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Abstract—Sfinks is a shift register based stream cipher de-
signed for hardware implementation and submitted to the eS-
TREAM project. In this paper, we analyse the initialisation pro-
cess of Sfinks. We demonstrate a slid property of the loaded state
of the Sfinks cipher, where multiple key-IV pairs may produce
phase shifted keystream sequences. The state update functions of
both the initialisation process and keystream generation and also
the pattern of the padding affect generation of the slid pairs.

Index Terms—Initialisation process, Sfinks, Slide attack, Slid
pairs, Slid resynchronisation, Stream cipher.

I. INTRODUCTION

The Sfinks [1] stream cipher was submitted to the eS-
TREAM project [2], the ECRYPT call for stream cipher
proposals, in April 2005. It is a bit-based stream cipher
that takes an 80-bit secret key and 80-bit IV as inputs into
a 256-bit initial register. Sfinks is categorized as PROFILE
2A; suitable for hardware applications and with an associated
authentication method. This research considers specifically the
interaction between the initialisation process and the keystream
generation process of the Sfinks stream cipher that can produce
slid pairs generated by different key-IV pairs.

Most recent stream cipher proposals require an initialisation
process as an essential part of the stream ciphers’ specification.
During the initialisation process, a secret key, k, and an initial
value (IV), v, are loaded into an internal state and then
processed to be diffused across the internal state. A well de-
signed initialisation process for a keystream generator should
ensure that each key-IV pair (k,v) generates a distinct and
unpredictable keystream sequence. This is possible because
the size of the internal state should be at least twice the key
size to avoid time-memory trade-off attacks [3].

For stream ciphers, it is sometimes possible to find different
key-1V pairs that produce phase shifted keystreams [4]-[8].
The state update function for the initialisation process defines
a cycle of transitions of the internal state. Therefore, each
(k,v) pair represents a point on such a cycle. If the length of
the cycle(s) is smaller than the total number of possible key-
IV pairs multiplied by the maximum length of the keystream,
then there are overlaps between some keystream generated by
different key-IV pairs. If it is possible to find a second loaded
state generated by a pair (k’,v’) as a slid pair of the key-IV
pair (k,v) after a number of iterations, «, then, the (k',v")
pair is in the same cycle as the (k,v) pair. The probability

of obtaining shifted keystream sequences from such a pair
depends on the distance between (k’,v’) and (k,v) and the
degree of similarity of the state update functions used during
the initialisation process and the keystream generation process.

This paper is organized as follows. Section II describes
resynchronisation and slide attacks on stream ciphers. Sec-
tion III presents a full description of the Sfinks stream cipher.
A theoretical analysis of slid pairs in the Sfinks cipher is
presented in Section IV. In Section V, an experimental simula-
tion supports the theoretical analysis. A practical procedure to
attack Sfinks using the slid property is presented in Section VI.
Section VII investigates the effect of a one bit modification
of the padding patterns of Sfinks on slid pairs. Section VIII
concludes with a discussion of the causes of slid pairs and
methods for prevention or mitigation.

II. RESYNCHRONISATION AND SLIDE ATTACKS

The slide attack is a generic attack which was firstly applied
to block ciphers by Biryukov and Wagner in 1999 [8] and
2000 [9], and has also been applied to stream ciphers that
are based on block ciphers, such as LEX [10] and WAKE-
ROFB [8]. More recently slide attacks have been applied to
other stream ciphers, such as Grain [4]-[6] and Trivium [7].

When a key-IV pair (k’,v") produces a loaded state that
can also be obtained from another key-IV pair (k,v) after
a number of iterations « of the initialisation state update
function, we refer to these two states as a slid pair. The
keystream generated by the pair (k¥’,v") may then be a phase-
shifted version of the keystream generated by (k, v), shifted by
« bits as shown in Figure 1. This occurs when the following
properties hold for the initialisation process and key stream
generation:

a) Iterations of the initialisation process are similar to each
other.

b) Iterations of the keystream generation process are similar
to each other.

c) State update functions for both of the initialisation and
keystream generator processes have a degree of similarity.

Most stream ciphers meet the first two conditions above,
but different ciphers vary greatly in the extent to which
the third condition applies. Slid pairs can be expressed as
{(k,v), (K',v"), o}, where (k,v) is a key-IV pair that produces
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Fig. 1: slid pairs on stream cipher

another loaded state with key-IV pair (k’, v") after « iterations
of the initialisation state update function.

Previous analysis [4]-[7] focussed on the concern that slid
pairs lead to phase shifted keystream, which may in turn reveal
information about some or all of secret key bits. We consider
this issue in further detail later. There is also a secondary
concern with the existence of slid pairs, as follows. If the
initialisation phase of a stream cipher involves NN iterations of
the state update function where the loaded state for pair (k, v)
leads to a slid pair (k’,v’) after « iterations, then the initial
state prior to keystream generation can be obtained from the
loaded state for (k',v") after only (N — «) iterations. Thus the
existence of slid pairs may imply a decrease in the effective
number of iterations during the initialisation process. We now
return to the issue of slid pairs leading to shifted keystream
sequences.

Slide attacks have recently been applied to stream ciphers
which are not based on block ciphers such as the Grain
family of stream ciphers [11]-[13]. The analysis of Grain
v1.0 [12] in [6] shows that for any key-IV pair (k,v) there
exists a related (k’,v’) pair which generates a 1-bit shifted
keystream with a probability of 272. In general, if a key-IV
pair, (k,v), produces another loaded state with (k’,v’) pair
after « iterations, then the keystream generated by (k',v’) is
shifted by « bit(s) from the original keystream with probability
272 [4]. Zhang and Wang also demonstrated some sliding
weak key-IV combinations that apply to various members of
the Grain family of ciphers [5].

Slid pairs have also been reported for the Trivium stream
cipher [14]. This cipher was analyzed by Priemuth-Schmid and
Biryukov [7] in 2008. They found more than 23 slid pairs out
of 280 keys.

The probability of obtaining a slid pair that results in a
correspondingly shifted keystream depends on two factors: the
probability of getting a legitimate loaded state with (', v")
pair after « iterations of the initialisation process (P1) and
the probability (P2) that the first « iterations of the keystream
generation for the (k, v) are same as the last « iterations of the
initialisation for the (k’,v"). The total probability for obtaining
a slid pair that result in phase-shifted keystream is the product
of these two probabilities, as shown in Figure 1.

III. SFINKS STREAM CIPHER
A. Description of Sfinks

The Sfinks stream cipher [1] has two main components: a
shift register, .S, and a nonlinear one-to-one inversion function
INV, as shown in Figure 2. During the initialisation, it
also uses a pipeline (memory) to delay the output of the
INV function before combining this output with the shift
register content. Additionally, another memory is used during
keystream generation to delay the output bit of the shift
register by 7 steps before combining it with a specific bit of
the TNV function to generate a new keystream bit.

