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Abstract—Sfinks is a shift register based stream cipher de-
signed for hardware implementation and submitted to the eS-
TREAM project. In this paper, we analyse the initialisation pro-
cess of Sfinks. We demonstrate a slid property of the loaded state
of the Sfinks cipher, where multiple key-IV pairs may produce
phase shifted keystream sequences. The state update functions of
both the initialisation process and keystream generation and also
the pattern of the padding affect generation of the slid pairs.

Index Terms—Initialisation process, Sfinks, Slide attack, Slid
pairs, Slid resynchronisation, Stream cipher.

I. INTRODUCTION

The Sfinks [1] stream cipher was submitted to the eS-
TREAM project [2], the ECRYPT call for stream cipher
proposals, in April 2005. It is a bit-based stream cipher
that takes an 80-bit secret key and 80-bit IV as inputs into
a 256-bit initial register. Sfinks is categorized as PROFILE
2A; suitable for hardware applications and with an associated
authentication method. This research considers specifically the
interaction between the initialisation process and the keystream
generation process of the Sfinks stream cipher that can produce
slid pairs generated by different key-IV pairs.

Most recent stream cipher proposals require an initialisation
process as an essential part of the stream ciphers’ specification.
During the initialisation process, a secret key, k, and an initial
value (IV), v, are loaded into an internal state and then
processed to be diffused across the internal state. A well de-
signed initialisation process for a keystream generator should
ensure that each key-IV pair (k, v) generates a distinct and
unpredictable keystream sequence. This is possible because
the size of the internal state should be at least twice the key
size to avoid time-memory trade-off attacks [3].

For stream ciphers, it is sometimes possible to find different
key-IV pairs that produce phase shifted keystreams [4]–[8].
The state update function for the initialisation process defines
a cycle of transitions of the internal state. Therefore, each
(k, v) pair represents a point on such a cycle. If the length of
the cycle(s) is smaller than the total number of possible key-
IV pairs multiplied by the maximum length of the keystream,
then there are overlaps between some keystream generated by
different key-IV pairs. If it is possible to find a second loaded
state generated by a pair (k′, v′) as a slid pair of the key-IV
pair (k, v) after a number of iterations, α, then, the (k′, v′)
pair is in the same cycle as the (k, v) pair. The probability

of obtaining shifted keystream sequences from such a pair
depends on the distance between (k′, v′) and (k, v) and the
degree of similarity of the state update functions used during
the initialisation process and the keystream generation process.

This paper is organized as follows. Section II describes
resynchronisation and slide attacks on stream ciphers. Sec-
tion III presents a full description of the Sfinks stream cipher.
A theoretical analysis of slid pairs in the Sfinks cipher is
presented in Section IV. In Section V, an experimental simula-
tion supports the theoretical analysis. A practical procedure to
attack Sfinks using the slid property is presented in Section VI.
Section VII investigates the effect of a one bit modification
of the padding patterns of Sfinks on slid pairs. Section VIII
concludes with a discussion of the causes of slid pairs and
methods for prevention or mitigation.

II. RESYNCHRONISATION AND SLIDE ATTACKS

The slide attack is a generic attack which was firstly applied
to block ciphers by Biryukov and Wagner in 1999 [8] and
2000 [9], and has also been applied to stream ciphers that
are based on block ciphers, such as LEX [10] and WAKE-
ROFB [8]. More recently slide attacks have been applied to
other stream ciphers, such as Grain [4]–[6] and Trivium [7].

When a key-IV pair (k′, v′) produces a loaded state that
can also be obtained from another key-IV pair (k, v) after
a number of iterations α of the initialisation state update
function, we refer to these two states as a slid pair. The
keystream generated by the pair (k′, v′) may then be a phase-
shifted version of the keystream generated by (k, v), shifted by
α bits as shown in Figure 1. This occurs when the following
properties hold for the initialisation process and key stream
generation:
a) Iterations of the initialisation process are similar to each

other.
b) Iterations of the keystream generation process are similar

to each other.
c) State update functions for both of the initialisation and

keystream generator processes have a degree of similarity.
Most stream ciphers meet the first two conditions above,

but different ciphers vary greatly in the extent to which
the third condition applies. Slid pairs can be expressed as
{(k, v), (k′, v′), α}, where (k, v) is a key-IV pair that produces
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Fig. 1: slid pairs on stream cipher

another loaded state with key-IV pair (k′, v′) after α iterations
of the initialisation state update function.

Previous analysis [4]–[7] focussed on the concern that slid
pairs lead to phase shifted keystream, which may in turn reveal
information about some or all of secret key bits. We consider
this issue in further detail later. There is also a secondary
concern with the existence of slid pairs, as follows. If the
initialisation phase of a stream cipher involves N iterations of
the state update function where the loaded state for pair (k, v)
leads to a slid pair (k′, v′) after α iterations, then the initial
state prior to keystream generation can be obtained from the
loaded state for (k′, v′) after only (N−α) iterations. Thus the
existence of slid pairs may imply a decrease in the effective
number of iterations during the initialisation process. We now
return to the issue of slid pairs leading to shifted keystream
sequences.

