                 :  ‘NOWIND’
Points                        :  x.Points

Note that when the user is specifying the property values, they can insert Gremlin commands 
that  extract  these  values  from the  input  graph,  thereby  ensuring  that  the  values  can  be 
dynamically generated. Figure 6 shows the changes for a number of vertices in the property 
graph as the data is mapped and transformed. When the “Iter_V_Ceilings” node iterates over 
the  “c2.2” polygon in the input graph, it will generate the  “c2.2” EnergyPlus surface. 



Figure 6: An example of the property data for a few of the vertices in the property graphs. Typically,  
the property graphs will undergo a process of information expansion, where data is gradually added to 

the model as needed.

4. Future work 
In order to support a bottom-up, user-controlled  and process-oriented approach to linking 
design and analysis tools, a data mapping approach is required that allows designers to create 
and share custom mappings. To achieve this goal, the data mapping approach should be both 
flexible in that it can be applied to a wide variety of tools, and user-friendly in that it supports 
non-programmers  in  the  process of easily creating  and debugging mappers.  The use of a 
general-purpose  data  model  ensures  that  the  mapping  approach is  highly  flexible,  and in 
addition  also  allows  for  improved  sharability.  The  example  scenario  demonstrated  how 
designers with minimal scripting skills would be able to set up complex digital workflows that 
enable  the  fluid  and interactive  exploration  of  design  possibilities  in  response  to  custom 
performance metrics. 

The next stage of this research will explore the scalability of the user-defined graph mapping 
approach when working with larger data sets and more complex data schemas (such as the 
IFC schema). In the current demonstration, the data sets and data schemas are small, and as a 
result the graph mappers are relatively simple. However, if data sets increase in size and the 
number of entity and relationship types is very large, then the graph mappers could potentially 
become more difficult to construct. In order to deal with this increased complexity, we foresee 
that the user will require additional data management and schema management tools. The data 
management tools could enable users to visualise, interrogate and debug property graph data 
during the mapping process (Stouffs, 2001). An example is Gephi [10], a rich interactive tool 
for  analysing  and  visualising  complex  graph  data  sets  (Bastian  et  al,  2009).  Schema 
management tools could enable node developers to define formal graph schemas for the input 
and output data for their nodes. This could in turn allow end-users to identify and isolate 
subsets of large schemas relevant to their particular design scenario.
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