Let st denote the contents of register stage 7 at time ¢, where
1 =0,1,...255 and ¢ > 0. Sfinks uses an 80-bit secret key
k = ko, ..., k79 and 80-bit initial value v = vy, ..., v79. The
linear feedback function is described as following.
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The nonlinear function I NV can be considered as a 16 x 16
bit S-box. The inversion function is used during both initiali-
sation and keystream generation, but in different ways in each
case. Let x; and ys . denote the 16-bit input and output of
INV respectively at time ¢, where z; = (z{%,...,z}) and
Yot = (Y6%, - - - yg+)- Let x} denote the i-th bit of the input of
the S-box, y;,; denote the j-th word of 16 bits (j = 0,1,...,6)
in the pipeline (memory) and y;t denote the i-th bit of y; ,,
all at time t. INV is an invertible function, F3¢ — Fi6 that
calculates the inverse of the 16-bit input, modulo the primitive
polynomial X6 4+ X5 4 X3 4 X2 + 1. The 16 input bits are
taken from 16 register stages at time ¢ as follows.

16 1\ _(.255 244 227 _193 _161 _134 _105
(2% my) =(8777, 870,877,877, 850,850, 8500

5?8, 534, 5?8, 5?4, sfl, 5t197 5?, s?, 5}) 2)

The output word ys ; is delayed to become g ;. The delayed
version of the 16-bit S-box output, 3o ¢, is treated as 16 bit
values as yo ¢ = (yé?t, o ,ygyt). During the initialisation, these
bits are fed back to specified stages of the shift register. During
keystream generation, only one bit of the output of the INV is
used, and this bit contributes to the formation of the keystream
bit.

During initialisation, the output of the S-box is stored in a
pipeline (memory), y; ¢ for 0 < j < 6, to manage the delay of
7 steps. The total required memory to store seven 16-bit output
bits is 112 memory bits. Consequently, the total effective state
during the initialisation process is the sum of shift register size
and the number of memory bits: 368 bits. During keystream
generation, a memory of only 7 bits, m; for 0 < ¢ < 6, is
used to perform a delay of 7 steps to stage s” that is used to
generate a new keystream bit, z;. The memory stages, yth are
also used to delay ygyt for this purpose, but the remaining 15
bits of S-box from yj, to y} for 0 < j < 6 are not used



during the keystream generation. Therefore, the total effective
state size during keystream generation is 270.

Feedback
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Fig. 2: Keystream generator of Sfinks stream cipher

1) Initialisation Process: The initialisation process takes as
input the 80-bit key and 80-bit IV and performs 128 iterations
to produce the 368-bit initial state. Once this initial state is
obtained, keystream generation can begin. The initialisation
process is performed in two phases, which we refer to as
loading and diffusion.

Note: the reference implementation of Sfinks uses t = —128
to denote the start of the diffusion process but, for simplicity,
we will use £ = 0 to denote this time point.

a) Loading Phase: Firstly, all of the register stages are
set to zero. Then the 80-bit key and 80-bit IV are transferred
to specified register positions 586+i = ki, for 0 <7 < 79,
and 3(1]76+i = v;, for 0 < ¢ < 79. The register stage 585 =1
and the remaining 56 = 0, for 0 < ¢ < 94. The output of
the S-box is set to all-zero for the first seven 16-bit outputs,
y}o =0for0<j<6and0 < i< 15 (the initial value of
the pipeline). In [1] this process is described as necessary to
clear the pipeline stages in the hardware implementation and
to provide the initial values of the output of the S-box to allow
for the delay of 7 steps.

When both the secret key and IV have been transferred
and the rest of the state bits (the rest of shift register and
the memory cells) are fixed to the designated values, the
Sfinks stream cipher is in its loaded state. Following this, the
diffusion phase begins.

b) Diffusion Phase: The diffusion phase consists of
128 iterations of the initialisation state-update function. Each
iteration can be considered as a function which maps the state
space to itself. After the diffusion phase is completed, the
keystream generator is said to be in its initial state.

The state update function for the initialisation process uses
Equation 1 and the output of the nonlinear S-box function. The
S-box output feeds back into 16 specified stages of the shift
register with a time delay of 7 steps as detailed below. Figure
3 gives a general overview of state update function during the
diffusion phase of the Sfinks stream cipher.
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Fig. 3: Initialisation processes of Sfinks stream cipher

for ¢ = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154, 173,
179, 204,213, 232, 247}. All other bits are shifted normally,
ie. si = sit! for all other i’s . At each iteration, the shift
register is clocked and then the INV function is called to
calculate the inverse of the 16-bit input to the S-box. This
is stored as the S-box output in the memory where the first
input is the first output. The 16-bit output of the memory is
XORed with the contents of the 16 specified stages of the shift
register to form the contents of another 16 stages of the shift
register. The S-box function is the only nonlinear component
in the initialisation process. A complete description of the state
update function is:

sty for i = {0,1,...,254} except {11,17,41,52, 66, 80,
111,118, 142,154,173, 179, 204, 213, 232, 247}

sitl @yemed 16 for i = {11,17,41,52,66,80,111,118, 142, 154,

s = 173,179, 204,213,232, 247}

for i = 255
for j = {0, 14, 48,52, 64, 66, 85,107,115, 125, 151,
163,187,192,194, 212}
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Yy =14 INV(z',. .. z') forj=6
16 1) _ (o255 (244 227 (193 161 134
0 at) = (5770, 571 5777, 5070, 500 50,
105 98 (74 58 44 21 19 9 6 (1
500,80, 8800 81 81817, 8¢, 875 8¢)

2) Keystream generation: At t = 128, the Sfinks stream
cipher has completed the initialisation processes and is ready
for keystream generation. A memory component of 7 stages
is used to apply a delay of 7 steps to the rightmost bit in the
shift register s¥. During keystream generation, the output of
the TNV function is not fed back to shift register, S, and so
the register feedback is linear. The rightmost bit in the shift
register s? is shifted to a memory stage m? at time ¢. The least
significant bit of the 16-bit output value of the S-box, y87t is
XORed with the value of stage m? to produce each keystream
bit z;. The output equation is, z; = my_; @ yg,t,l. where

_ miTl fori={0,1,2,3,4,5}
mp =

0 P
5., fori=6



IV. SLID PAIRS USING SFINKS

The main purpose of this analysis is to identify conditions
under which a slid key-IV pair of the Sfinks cipher is obtained
from a specific loaded key-IV after a number of iterations «.
Comparing the properties listed in Section II with the Sfinks
cipher, we note that properties (a) and (b) apply, but the
state update functions during the initialisation and keystream
generation processes are somewhat different. The format of the
loaded state is specified. For a given particular key-IV pair,
the task is to identify when the next loaded state may occur
during the initialisation process. Moreover, it is important to
determine relationship between the original loaded key-IV pair
(k,v) and the next slid key-IV pair (k’,v"), which is derived
from the original key-IV after a given number of iterations .