Slide attacks have recently been applied to stream ciphers
which are not based on block ciphers such as the Grain
family of stream ciphers [11]–[13]. The analysis of Grain
v1.0 [12] in [6] shows that for any key-IV pair (k, v) there
exists a related (k′, v′) pair which generates a 1-bit shifted
keystream with a probability of 2−2. In general, if a key-IV
pair, (k, v), produces another loaded state with (k′, v′) pair
after α iterations, then the keystream generated by (k′, v′) is
shifted by α bit(s) from the original keystream with probability
2−2α [4]. Zhang and Wang also demonstrated some sliding
weak key-IV combinations that apply to various members of
the Grain family of ciphers [5].

Slid pairs have also been reported for the Trivium stream
cipher [14]. This cipher was analyzed by Priemuth-Schmid and
Biryukov [7] in 2008. They found more than 239 slid pairs out
of 280 keys.

The probability of obtaining a slid pair that results in a
correspondingly shifted keystream depends on two factors: the
probability of getting a legitimate loaded state with (k′, v′)
pair after α iterations of the initialisation process (P1) and
the probability (P2) that the first α iterations of the keystream
generation for the (k, v) are same as the last α iterations of the
initialisation for the (k′, v′). The total probability for obtaining
a slid pair that result in phase-shifted keystream is the product
of these two probabilities, as shown in Figure 1.

III. SFINKS STREAM CIPHER

A. Description of Sfinks

The Sfinks stream cipher [1] has two main components: a
shift register, S, and a nonlinear one-to-one inversion function
INV , as shown in Figure 2. During the initialisation, it
also uses a pipeline (memory) to delay the output of the
INV function before combining this output with the shift
register content. Additionally, another memory is used during
keystream generation to delay the output bit of the shift
register by 7 steps before combining it with a specific bit of
the INV function to generate a new keystream bit.

Let sit denote the contents of register stage i at time t, where
i = 0, 1, . . . 255 and t ≥ 0. Sfinks uses an 80-bit secret key
k = k0, . . . , k79 and 80-bit initial value v = v0, . . . , v79. The
linear feedback function is described as following.

s255t+1 = s212t ⊕ s194t ⊕ s192t ⊕ s187t ⊕ s163t ⊕ s151t

⊕ s125t ⊕ s115t ⊕ s115t ⊕ s107t ⊕ s85t ⊕ s66t (1)

⊕ s64t ⊕ s52t ⊕ s48t ⊕ s14t ⊕ s0t
The nonlinear function INV can be considered as a 16×16

bit S-box. The inversion function is used during both initiali-
sation and keystream generation, but in different ways in each
case. Let xt and y6,t denote the 16-bit input and output of
INV respectively at time t, where xt = (x16t , . . . , x

1
t ) and

y6,t = (y156,t, . . . , y
0
6,t). Let xit denote the i-th bit of the input of

the S-box, yj,t denote the j-th word of 16 bits (j = 0, 1, . . . , 6)
in the pipeline (memory) and yij,t denote the i-th bit of yj,t,
all at time t. INV is an invertible function, F16

2 → F16
2 that

calculates the inverse of the 16-bit input, modulo the primitive
polynomial X16 +X5 +X3 +X2 + 1. The 16 input bits are
taken from 16 register stages at time t as follows.

(x16t , . . . , x
1
t ) =(s255t , s244t , s227t , s193t , s161t , s134t , s105t ,

s98t , s
74
t , s

58
t , s

44
t , s

21
t , s

19
t , s

9
t , s

6
t , s

1
t ) (2)

The output word y6,t is delayed to become y0,t. The delayed
version of the 16-bit S-box output, y0,t, is treated as 16 bit
values as y0,t = (y150,t, . . . , y

0
0,t). During the initialisation, these

bits are fed back to specified stages of the shift register. During
keystream generation, only one bit of the output of the INV is
used, and this bit contributes to the formation of the keystream
bit.

During initialisation, the output of the S-box is stored in a
pipeline (memory), yj,t for 0 ≤ j ≤ 6, to manage the delay of
7 steps. The total required memory to store seven 16-bit output
bits is 112 memory bits. Consequently, the total effective state
during the initialisation process is the sum of shift register size
and the number of memory bits: 368 bits. During keystream
generation, a memory of only 7 bits, mi for 0 ≤ i ≤ 6, is
used to perform a delay of 7 steps to stage s0 that is used to
generate a new keystream bit, zt. The memory stages, y0j,t are
also used to delay y06,t for this purpose, but the remaining 15
bits of S-box from y1j,t to y15j,t for 0 ≤ j ≤ 6 are not used



during the keystream generation. Therefore, the total effective
state size during keystream generation is 270.
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Fig. 2: Keystream generator of Sfinks stream cipher

1) Initialisation Process: The initialisation process takes as
input the 80-bit key and 80-bit IV and performs 128 iterations
to produce the 368-bit initial state. Once this initial state is
obtained, keystream generation can begin. The initialisation
process is performed in two phases, which we refer to as
loading and diffusion.

Note: the reference implementation of Sfinks uses t = −128
to denote the start of the diffusion process but, for simplicity,
we will use t = 0 to denote this time point.

a) Loading Phase: Firstly, all of the register stages are
set to zero. Then the 80-bit key and 80-bit IV are transferred
to specified register positions s96+i0 = ki, for 0 ≤ i ≤ 79,
and s176+i0 = vi, for 0 ≤ i ≤ 79. The register stage s950 = 1
and the remaining si0 = 0, for 0 ≤ i ≤ 94. The output of
the S-box is set to all-zero for the first seven 16-bit outputs,
yij,0 = 0 for 0 ≤ j ≤ 6 and 0 ≤ i ≤ 15 (the initial value of
the pipeline). In [1] this process is described as necessary to
clear the pipeline stages in the hardware implementation and
to provide the initial values of the output of the S-box to allow
for the delay of 7 steps.

When both the secret key and IV have been transferred
and the rest of the state bits (the rest of shift register and
the memory cells) are fixed to the designated values, the
Sfinks stream cipher is in its loaded state. Following this, the
diffusion phase begins.

b) Diffusion Phase: The diffusion phase consists of
128 iterations of the initialisation state-update function. Each
iteration can be considered as a function which maps the state
space to itself. After the diffusion phase is completed, the
keystream generator is said to be in its initial state.

The state update function for the initialisation process uses
Equation 1 and the output of the nonlinear S-box function. The
S-box output feeds back into 16 specified stages of the shift
register with a time delay of 7 steps as detailed below. Figure
3 gives a general overview of state update function during the
diffusion phase of the Sfinks stream cipher.

sit = si+1
t−1 ⊕ yi mod 16

0,t−1 (3)
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Fig. 3: Initialisation processes of Sfinks stream cipher

for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154, 173,
179, 204, 213, 232, 247}. All other bits are shifted normally,
i.e. sit = si+1

t−1 for all other i’s . At each iteration, the shift
register is clocked and then the INV function is called to
calculate the inverse of the 16-bit input to the S-box. This
is stored as the S-box output in the memory where the first
input is the first output. The 16-bit output of the memory is
XORed with the contents of the 16 specified stages of the shift
register to form the contents of another 16 stages of the shift
register. The S-box function is the only nonlinear component
in the initialisation process. A complete description of the state
update function is:

sit =



si+1
t−1 for i = {0, 1, . . . , 254} except {11, 17, 41, 52, 66, 80,

111, 118, 142, 154, 173, 179, 204, 213, 232, 247}

si+1
t−1 ⊕ yi mod 16

0,t−1 for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154,
173, 179, 204, 213, 232, 247}⊕

j s
j
t−1 for i = 255

for j = {0, 14, 48, 52, 64, 66, 85, 107, 115, 125, 151,
163, 187, 192, 194, 212}

yj,t =


yj+1,t−1 for j = {0, 1, 2, 3, 4, 5}

INV (x16, . . . , x1) for j = 6
(x16, . . . , x1) = (s255t , s244t , s227t , s193t , s161t , s134t ,
s105t , s98t , s

74
t , s

58
t , s

44
t , s

21
t , s

19
t , s

9
t , s

6
t , s

1
t )

2) Keystream generation: At t = 128, the Sfinks stream
cipher has completed the initialisation processes and is ready
for keystream generation. A memory component of 7 stages
is used to apply a delay of 7 steps to the rightmost bit in the
shift register s0t . During keystream generation, the output of
the INV function is not fed back to shift register, S, and so
the register feedback is linear. The rightmost bit in the shift
register s0t is shifted to a memory stage m6

t at time t. The least
significant bit of the 16-bit output value of the S-box, y00,t is
XORed with the value of stage m0

t to produce each keystream
bit zt. The output equation is, zt = m0

t−1 ⊕ y00,t−1. where

mi
t =

 mi+1
t−1 for i = {0, 1, 2, 3, 4, 5}

s0t−1 for i = 6



IV. SLID PAIRS USING SFINKS

The main purpose of this analysis is to identify conditions
under which a slid key-IV pair of the Sfinks cipher is obtained
from a specific loaded key-IV after a number of iterations α.
Comparing the properties listed in Section II with the Sfinks
cipher, we note that properties (a) and (b) apply, but the
state update functions during the initialisation and keystream
generation processes are somewhat different. The format of the
loaded state is specified. For a given particular key-IV pair,
the task is to identify when the next loaded state may occur
during the initialisation process. Moreover, it is important to
determine relationship between the original loaded key-IV pair
(k, v) and the next slid key-IV pair (k′, v′), which is derived
from the original key-IV after a given number of iterations α.

Analysis of the Sfinks stream cipher initialisation process
is complicated by the delay of 7 steps in feeding the S-box
output back into the shift register, S. However, we observe that
the correspondence between the content of stage s95 = 1 and
the next output feedback stage from the S-box s80 may lead
to slid pairs after a number of iterations α. In the remainder
of this research, we refer to stages of S which provide inputs
to the S-box as input stages and stages of S which receive
outputs from the S-box as output stages respectively.