Analysis of the Sfinks stream cipher initialisation process
is complicated by the delay of 7 steps in feeding the S-box
output back into the shift register, S. However, we observe that
the correspondence between the content of stage s?° = 1 and
the next output feedback stage from the S-box s2° may lead
to slid pairs after a number of iterations «. In the remainder
of this research, we refer to stages of .S which provide inputs
to the S-box as input stages and stages of S which receive
outputs from the S-box as output stages respectively.

Some conditions need to be met for loaded state of Sfinks to
produce a slid pair after « iterations. Slid pairs can occur after
« iterations if the content of the stage s2° is 1 and the stages
from s%* to s are all zeros (to follow the Sfinks’ loading
format). The input bits to the S-box from (x;° to x}) should
be zeros except some cases as shown below. The output of
the S-box (¥4, 404> Y64 Y3.0> ¥6.+» ¥0.¢) should also be zeros
except yg 15 at t = 15 and other special cases as shown later.

The content of stage s%°~* can become 0 by flipping the
content of the stage s® to O during the « iterations. The
content of the stage s9° should be 1. These can be achieved by
two steps. Firstly, the content of the stage s)° can be flipped
after 15 iterations, due to the next output stage of the S-box
573. That requires that the S-box output 3,5 = 1, so that
539 @ ygd 15 = 0. Secondly, to ensure the content of stage s2°
is 1 after « iterations, the content of the stage 585+a should
be 1. The content of stages s3° "' to 53¢ should be zeros
and the output stages that lie between s and s° should be
maintained to meet the required contents, zeros, during the «
iterations. Based on these requirements, it is impossible to get
slid pairs before ¢ = 15.

For a« > 15 iterations, it may be possible that slid pairs
occur. If o = 15, then the content of stage sj!° should be 1
as it will be shifted to s72 after 15 iterations. Note that this
value of 1 will pass the input stages s!°° at + = 5 and 5%
at t = 12. The input stage s'°° should be considered where
the output stages (Y4, Ya 1> ¥6.+» Ya.c Ué.+» Ya.) are zeros. The
content of the input stage s°® will be 1 at ¢ = 12 and its output
will feed back at ¢ = 19. This is after getting the required slid
pair but will affect the content of the pipeline.

We applied exhaustive search over the inputs and outputs
of the S-box to find appropriate inputs and outputs to meet

the required conditions. For ac = 15, there is no input value to
the S-box with (z?,...,2}) = (0,...,0) and z}° = 1 that
gives (Y6l Y8.0» Y0 Ya.e Y6, ¥6.) = (0,...,0). Therefore
more iterations are required to obtain a slid pair. Addition-
ally, the only input to the S-box that satisfies the condition
(% ...,2}) = (0,...,0) is the 16 zeros (0,...,0) inputs
that gives 16 output of zeros (0, ...,0) at any time ¢. So, this
type of input can not flip the content of s%°. Likewise, it is
not possible to satisfy the conditions for a slid pair to occur
at t = 16.

However, for a > 17 iterations, slid pairs are possible
using specific conditions between the outputs of the S-box.
In this case we look for two output stages with the shortest
distance between them, namely s'! and s'7. These conditions
are applied to the input and output of the S-box during the «
iterations. According to the Sfinks’ format pattern, the input
of the S-box (z{°,...,z;) must be zeros (0,...,0) during
the affected iterations (from 0 < ¢ < (a — 7) except some
iterations). For example, the content of the input stage s.%%
will be 1, which is the input bit of S-box x1% ,; = 1. These
conditions of the input of the S-box apply up to ¢ = aa—7. The
output of the S-box during the « iterations should maintain the
Sfinks’ pattern at ¢ = «. Therefore, the output bit of the S-
bOX (Y6 Y0 4> Y6.4> Yo, Y6 4 ¥0.¢) should be zeros. There are
some exceptions for these conditions. For example, at time
t = 15 the y{ ;5 should have 1 to flip the value of 532 to 0.
As well, it may be required to flip some bits and flip them
again to 0 during the « iterations. This process is according
to the available input-output pairs of the S-box that follow the
required conditions as shown later.

The new-bit of the shift register s2°° is an input of the S-

box, x%ﬁ. Therefore, it introduces another condition for the
linear feedback function of the shift register. If the required
new-bit of the shift register is 0 and the real new-bit is 1, there
is a freedom to flip any tap-bit of the linear feedback function
to get the required bit without changing any other condition.

The cases aw = 17, 18 and 19 are investigated in Section V.
A general method of generating slid pairs can be applied until
a = 23 (by fixing 56 key bits and 45 IV bits). After that, the
situation becomes more complicated because the interaction
between the linear feedback function and the S-box output
stages is more complex. Another method may be required to
identify slid pairs for higher values of a.

A. Limitations

Recall that the initial loaded state of Sfinks includes a
pipeline that contains all zeros. However, it is not possible
to obtain a slid pair with all zeros in the pipeline, for
the following reason: the content of stage s will be 1 at
t = «a — 3. Therefore in the last 7 of the « iterations, the
content of the input stages of the S-box would not be all zeros
(since 298 5 = 1). This implies that the output of the S-box
at this time, ¢ = o — 3, also can not be all zeros.



V. EXPERIMENTAL WORK

A. Experimental procedures

This section describes the procedures used to obtain the
first occurrence of slid pairs, and the simulation of the Sfinks
cipher to obtain slid pairs at time o = 17, 18 and 19. This
simulation requires an exhaustive search over the inputs and
outputs of the S-box.

1) slid pair at o = 17:

Apply a specific input to the S-box at t = 1 to
get yt, = 1. So, the input to the S-box satisfies
(m%o,.: x%) = (0,...,0) and the output must have
(yﬁ 1?3/6 1’3/6 1vy6 17y8 1) = (0,...,0) and yé,l = L
This will flip 537 to 1.

For 2 < t < 6, the input to the S-box
must satisfy (27°,....2}) = (0,...,0) and give
(Y61t Vo0 Yo.0 Yo Yo.0-Y6.) = (0,...,0).

The value of s{” = 1 will be shifted to si}
iterations.

At time ¢ = 7, a specific input to the S-box is required
so that its output will flip the value of s1} to 0 at t = 14
with the input to the S-box (2%,...,2%) = (0,...,0)

after 6

and 21 = 1 and the output (yﬁmyﬁmygmyé,% yg,?) =
(o,... ,O) and yg', = 1. This output will result in flipping
the sii to 0.

At t = 8§, the input to the S-box should be specified

to be (x3,...,2%) = (0,...,0). This input must result
in the output (Y615 Y8,8:Y6,80 Y380 U6,s) = (0,...,0) and
Yeg = 1. At t =15, it will flip the value of 533 to 0.