Some conditions need to be met for loaded state of Sfinks to
produce a slid pair after α iterations. Slid pairs can occur after
α iterations if the content of the stage s95α is 1 and the stages
from s94α to s0α are all zeros (to follow the Sfinks’ loading
format). The input bits to the S-box from (x10t to x1t ) should
be zeros except some cases as shown below. The output of
the S-box (y110,t, y

9
0,t, y

4
0,t, y

2
0,t, y

1
0,t, y

0
0,t) should also be zeros

except y00,15 at t = 15 and other special cases as shown later.
The content of stage s95−αα can become 0 by flipping the

content of the stage s950 to 0 during the α iterations. The
content of the stage s95α should be 1. These can be achieved by
two steps. Firstly, the content of the stage s950 can be flipped
after 15 iterations, due to the next output stage of the S-box
s8015. That requires that the S-box output y00,15 = 1, so that
s8015 ⊕ y06,15 = 0. Secondly, to ensure the content of stage s95α
is 1 after α iterations, the content of the stage s95+α0 should
be 1. The content of stages s95+α−10 to s960 should be zeros
and the output stages that lie between s95 and s0 should be
maintained to meet the required contents, zeros, during the α
iterations. Based on these requirements, it is impossible to get
slid pairs before t = 15.

For α ≥ 15 iterations, it may be possible that slid pairs
occur. If α = 15, then the content of stage s1100 should be 1
as it will be shifted to s9515 after 15 iterations. Note that this
value of 1 will pass the input stages s105 at t = 5 and s98

at t = 12. The input stage s105 should be considered where
the output stages (y116,t, y

9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) are zeros. The

content of the input stage s98 will be 1 at t = 12 and its output
will feed back at t = 19. This is after getting the required slid
pair but will affect the content of the pipeline.

We applied exhaustive search over the inputs and outputs
of the S-box to find appropriate inputs and outputs to meet

the required conditions. For α = 15, there is no input value to
the S-box with (x9t , . . . , x

1
t ) = (0, . . . , 0) and x10t = 1 that

gives (y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0). Therefore

more iterations are required to obtain a slid pair. Addition-
ally, the only input to the S-box that satisfies the condition
(x10t , . . . , x

1
t ) = (0, . . . , 0) is the 16 zeros (0, . . . , 0) inputs

that gives 16 output of zeros (0, . . . , 0) at any time t. So, this
type of input can not flip the content of s80. Likewise, it is
not possible to satisfy the conditions for a slid pair to occur
at t = 16.

However, for α ≥ 17 iterations, slid pairs are possible
using specific conditions between the outputs of the S-box.
In this case we look for two output stages with the shortest
distance between them, namely s11 and s17. These conditions
are applied to the input and output of the S-box during the α
iterations. According to the Sfinks’ format pattern, the input
of the S-box (x10t , . . . , x

1
t ) must be zeros (0, . . . , 0) during

the affected iterations (from 0 ≤ t ≤ (α − 7) except some
iterations). For example, the content of the input stage s105α−10
will be 1, which is the input bit of S-box x10α−10 = 1. These
conditions of the input of the S-box apply up to t = α−7. The
output of the S-box during the α iterations should maintain the
Sfinks’ pattern at t = α. Therefore, the output bit of the S-
box (y110,t, y

9
0,t, y

4
0,t, y

2
0,t, y

1
0,t, y

0
0,t) should be zeros. There are

some exceptions for these conditions. For example, at time
t = 15 the y00,15 should have 1 to flip the value of s8015 to 0.
As well, it may be required to flip some bits and flip them
again to 0 during the α iterations. This process is according
to the available input-output pairs of the S-box that follow the
required conditions as shown later.

The new-bit of the shift register s255t is an input of the S-
box, x16t . Therefore, it introduces another condition for the
linear feedback function of the shift register. If the required
new-bit of the shift register is 0 and the real new-bit is 1, there
is a freedom to flip any tap-bit of the linear feedback function
to get the required bit without changing any other condition.

The cases α = 17, 18 and 19 are investigated in Section V.
A general method of generating slid pairs can be applied until
α = 23 (by fixing 56 key bits and 45 IV bits). After that, the
situation becomes more complicated because the interaction
between the linear feedback function and the S-box output
stages is more complex. Another method may be required to
identify slid pairs for higher values of α.

A. Limitations

Recall that the initial loaded state of Sfinks includes a
pipeline that contains all zeros. However, it is not possible
to obtain a slid pair with all zeros in the pipeline, for
the following reason: the content of stage s98 will be 1 at
t = α − 3. Therefore in the last 7 of the α iterations, the
content of the input stages of the S-box would not be all zeros
(since x98α−3 = 1). This implies that the output of the S-box
at this time, t = α− 3, also can not be all zeros.



V. EXPERIMENTAL WORK

A. Experimental procedures
This section describes the procedures used to obtain the

first occurrence of slid pairs, and the simulation of the Sfinks
cipher to obtain slid pairs at time α = 17, 18 and 19. This
simulation requires an exhaustive search over the inputs and
outputs of the S-box.

1) slid pair at α = 17:
• Apply a specific input to the S-box at t = 1 to

get y16,1 = 1. So, the input to the S-box satisfies
(x101 , . . . , x

1
1) = (0, . . . , 0) and the output must have

(y116,1, y
9
6,1, y

4
6,1, y

2
6,1, y

0
6,1) = (0, . . . , 0) and y16,1 = 1.

This will flip s178 to 1.
• For 2 ≤ t ≤ 6, the input to the S-box

must satisfy (x10t , . . . , x
1
t ) = (0, . . . , 0) and give

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• The value of s178 = 1 will be shifted to s1114 after 6
iterations.

• At time t = 7, a specific input to the S-box is required
so that its output will flip the value of s1114 to 0 at t = 14
with the input to the S-box (x97, . . . , x

1
7) = (0, . . . , 0)

and x107 = 1 and the output (y96,7, y
4
6,7, y

2
6,7, y

1
6,7, y

0
6,7) =

(0, . . . , 0) and y116,7 = 1. This output will result in flipping
the s1114 to 0.

• At t = 8, the input to the S-box should be specified
to be (x18, . . . , x

10
8 ) = (0, . . . , 0). This input must result

in the output (y116,8, y
9
6,8, y

4
6,8, y

2
6,8, y

1
6,8) = (0, . . . , 0) and

y06,8 = 1. At t = 15, it will flip the value of s8015 to 0.
• For 9 ≤ t ≤ 10, apply the following input to the

S-box to insure (x10t , . . . , x
1
t ) = (0, . . . , 0) to get

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• After t = 10, it is not important to restrict the input to
the S-box.

• To maintain the new-bit, s255t for t ≥ 1, requires 10
tap-bits of the linear feedback function. The tap-bits
are chosen to be s1250 to s1340 that carry k29 to k38

respectively.
Table I shows an exhaustive search of the required in-

put/output pairs of the S-box that satisfy the above procedure.
The c1, c2, c3, b1 and b2 are for later reference in the next
section.

TABLE I: Input/output of the S-box to get the slid pairs at α = 17

Input Output
time Value time Value

1 0011110000000000 =⇒ 8 0110000100000010

7
c1 = 0001101000000000

=⇒ 14
0000110001101000

c2 = 1010111000000000 1000110011000000
c3 = 1100111000000000 0011110100100000

8 b1 = 1000000000000000
=⇒ 15 1010000101101001

b2 = 0111100000000000 0011000010000001

2) slid pair at α = 18:
• From t = 1, apply the following input to the S-

box to insure the (x101 , . . . , x
1
1) = (0, . . . , 0) to get

(y116,1, y
9
6,1, y

4
6,1, y

2
6,1, y

1
6,1, y

0
6,1) = (0, . . . , 0).

• Apply a specific input to the S-box at t = 2 to get y16,2 =
1 at t = 9, the input to the S-box is (x10t , . . . , x

1
t ) =

(0, . . . , 0) and the output is (y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

0
6,t) =

(0, . . . , 0) and y16,t = 1. This will flip s179 to 1.
• The value of s179 = 1 will be shifted to s1115 after 6

iterations.
• For 3 ≤ t ≤ 7, apply the following inputs to the

S-box to insure (x10t , . . . , x
1
t ) = (0, . . . , 0) to get

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• At time t = 8, a specific input to the S-box is re-
quired so that its output will flip the value of s1115
and s8015 to 0 at t = 15 with the input to the S-box
(x98, . . . , x

1
8) = (0, . . . , 0) and x108 = 1 and the output

(y96,8, y
4
6,8, y

2
6,8, y

1
6,8) = (0, . . . , 0) y06,8 = 1 and y116,8 = 1.

This output will result in flipping s1115 and s8015 to 0.
• For 9 ≤ t ≤ 11, apply the following input to the

S-box to insure (x10t , . . . , x
1
t ) = (0, . . . , 0) to get

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• After t = 11, it is not important to restrict the input to
the S-box.

• To maintain the new-bit, s255t for t ≥ 1, requires 11
tap-bits of the linear feedback function. The tap-bits
are chosen to be s2120 to s2220 that carry v36 to v46

respectively.

Table II gives a result of an exhaustive search of the
required input/output pairs of the S-box that satisfy the above
procedure.