For 9 < t < 10, apply the following input to the
S-box to insure (:Etlo, o) = (0,...,0) to get
(yé,lta yg,m yé,m y(%,u yG,tv yg,t) =(0,...,0).

After t = 10, it is not important to restrict the input to
the S-box.

To maintain the new-bit, s?°° for ¢+ > 1, requires 10
tap-bits of the linear feedback function. The tap-bits
are chosen to be s?° to s{3* that carry k%9 to k38

respectively.

Table I shows an exhaustive search of the required in-
put/output pairs of the S-box that satisfy the above procedure.
The c1,co,c3,b; and by are for later reference in the next
section.

TABLE I: Input/output of the S-box to get the slid pairs at o = 17

Input Output
time Value time Value
1 0011110000000000 = 8 0110000100000010
c; = 0001101000000000 0000110001101000
7 co = 1010111000000000 = 14  1000110011000000
c3 = 1100111000000000 0011110100100000
3 b; = 1000000000000000 — 15 1010000101101001
by = 0111100000000000 0011000010000001

2) slid pair at o = 18:

From ¢ = 1, apply the following input to the S-
box to insure the (z1°,...,21) = (0,...,0) to get
(yé,lluyg,hyé,hy(zi,hyé,l?yg,l) =(0,...,0).

Apply a specific input to the S-box at t = 2 to get y¢ , =
1 at t = 9, the input to the S- box is (x}o,...,x%) =

(0,...,0) and the output is (Y, Vg, t7y6 0 Ve Ve =
(0,...,0) and y¢, = 1. This will flip 557 to 1.

The value of s§7 = 1 will be shifted to s!! after 6
iterations.

For 3 < t < 7, apply the following inputs to the
S-box to insure (xtlo,...w%) = (0,...,0) to get

(Y6,1> Y6 02 Y600 Y6, Yo, Y6,1) = (0, 0).

At time t = 8, a specific input to the S-box is re-
quired so that its output will flip the value of si}
and s%0 to 0 at ¢ = 15 with the input to the S-box
(3,...,28) = (0,...,0) and z{® = 1 and the output
(y6873/68vy6‘87968> (0,...,0) y68—1andy68—1.
This output will result in ﬂlppmg 51t and s$2 to 0.

For 9 < t < 11, apply the f0110w1ng 1nput to the
S-box to insure (xtlo, cooxp) = (0,...,0) to get
(yel‘),lta yg,t? yg,tv yg,t» y6,t» yg,t) =(0,...,0).

After t = 11, it is not important to restrict the input to
the S-box.

To maintain the new-bit, s?°° for ¢t > 1, requires 11
tap-bits of the linear feedback function. The tap-bits
are chosen to be s3'? to s3%? that carry v*¢ to v%°
respectively.

Table II gives a result of an exhaustive search of the
required input/output pairs of the S-box that satisfy the above
procedure.

TABLE II: Input/output of the S-box to get the slid pairs at « = 18

Input Output
time Value time Value
2 0011110000000000 = 9 0110000100000010
3 d; = 1011011000000000 15 1000100000001001
d2 = 0000111000000000 1010100101001001

3) slid pair at o = 19:

For 1 < t < 2, apply the zeros inputs to the

S-box to insure (w,}o, cooxp) = (0,...,0) to get
(y(li,lta yg,t? yg,tv y(2i,t7 yb,t7 y(OS,t) = (07 e 70)

Apply specific input to the S-box at ¢ = 3 to get yég =1.
So , the input to the S- box is (xéo, . .13:1))) (0,...,0)
and the output is (Y43, ¥4, ys 5:Y6.3:Y6,3) = (0,...,0)
and y4 5 = 1. This will flip sij) to 1 at time ¢ = 10.

For 4 < t < 7, apply the zeros input to the
S-box to insure (m%o, cooxt) = (0,...,0) to get
(yélj,lta yg,tv yg,m ygﬁtv yﬁ,t) yg,t) = (07 R ?0)

At t = 8, the input to the S-box should be specified

to be (z3,...,28%) = (0,...,0). This input will result
in the output (y6,8a Ye.s Vo8 Yo Ys.s) = (0,...,0) and
yag = 1. At t =15, it will flip the value of 532 to 0.

The value of si§ = 1 will be shifted to 511 after 6
iterations.

At time ¢t = 9, a specific input to the S-box is required so
that its output will flip the value of si} to 0. The input

to the S-box are (z9,...,78) = (0,...,0) and 28° =



1 and the output (Y4 9+ Y,9: Y3,9: Y6,0: Y6.0) = (Oa )
and yG 9 = 1. This output will result in flipping s1§ to 0
at time ¢ = 16.

e For 10 < t < 12, apply the zeros input to the S-
box to insure that (x%o,...,x%) = (0,...,0) to get
(yé,lta yg,ta yg,tv yg,tv yﬁ‘,tv yﬁ,t) =(0,...,0).

o After ¢t = 12, it is not important to restrict the input to
the S-box.

e To maintain the new-bit, 3555 for ¢ > 1, requires 12
tap-bits of the linear feedback function. The tap-bits
are chosen to be s2'2 to s3%* that carry v3¢ to v?7

respectively.

As shown above, Table III shows all the possible in-
put/output values to the S-box using an exhaustive search of
the required of the S-box that satisfy the above procedure.

TABLE III: Input/output of the S-box to get the slid pairs at « = 19

Input Output
time Value time Value
3 0011110000000000 = 10  0110000100000010
3 by = 1000000000000000 — 15 1010000101101001
bs = 0111100000000000 0011000010000001
e; = 0001101000000000 0000110001101000
9 ey = 1010111000000000 = 16  1000110011000000
ez = 1100111000000000 0011110100100000

B. Findings and results

This section focuses on the result of the analysis of slid
pairs according to the previous procedures that are applied
to the Sfinks cipher. The findings of slid pairs are presented
after different number of iterations at ¢ = 17, 18 and 19. At
each specific number of iterations, the slid pairs have specific
conditions and relationship between these slid key-IV pairs.
To remind the reader, y;t denotes the ¢-th bit of j-th word of
the memory at time ¢, for ¢ € {0,1,...,15}.