TABLE II: Input/output of the S-box to get the slid pairs at α = 18

Input Output
time Value time Value

2 0011110000000000 =⇒ 9 0110000100000010

8 d1 = 1011011000000000
=⇒ 15 1000100000001001

d2 = 0000111000000000 1010100101001001

3) slid pair at α = 19:

• For 1 ≤ t ≤ 2, apply the zeros inputs to the
S-box to insure (x10t , . . . , x

1
t ) = (0, . . . , 0) to get

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• Apply specific input to the S-box at t = 3 to get y16,3 = 1.
So , the input to the S-box is (x103 , . . . , x

1
3) = (0, . . . , 0)

and the output is (y116,3, y
9
6,3, y

4
6,3, y

2
6,3, y

0
6,3) = (0, . . . , 0)

and y16,3 = 1. This will flip s1710 to 1 at time t = 10.
• For 4 ≤ t ≤ 7, apply the zeros input to the

S-box to insure (x10t , . . . , x
1
t ) = (0, . . . , 0) to get

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• At t = 8, the input to the S-box should be specified
to be (x18, . . . , x

10
8 ) = (0, . . . , 0). This input will result

in the output (y116,8, y
9
6,8, y

4
6,8, y

2
6,8, y

1
6,8) = (0, . . . , 0) and

y06,8 = 1. At t = 15, it will flip the value of s8015 to 0.
• The value of s1710 = 1 will be shifted to s1116 after 6

iterations.
• At time t = 9, a specific input to the S-box is required so

that its output will flip the value of s1116 to 0. The input
to the S-box are (x99, . . . , x

1
9) = (0, . . . , 0) and x109 =



1 and the output (y96,9, y
4
6,9, y

2
6,9, y

1
6,9, y

0
6,9) = (0, . . . , 0)

and y116,9 = 1. This output will result in flipping s1116 to 0
at time t = 16.

• For 10 ≤ t ≤ 12, apply the zeros input to the S-
box to insure that (x10t , . . . , x

1
t ) = (0, . . . , 0) to get

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• After t = 12, it is not important to restrict the input to
the S-box.

• To maintain the new-bit, s255t for t ≥ 1, requires 12
tap-bits of the linear feedback function. The tap-bits
are chosen to be s2120 to s2230 that carry v36 to v47

respectively.

As shown above, Table III shows all the possible in-
put/output values to the S-box using an exhaustive search of
the required of the S-box that satisfy the above procedure.

TABLE III: Input/output of the S-box to get the slid pairs at α = 19

Input Output
time Value time Value

3 0011110000000000 =⇒ 10 0110000100000010

8 b1 = 1000000000000000
=⇒ 15 1010000101101001

b2 = 0111100000000000 0011000010000001

9
e1 = 0001101000000000

=⇒ 16
0000110001101000

e2 = 1010111000000000 1000110011000000
e3 = 1100111000000000 0011110100100000

B. Findings and results

This section focuses on the result of the analysis of slid
pairs according to the previous procedures that are applied
to the Sfinks cipher. The findings of slid pairs are presented
after different number of iterations at t = 17, 18 and 19. At
each specific number of iterations, the slid pairs have specific
conditions and relationship between these slid key-IV pairs.
To remind the reader, yij,t denotes the i-th bit of j-th word of
the memory at time t, for i ∈ {0, 1, . . . , 15}.

1) slid pair at α = 17: The slid pair is found for a key-IV
with conditions. These conditions to get another key-IV pair
at α = 17 are to have specific values for some key-IV bits.
There are 40 and 30 bits of key and IV respectively which
should have specific values as shown below.

ki = 0, i ∈ {75, 74, 71, 70, 69, 68, 67, 48, 47, 46, 44, 43,
42, 41, 40, 19, 18, 17, 15, 14, 13, 12, 11,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}
ki = 1, i ∈ {72, 66, 39, 16}

(k73, k45) =



(0, 0) for x8 = b1 and x7 = c1
(0, 1) for x8 = b1 and x7 = c2
(0, 1) for x8 = b1 and x7 = c3
(1, 0) for x8 = b2 and x7 = c1
(1, 1) for x8 = b2 and x7 = c2
(1, 1) for x8 = b2 and x7 = c3

vi = 0, i ∈ {78, 77, 74, 73, 72, 71, 70, 69, 61, 60, 57, 56,
55, 54, 53, 27, 26, 23, 22, 21, 20, 19}

vi = 1, i ∈ {52, 18}

(v76, v75, v59, v58, v25, v24) =



(0, 0, 0, 0, 0, 1) for x8 = b1 and x7 = c1
(0, 0, 0, 1, 0, 0) for x8 = b1 and x7 = c2
(0, 1, 0, 0, 0, 0) for x8 = b1 and x7 = c3
(1, 0, 1, 0, 1, 1) for x8 = b2 and x7 = c1
(1, 0, 1, 1, 1, 0) for x8 = b2 and x7 = c2
(1, 1, 1, 0, 1, 0) for x8 = b2 and x7 = c3

There are 40 and 50 free key and IV bits respectively as
shown below.

ki, i ∈ {79, 78, 77, 76, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56,
55, 54, 53, 52, 51, 50, 49, 38, 37, 36, 35, 34, 33,

32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20}

vi, i ∈ {79, 68, 67, 66, 65, 64, 63, 62, 51, 50, 49, 48, 47, 46,
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32,

31, 30, 29, 28, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7,

6, 5, 4, 3, 2, 1, 0}

There are 6 possibilities of the input to the S-box to satisfy
the required condition to get slid pairs at t = 17. The second
key-IV, (k′, v′), pair can be expressed in the form of the first
key-IV, (k, v), pair as follow.
Note: Terms printed in boldface are known bits, the values of
which depend on the input of the S-box as shown in Table IV.