1) slid pair at o = 17: The slid pair is found for a key-IV
with conditions. These conditions to get another key-IV pair
at o = 17 are to have specific values for some key-IV bits.
There are 40 and 30 bits of key and IV respectively which
should have specific values as shown below.

k' =0,i€{7574,71,70,69,68,67,48,47, 46,44, 43,
42.41,40,19,18,17,15,14,13,12,11
10,9,8,7,6,5,4,3,2,1,0}

E=1ie {72,66,39,16}

for rg = b1 and Tr7 = C1
for zg = by and z7 = o
for xg = by and z7 = c3
for xg = by and z7 = ¢
for rg = bg and T7 = Co
for rg = b2 and Tr7 = C3

(0,
(
(k73,k,45) _ g
(
(

vt =0, € {78,77,74,73,72,71,70,69, 61,60, 57, 56,
55,54, 53,27, 26,23, 22,21, 20, 19}
vt =1,i¢€ {52,18}

(0,0,0,0,0,1) for g = by and 27 = ¢4

(0,0,0,1,0,0) for xg = by and z7 = ¢

76,75 59 58 25 24y _ ) (0,1,0,0,0,0)  for x5 =b1 and w7 = c3
(@7, 07,07, 0%, 0%, 0% = (1,0,1,0,1,1) for x5 = be and 27 = 4
(1,0,1,1,1,0) for &g = by and 7 = c»

(1,1,1,0,1,0) for xg = by and z7 = c3

There are 40 and 50 free key and IV bits respectively as
shown below.

k', i€ {79,78,77,76,65,64,63,62,61,60,59,58, 57, 56,
55,54, 53,52, 51, 50,49, 38, 37, 36, 35, 34, 33,
32,31,30,29, 28, 27, 26, 25, 24, 23, 22, 21, 20}

v, i € {79,68,67,66,65,64,63,62,51,50,49, 48, 47, 46,
45,44, 43,42, 41,40, 39, 38, 37, 36, 35, 34, 33, 32,
31,30,29, 28,17, 16, 15,14, 13,12, 11, 10,9, 8, 7,
6,5,4,3,2,1,0}

There are 6 possibilities of the input to the S-box to satisfy
the required condition to get slid pairs at ¢ = 17. The second
key-1V, (k’,v’), pair can be expressed in the form of the first
key-1V, (k,v), pair as follow.

Note: Terms printed in boldface are known bits, the values of
which depend on the input of the S-box as shown in Table IV.

1)179 :7]52 e yg,s @ 1]34 D U32 @ 1)27 fesy ’U3 @ k71 e k45 ey k35 P k27 fesy k5

1}’78 :,U\’)l P ygﬂ @1)33 P v31 e9,026 Iy 'U2 @ k70 P k44 @ k34 P kzs @ k4

VT =00 @ @ ev' ok ok e kP e kP ok’

V=0’ v ev e e k¥ ok ok ek ok’

U/75 _ 48 o 'UBO o U28 o 1}23 o k79 @ k67 o k4] o k31 o k23 o k]
:’1147 o v29 @1)27 o ’U22 o k78 @ k66 o k40 @ k30 o k22 @ k[) o1

,Ul73 :’[}46 P v28 D 1}26 I} U21 P k77 @ kfi() ) k&() @ k29 P k’21 I} 1

’U/72 =’U45 P ’U27 @ ’U25 o U20 o k‘76 @ k64 o kSS @ k28 o k2[) =0

:U44 @’UQB ®U24@U19 @k75 @k63 @k37@k27 ®k19® 1=0

@1)18 @k74 o k62 @k36 o kQG e914:18 =a;

DIGS _ 42 o v24 @1)22 o Ul7 o k73 @ kb’l o k35 @ k25 o k17

@'U @’Ugl@Ulﬁ@k72@k60@k34@k24@1:O

o @v ov’ ok ek o kP ok ok’ =0
1)/66 :USQ o ’U21 @1)19 o U14 o k70 @ ]C58 o k32 @ ]sz o k14 =0

174
v

171
v
170 43 25 23
v =v v o
/68

167
v =

65 _ 38 20 18 13 69 57 31 21 13
vV =07 @vT Bv D kT Ak kT kT kT =0
34 3 1 1 12 5 56 3 2 12
0 T 30 BT a2 e kP e ek e kP @ k2 = 0
R 36 1 1 11 37 55 29 1¢ 11
VB = g et ok e ok ok okt =0
5 5
262 — 4,79 W57 = T4 — o 052 = 49 — o
- .
081 — 78 — /36 — 78 — 151 _ /68
158 72
080 — 7T — v ZZ =0T = Os 250 — /67
/7
259 — 76 VP =0 g yS /49 — /66
5 5
»'58 75 033 =70 @ yS L/48 — 4,65



N
3
<
©

04T = 6% @ 1 o4 =2l — ¢ B4 —
V46 = 63 v'® =020 =0 A
g
045 — 62 W2 =% — ¢ /39 — 1,56
UI44 — ,U(il =0 ,Ull =10 yg s k/ds — k‘55
3 =80 =0 v =T @y3 K57 — k5 1
042 — 59 L/T9 — 16 /36 _ .53
/41 _ 58 = 135 52
v =v L/78 — 15 k'35 —
140 _ 57 _ = /34 51
v =02 =0 7T = pl4 k34 — k5
/39 _ 56 _ - 133 50
v =v>2 =0 E/T6 — 13 k33 —
038 — 455 — BT5 — 12 3 532 — 49
137 54 S .
v =v""=0 /74 _ 11 13 731 48 _
136 _ 53 _ ' =v"®ygr k k_ =0
v I v _50 K73 — 10 k30 — k47 _ ¢
, =
vV =1Dyg s B2 = 9 1129 _ 146 _
. B =
V3 =l pys BT oF L/28 — 145
, =
0/33 — 450 B0 — o7 2T — g4 —
232 — 449 /69 — 4,6 E/26 — 143 —
/31 48 =
0Bl =y K08 — 5 g 1 E/25 — A2 _
/30 = 47 K67 — i K24 — kA —
29 46 =
0’20 = 1 566 — 4,3 E/23 — 40 _
v'28 — 445 565 — 32 5122 — 139 — 1
02T — 4 B/64 — o1 1721 — .38
126 _ )43 gy 12 63 _ 0 120 37 o 6
Uzs_v42 y?és K2 =Y ko =k ©Yes
7 i
v = OYer KO = kT K = k% @y,
/24 = 41 L6l _ 78 |18 — 35 ’
v/ = %0 k80 = k77 L7 — 34
022 = 4% k50 = k76 W16 _ 133
5 5
02 =38 K% = k™ =0 L5 — 1,32
220 — 37 5T — T4 — ot et
- =
o/19 — 4,36 5/56 — K73 13 280 15
18 _ 35 §/55 — T2 _ Dy,
V18 =y = ®&1=0 /12 29 15
117 _ .34 /54 71 _ k =k Py
v = k k" =0 " 28 ,
/16 — 4,33 k58 — ET0 _ K =k
/15 — 432 552 — 159 — L0 — 27
PVA % SR L5 — 68 — k'9 = |26
2 4 - 18 __ 1,25
v'13 =30 k%0 = k7 =0 kn _ k24
/12 — 429 1749 — 1,66 _ 1 k T= k%
, .
/11— 28 /48 _ .65 k' k22
!
/10 — 27 _ L/AT — .64 kZ _ k21
/7
V0 = 426 — /46 _ .63 PRz
V'8 — 25 /45 _ 1,62 L3 — 20
o7 = y24 k44 — 61 B2 — 19 —
06 — 23 — g /43 — 1,60 Bl — g8 —
05 — 22 — g K42 — 59 KO — k17 —

Conditions Input

T 7 a; v76 VSQ V25 k73 as V75 VSS V24 k45

by 1 1 0 0 0 0 0 0 0 1 0

by [ 1 0 0 0 0 1 0 1 0 1

by c3 1 0 0 0 0 1 1 0 0 1

by c1 0 1 1 1 1 0 0 0 1 0

by e 0 1 1 1 1 10 1 0 1

by 3 | O 1 1 1 111 0o 0 1

Output
Y3s Yos Yos Yos Yas Yos Yar Yar Yer Yer Yor Yar Yer

1 1 0 1 1 1 1 0 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 0 1 1
1 1 0 1 1 1 1 1 1 0 1 0 0
0 0 1 0o 0 0 1 0 0 1 0 1 0
0 0 1 0o 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 1 1 0 1 0 0

Note that 32 bits of v’ and 23 bits of &’ are fixed by the
above relations.

2) slid pair at o« = 18: For slid pair at « = 18, the
conditions to get another key-IV pair are to have specific
values for some key-IV bits at £ = 0. There are 43 and 33
bits of key and IV respectively which must have fixed values
as shown below.

k' =0, i €{76,75,74,72,71,70,69, 68, 66,49, 48, 47, 45, 44,
43,42, 41,39,20,19, 18, 16, 15, 14, 13,12, 11, 10,
9,8,7,6,5,4,3,2,1,,0}

k' =1, i €{67,46,40,17}

_J (0
k73 _{ (1)

vt =0, i €{79,78,77,76,75,74,73,72,71,70,69, 62,61, 60
58,57, 56,55, 54, 52, 28,27, 26, 24, 23, 22,
21,20, 18}

vt =1, i €{53,19}

for xg = d;
for xg = da

for xTrg = dl
for zg = do

50 25y J (L)1)
(U , U ) - { (0’0)

There are 37 and 47 free key and IV bits respectively as
shown.

k', i€ {79,78,77,65,64,63,62,61,60,59,58,57, 56, 55, 54,
53,52,51,50, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28,
27,26, 25, 24, 23,22, 21}

v, i€ {68,67,66,65,64,63,51,50,49, 48, 47, 46, 45, 44, 43,
42,41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 17
16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

There are two possibilities of the input to the S-box to
satisfy the required conditions to get a slid pair at o = 18.
The second key-IV pair, (k’,v’), can be expressed in term of
the first key-IV , (k,v), as follow.

Note: Terms printed in boldface are known bits, the values of

which depend on the input of the S-box as shown in Table V.
U/79 — ’U53 D ’U35 @ ’U33 D ’U28 oy ’U4 D k}72 o) k46 &) k36 o) k?28 @ kﬁ
,U/78 — 1)52 @ ,U34 P ,U32 P 1)27 P ’US P k71 ) k45 ) k35 f22) k‘27 &) k5
51®v33®v31@v%®v2®k70®k44€9k34®k26®k4

3
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2176 _ ZSO I ’U32 I ,USO I v25 I ’Ul D k69 ) k43 o) kSS @ k25 @ kS
UI75 — ,U49 D ,U31 D ,U29 D ,U24 D ’UO D k}68 o) k42 o) k32 ey k?24 D k}2
,U/74 — 1)48 EB,USO @028 @023 @]{:79 @k67 @kéll EBk‘Sl @]{:23 @kl @1
U/73 — 1)47 D ’U29 D ’U27 D ’U22 D k}78 o) k66 o) k}40 ey k?30 D k}22 o) kO
,U/72 1)46 P ’U28 I ’026 I ’L)21 I k77 ) k55 o) k39 @ k_29 P k21 ®1=0
U/71 — 1)45 D ’U27 D v25 D ’U20 D k76 o) k64 o) k38 e k:28 D k20 =0
,U/7O — 1)44 ) U26 ) ’U24 ) ,UlQ ) k75 ) kSS @ k37 @ k_27 P k19 =0
U/69 — ,U43 D v25 oy ,U23 D vlS D k74 o) k62 @ k36 ey k:26 D le = ag
,U/E»S — 1)42 ) 1}24 I ,1)22 I 1)17 &) k73 ) kGl P k,35 @ k25 o) k17 ®1=0
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,U/SS — 1)40 ) 1}22 ) 1)20 ) 1)15 ) k71 ) k?59 o) k33 P k,23 P k15 =0
UIGS — 1)39 D ’U21 D v19 D v14 D k?O o) k58 @ k)32 ey k?22 D k14 =0

/64 _ 1)38 @U20 @1}18 @1)13 @kGQ @k57 @k31 ®k21 @kJS =0
’U’63 — ,037 @ v19 D v17 D v12 D k}68 o) k56 @ k)30 ey k:20 D k:12 =0
U/62 — 1)36 @vls @,UIG @’Ull ey k?67 ) k55 @ k29 ey k?lg D k?ll =0
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. - .
/6l — 79 — /18 = 4,31 /45 — 163
060 — 78 _ /12 — 4,30 /44 _ 162
059 — 77 — /11— 4,29 L/43 — 61
V58 — 76 — 10 — 428 _ /42 — 1,60
037 — 7 — 0 0 =027 =90 L4l — 59
0P8 =™ =0 v'® =926 =0 /40 _ 1,58
/5% — 473 — 7 = v28 5739 — 57T
0P =072 =0 D ] /38 — .56
5 5 :
v =0 @yl WP =0 =0 K37 = k55 @1
/52 _ 70 _ 4 _ 22 _ -
v v = v =07 = |/36 — 154
/51 _ 69 _ /3 _ 21 _ -
vt =% = v v = /35 — 1,53
/50 __ 68 2 _ 20 _ -
v =v vo=v = k34 — 52
149 __ | 67 /1 _ 19 -
v v vt = =1 5
k/33 — kol
V48 — 66 20 = 18 -1 2 i
a7 65 179 17 k%% = k50
v =% @1 K = )
131 49
’UI46 — ve4 k/78 16 k =k =0
/45— 63 KT — 15 k30 = k48 =
o' = 62 _ L/76 14 k%0 = k47 =
PRZE S &5 13 k'8 = 46 =
127 _ 145 _
0742 — 460 _ T = 012 g yéss K27 = k45 =
o4l — /59 B3 — 11 k26 — 44 — o
V40 — 58 _ g E/72 = 10 k25 =k =0
124 42
W39 — 57 _ KT = 9 Kt =k""=0
038 — 4,56 — B/TO — 8 B/23 — pAl
: 55
037 =% =0 k69 = o7 K22 =k =1
0’36 — 54 — k68 = 5 @1 k21 — 139 —
035 — 458 — 1 B/6T — 45 /20 — .38
034 — 52 1766 — 44 19 = k37 g yg s
2’33 — 451 k65 — o3 L8 — 1,36 ’
0’32 — 50 k64 — 42 /17— 35
0’31 = 49 k63 = 1 L/16 _ 134
/30 — 48 5762 — 0 15 _ 8
129 47 /61 79
= K° =k L1432
/28 _ 46 1’60 _ 78 -
= = 1718 — 31
127 _ 45 B/59 — 17T =
v = T =k K12 = k30 g1
126 _ , 44 L/58 — 76 — =
B/ 29
-
V/25 — 43 k5T — 175 — 0 o 2
124 _ 42 156 _ .74 _ k =k
= K =k =0 9 o7
223 — i1 L5 — K73 kY =k
122 40 54 72 k'8 = k26
vz K=k =0 7 25
. _ 125
V21 — 4,39 53 — 71— k . k24
6 _
/20 — 4,38 k52 — k70 — o k" =k
15 _ 123
19 — 4,37 k51 — k69 — o k° =k
14 _ 122
/18 — 4,36 k50 — 68 — ¢ k* =k
- 13 _ 121
/1T — 4,35 1749 — 167 _ 1 K3 =k
: 56 2 20
V16 — 4,34 1748 _ 1,66 _ k2?2 =k20 =0
V15 — 4,33 L/AT — 165 Kl = k19 =0
V14 — 4,32 /46 _ .64 O — k18 —