v′79 =v52 ⊕ y5
6,8 ⊕ v34 ⊕ v32 ⊕ v27 ⊕ v3 ⊕ k71 ⊕ k45 ⊕ k35 ⊕ k27 ⊕ k5

v′78 =v51 ⊕ y5
6,7 ⊕ v33 ⊕ v31 ⊕ v26 ⊕ v2 ⊕ k70 ⊕ k44 ⊕ k34 ⊕ k26 ⊕ k4

v′77 =v50 ⊕ v32 ⊕ v30 ⊕ v25 ⊕ v1 ⊕ k69 ⊕ k43 ⊕ k33 ⊕ k25 ⊕ k3

v′76 =v49 ⊕ v31 ⊕ v29 ⊕ v24 ⊕ v0 ⊕ k68 ⊕ k42 ⊕ k32 ⊕ k24 ⊕ k2

v′75 =v48 ⊕ v30 ⊕ v28 ⊕ v23 ⊕ k79 ⊕ k67 ⊕ k41 ⊕ k31 ⊕ k23 ⊕ k1

v′74 =v47 ⊕ v29 ⊕ v27 ⊕ v22 ⊕ k78 ⊕ k66 ⊕ k40 ⊕ k30 ⊕ k22 ⊕ k0 ⊕ 1

v′73 =v46 ⊕ v28 ⊕ v26 ⊕ v21 ⊕ k77 ⊕ k65 ⊕ k39 ⊕ k29 ⊕ k21 ⊕ 1

v′72 =v45 ⊕ v27 ⊕ v25 ⊕ v20 ⊕ k76 ⊕ k64 ⊕ k38 ⊕ k28 ⊕ k20 = 0

v′71 =v44 ⊕ v26 ⊕ v24 ⊕ v19 ⊕ k75 ⊕ k63 ⊕ k37 ⊕ k27 ⊕ k19 ⊕ 1 = 0

v′70 =v43 ⊕ v25 ⊕ v23 ⊕ v18 ⊕ k74 ⊕ k62 ⊕ k36 ⊕ k26 ⊕ k18 = a1

v′69 =v42 ⊕ v24 ⊕ v22 ⊕ v17 ⊕ k73 ⊕ k61 ⊕ k35 ⊕ k25 ⊕ k17 = a2

v′68 =v41 ⊕ v23 ⊕ v21 ⊕ v16 ⊕ k72 ⊕ k60 ⊕ k34 ⊕ k24 ⊕ 1 = 0

v′67 =v40 ⊕ v22 ⊕ v20 ⊕ v15 ⊕ k71 ⊕ k59 ⊕ k33 ⊕ k23 ⊕ k15 = 0

v′66 =v39 ⊕ v21 ⊕ v19 ⊕ v14 ⊕ k70 ⊕ k58 ⊕ k32 ⊕ k22 ⊕ k14 = 0

v′65 =v38 ⊕ v20 ⊕ v18 ⊕ v13 ⊕ k69 ⊕ k57 ⊕ k31 ⊕ k21 ⊕ k13 = 0

v′64 =v37 ⊕ v19 ⊕ v17 ⊕ v12 ⊕ k68 ⊕ k56 ⊕ k30 ⊕ k20 ⊕ k12 = 0

v′63 =v36 ⊕ v18 ⊕ v16 ⊕ v11 ⊕ k67 ⊕ k55 ⊕ k29 ⊕ k19 ⊕ k11 = 0

v′62 = v79

v′61 = v78 = 0
v′60 = v77 = 0
v′59 = v76

v′58 = v75

v′57 = v74 = 0
v′56 = v73 = 0
v′55 = v72 = 0
v′54 = v71 ⊕ y8

6,8

v′53 = v70 ⊕ y8
6,7

v′52 = v69 = 0
v′51 = v68

v′50 = v67

v′49 = v66

v′48 = v65



v′47 = v64 ⊕ 1
v′46 = v63

v′45 = v62

v′44 = v61 = 0
v′43 = v60 = 0
v′42 = v59

v′41 = v58

v′40 = v57 = 0
v′39 = v56 = 0
v′38 = v55 = 0
v′37 = v54 = 0
v′36 = v53 = 0
v′35 = 1⊕ y5