Note that 43 bits of v and 25 bits of &k’ are fixed by the
above relations.

TABLE V: 2 alternative inputs and outputs to the S-box at o = 18

Condition Input Output
g ag V89 25 K73 | yl3 8 6
b1 1 1 1 0 0 0 0
ba 0 0 0 1 1 1 1

3) slid pair at o = 19: For the slid pair at o = 19, there
are 46 and 35 bits of key and IV respectively which must take
fixed value as follow.

k' =0,i €{77,76,75,74,72,71,70,69, 67, 66, 50, 49, 48,
46,45, 44, 43,42, 40, 39,21, 20,19,17,16,...,0}
k' =1,i €{68,41,18,17}

for xg = by and 9 = €3
for rg = bl and Tg = €9
for rg = b1 and Trg = €3
for Trg = bg and Tg = €1
for xg = by and zg = ey
for xg = by and g9 = e3

0,

0,

0

73 147\ _ ;
(k 7k )_ 1’
1
1

i

NN N S S
== O = = O
—_ D

)

v =0,i €{79,78,76,75,74,73,72,71,70, 69, 63, 62, 61, 58,
57,56,55,53,52,29, 28,27, 24,23,22,21,19, 18}
vt =1,i €{54,20}

(0,0,0,0,1,0) for xg = by and z9 = €1

(0,0,1,0,0,0) for zg = by and zg = e

77 76 60 50 026 25y — ) (1,0,0,0,0,0)  for 25 =b; and 2y =3
(077,070 00 059 926 25) = (0.1,0.1,1.1) for a5 = by and o = 1
(0,1,1,1,0,1)  for zs = be and zg = e

(1,1,0,1,0,1)  for xg = be and z9 = e3

As for the cases v = 17 and 18, expressions can again
be determined for (k’,v’) in terms of (k,v). These are not
reported in this paper.

All the slid pairs are obtained using computer simulation
for all possible inputs and outputs of the S-box. As shown
previously, slid pairs occur according to specific conditions
at time ¢ > 17. Slid pairs occur with a limitation, where the
pipeline can not be reset to all zeros.

C. Shifted keystream

We now consider the additional constraints which must be
satisfied in order for slid pair (k,v) and (k’,v’) to generate
shifted keystream sequences. These constraints depend on the
degree of the similarity between the state update functions
during the initialisation and keystream generation processes.

To obtain a shifted keystream from the slid pairs at o = 17,
all the output of the S-box for the last 17 iterations of the
initialisation process (from ¢ = 111 to ¢t = 128) should be
all zeros to get the linear feedback during these iterations of
the initialisation process. Therefore, the input of the S-box
from ¢ = 104 to ¢ = 121 should be zeros. To ensure all the
relevent input bits are zeros, there are 187 bits which should
be fixed and another 17 bits to be fixed for the linear feedback
function. The total fixed bits are 204 bits. The probability of
satisfying 204 independent constraints is 272%. In this case,
the free bits at the loaded state are 90 bits. Hence, there are
290 possible slid pairs and the probability of slid pair gives
an out of phase keystream is 27294, Therefore, the expected
number of shifted keystream sequences from these slid pairs
= 27204 % 290 — 97114 Qo it seems extremely unlikely that
any shifted keystream will result from any of the slid pairs.

Similarly, for the slid pairs at « = 18 and 19, the last
18 and 19 outputs of the S-box should be zeros respectively.



The total fixed bits in these cases are 211 and 218 bits. The
probability of satisfying 211 and 218 independent constraints
are 27211 and 27218 respectively. In this case, the free bits
at the loaded state are 84 and 79 bits. Therefore expected
number of keystream out of phase shifted by 18 and 19 bits

from any of the relevant slid pairs are 2(—211484) — 9-127
and 2(—218+79) _ 9-139

VI. ATTACK PROCEDURE

Since Sfinks has an 80-bit key and a 256-bit shift register,
it is not feasible to simply guess the whole secret key and
then generate the keystream to check whether the guess is
correct. However, if it is possible to identify the occurrence
of a slid pair (extremely unlikely as discussed in Section V),
this enables us to use the resulting relationship to reduce the
number of key bits that need to be guessed, forming the basis
for an attack on the cipher. The attack presented in this paper
uses the properties of the slide attacks. We assume a known-
plaintext attack scenario. The following algorithm outlines the
attacking procedure.

This algorithm is described for 17-bit shifted versions of
keystream. However, it can be extended to other shifts as
well. The algorithm depends on two keystreams with unknown
secret keys and known IV’s such that the resulting keystreams
are shifted versions of one another as mentioned in Section II.
Note that we are interested here to find the secret key.

Recalling the specification of the loading phase of Sfinks
in Section III, it is impossible to find two shifted keystreams
generated by a secret key with different IV’s. Therefore, in
this case, we are focusing on two keystreams generated by
diferent key-IV pairs, (k,v) and (k',v").

Attack Algorithm:

Inputs: Pairs of plaintext and ciphertext.

Stepl: From the known-plaintext-ciphertext attack, XOR the
plaintext with the corresponding ciphertext to get the
keystream sequence

Step2: Divide each keystream sequence into separate
keystreams. Each keystream corresponds to a dif-
ferent key-IV combination based on the rekying

process.
Step3: Check the similarity of keystream; and
keystream; < 17 for every available key-IV

pair, using keystream; @ keystream; < 17.
« If so, note the key-IV pairs (k,v) and (K, ).
« If not, the algorithm fails for this 17-bit shift.
Step4: If shifted keystream has been identified, guess and
check each possible key, as follows
e Using the relevant of ¢ = 17 equations in
Section V, where the IV’s v and v’ are known.
o Due to the slid pairs, there are 40 and 23 bits of
the k£ and k&’ are known and fixed,
o Guess the 40 free key bits of k£ in the relevant
set of equations in Section V.
o Use these free key bits and the known IV’s to
calculate the remaining key bits of &’ using the
related equations in Section V.

o Use the generated secret key k&’ with the corre-
sponding v’ to generate its keystream using the
Sfinks algorithm.

o Compare between the generated keystream and
the known keystream.

— If they are identical, the secret keys % and &’
have been found.

— If not, repeat the process for another guess of
k and calculate the &’.

Step3: Use the secret key k and k' with known IV’s to
decrypt the entire related ciphertexts.
Outputs: The secret keys k and k’.

In step 3, if two keystreams have been identified as shifted
keystream by 17 bits, then the guessing process should cover
the 40 free key bits instead of the 80 key bits. For each guess,
it requires to substitute the guessed key bits into the relevant
equations in Section V to find the secret key %’. At this time,
it is not clear whether the guessed key is correct or not. The
proposed key must be verified by generating a keystream that
should be same as the known keystream.

If the generated keystream is similar to the known keystream
then the secret key is correct, if not use another guess. Note
that, the above algorithm is for 17-bit shifts. If it fails, then it
is possible to try for 18-bit shifts or more.

Attacking Complexity: In step 3, the comparison depends
on the available length of the plaintext and its corresponding
ciphertext. If an attacker has enough plaintext-ciphertext pairs,
it is possible to check the shifted keystreams. As mentioned in
Section V, the probability of obtaining shifted keystreams from
a given slid pair is 27294, and the total number of possible slid
pairs is 2°°. Then the expected number of shifted keystreams
from slid pairs is 2714, Thus this cipher appears to be secure
for slid attacks, but the presence of slid pairs is still a concern.

VII. ANALYSIS OF SFINKS WITH SLIGHT MODIFICATION

This section analyses a slightly modified version of Sfinks,
where the modification is applied to the padding format of
Sfinks during the loading phase. This analysis shows that
the effect of a minor change in the padding increases the
probability of occurrence of slid pairs and the probability of
obtaining shifted keystreams from given slid pairs.

In this modification, we change the pattern of the padding
to be zeros for all stages (s to s%°). In other words, we set
the content of stage s”° to 0 instead of 1. The slid pairs may
now occur after only one clock under two conditions. Firstly,
the 16-bit input to the S-box must be zero at time ¢ = 1. This
requires us to fix the values of 8 stages (5375 5244 5227 5193,
5161 5134 5105 598) to be zeros to ensure that the pipeline is
still in the initial condition. The last seven of these stages can
be expressed in terms of key and IV bits as (k%, k39, k10, k3,
189 052, v18). In addition, since s2°° = 216 must be zero, the
linear feedback function imposes a condition that the XOR of
the following bits must be zero: (k%8, k%6, k30, k20, k12 ¢34,
1119, 1)17, v12), so that 8%55 = 0. Secondly, the content of 586

must be similar to the padding, that is s¢ = s3° = 0.

)



Thus, a slid pair with a zeroed pipeline can be obtained
by fixing 9 bits out of the 160 key-IV bits. Therefore, the
proportion of valid key-IV pairs which lead to these slid pairs
is 279, Hence there are 21609 = 215! glid pairs for o = 1.

A slid pair can lead to an out-of-phase keystream by fixing
another 16 bits to ensure that the last iteration of the initial-
isation process at ¢ = 128 is linear. Specifically, we require
that all 16 input bits of the S-box at time ¢ = 121 should
be zeros. The probability of satisfying these 16 independent
constraints is 2716, Therefore, the expected proportion of Key-
IV pairs that lead to phase shifted keystream with 1 step is
279 x 2716 — 225 and the expected number of out of phase
keystream sequences is 2191 x 2716 = 2135,

We see that a small change in the padding format during
the loading phase of the initialisation has hugely increased
the probability of obtaining both slid pairs and corresponding
shifted keystream. As expressed in this section and Section V,
there are 2'°! and 2°° out of 2160 possible slid key-IV pairs
for the modified version and current cipher respectively. The
probabilities of a slid pair that gives a shifted keystream are
2716 and 27294 for these versions respectively.

VIII. CONCLUSION

The occurrence of slid pairs in a stream cipher depends
on the similarity of state update functions and the similarity
of each iteration in the initialisation process and keystream
generation. For most stream ciphers, the iterations of the
initialisation process are identical, and the iterations of the
keystream generation process are identical too, although the
state update function of the initialisation process may differ
from the state update function of the keystream generation.
Therefore, slid (k,v) pairs with shifted keystream sequences
in stream ciphers are possible. For the Sfinks cipher, the state
update functions of initialisation and keystream generation
processes are quite different, where the initialisation update
function is nonlinear and the keystream generation state update
is a purely linear function.

For Sfinks, the padding pattern and the form of the state
update function defer the first slid pair to 17 iterations. It is
possible to find slid pairs by fixing 70 bits out of 160 key-IV
bits. Although the proportion of valid key-IV pairs which lead
to these slid pairs is small (2°°) out of (2!67), the existence
of such pairs is undesirable property, which can be avoided
by carefully designing the cipher.

It is obvious that the state update functions of the initial-
isation process and the keystream generator and the padding
system affect the complexity of slid pairs. In the slightly
modified version of Sfinks when the padding consists entirely
of zeros, it is possible to get a phase shifted keystream based
on a slid pair every 22° initialisations. Note that for Sfinks
without this modification, it is extremely unlikely that any
of the slid pairs which occur would lead to phase shifted
keystream.

It is a general belief among the designers of stream ciphers
that if the number of iterations of a cipher is increased, the
cipher may become very strong. We have demonstrated that the

slid pairs can occur in Sfinks at time ¢ > 17 for key-IV pairs,
although these pairs are very unlikely to lead to phase shifted
keystream. However, the fact that slid pairs can occur in the
cipher is still a concern because it is equivalent to reducing
the effective number of iterations during initialisation, and this
may decrease the security of the initialisation process of the
cipher.

The probability of success for slide attacks on stream
ciphers like Sfinks can be reduced by increasing the size of
the internal state, destroying the similarity of the state update
functions of the initialisation process and keystream generation
or designing the pattern of padding in a proper way to defer
the slid pairs as long as possible. For example, if the content
of the stage s in Sfinks is changed to a 1 in the padding
format, this will defer the occurrence of slid pair to @ > 24
and the relevant conditions on the state contents will also be
more complicated as mentioned previously. This will result in
a lower probability of slid pairs occurring.
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