6,8

v′34 = v51 ⊕ y5
6,7

v′33 = v50

v′32 = v49

v′31 = v48

v′30 = v47

v′29 = v46

v′28 = v45

v′27 = v44

v′26 = v43 ⊕ y12
6,8

v′25 = v42 ⊕ y12
6,7

v′24 = v41

v′23 = v40

v′22 = v39

v′21 = v38

v′20 = v37

v′19 = v36

v′18 = v35

v′17 = v34

v′16 = v33

v′15 = v32

v′14 = v31

v′13 = v30

v′12 = v29

v′11 = v28

v′10 = v27 = 0
v′9 = v26 = 0
v′8 = v25

v′7 = v24

v′6 = v23 = 0
v′5 = v22 = 0

v′4 = v21 = 0
v′3 = v20 = 0
v′2 = v19 = 0
v′1 = 1⊕ y3

6,8

v′0 = v17 ⊕ y3
6,7

k′79 = v16

k′78 = v15

k′77 = v14

k′76 = v13

k′75 = v12 ⊕ 1
k′74 = v11 ⊕ y13

6,7

k′73 = v10

k′72 = v9

k′71 = v8

k′70 = v7

k′69 = v6

k′68 = v5 ⊕ 1
k′67 = v4

k′66 = v3

k′65 = v2

k′64 = v1

k′63 = v0

k′62 = k79

k′61 = k78

k′60 = k77

k′59 = k76

k′58 = k75 = 0
k′57 = k74 = 0
k′56 = k73

k′55 = k72 ⊕ 1 = 0
k′54 = k71 = 0
k′53 = k70 = 0
k′52 = k69 = 0
k′51 = k68 = 0
k′50 = k67 = 0
k′49 = k66 = 1
k′48 = k65

k′47 = k64

k′46 = k63

k′45 = k62

k′44 = k61

k′43 = k60

k′42 = k59

k′41 = k58

k′40 = k57

k′39 = k56

k′38 = k55

k′37 = k54 ⊕ 1
k′36 = k53

k′35 = k52

k′34 = k51

k′33 = k50

k′32 = k49

k′31 = k48 = 0
k′30 = k47 = 0
k′29 = k46 = 0
k′28 = k45

k′27 = k44 = 0
k′26 = k43 = 0
k′25 = k42 = 0
k′24 = k41 = 0
k′23 = k40 = 0
k′22 = k39 = 1
k′21 = k38

k′20 = k37 ⊕ y6
6,8

k′19 = k36 ⊕ y6
6,7

k′18 = k35

k′17 = k34

k′16 = k33

k′15 = k32

k′14 = k31

k′13 = k30 ⊕ y15
6,8

k′12 = k29 ⊕ y15
6,7

k′11 = k28

k′10 = k27

k′9 = k26

k′8 = k25

k′7 = k24

k′6 = k23

k′5 = k22

k′4 = k21

k′3 = k20

k′2 = k19 = 0
k′1 = k18 = 0
k′0 = k17 = 0

TABLE IV: 6 alternative inputs and outputs to the S-box at α = 17

Conditions Input
x8 x7 a1 v76 v59 v25 k73 a2 v75 v58 v24 k45

b1 c1 1 0 0 0 0 0 0 0 1 0
b1 c2 1 0 0 0 0 1 0 1 0 1
b1 c3 1 0 0 0 0 1 1 0 0 1 . . .
b2 c1 0 1 1 1 1 0 0 0 1 0
b2 c2 0 1 1 1 1 1 0 1 0 1
b2 c3 0 1 1 1 1 1 1 0 0 1

Output
y5
6,8 y8

6,8 y12
6,8 y3

6,8 y6
6,8 y15

6,8 y5
6,7 y8

6,7 y12
6,7 y3

6,7 y13
6,7 y6

6,7 y15
6,7

1 1 0 1 1 1 1 0 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 0 1 1

. . . 1 1 0 1 1 1 1 1 1 0 1 0 0
0 0 1 0 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 1 1 0 1 0 0

Note that 32 bits of v′ and 23 bits of k′ are fixed by the
above relations.

2) slid pair at α = 18: For slid pair at α = 18, the
conditions to get another key-IV pair are to have specific
values for some key-IV bits at t = 0. There are 43 and 33
bits of key and IV respectively which must have fixed values
as shown below.

ki = 0, i ∈{76, 75, 74, 72, 71, 70, 69, 68, 66, 49, 48, 47, 45, 44,
43, 42, 41, 39, 20, 19, 18, 16, 15, 14, 13, 12, 11, 10,

9, 8, 7, 6, 5, 4, 3, 2, 1, , 0}
ki = 1, i ∈{67, 46, 40, 17}

k73 =

{
(0) for x8 = d1
(1) for x8 = d2

vi = 0, i ∈{79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 62, 61, 60
58, 57, 56, 55, 54, 52, 28, 27, 26, 24, 23, 22,

21, 20, 18}
vi = 1, i ∈{53, 19}

(v59, v25) =

{
(1, 1) for x8 = d1
(0, 0) for x8 = d2

There are 37 and 47 free key and IV bits respectively as
shown.

ki, i ∈ {79, 78, 77, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54,
53, 52, 51, 50, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28,

27, 26, 25, 24, 23, 22, 21}

vi, i ∈ {68, 67, 66, 65, 64, 63, 51, 50, 49, 48, 47, 46, 45, 44, 43,
42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 17,

16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

There are two possibilities of the input to the S-box to
satisfy the required conditions to get a slid pair at α = 18.
The second key-IV pair, (k′, v′), can be expressed in term of
the first key-IV , (k, v), as follow.
Note: Terms printed in boldface are known bits, the values of
which depend on the input of the S-box as shown in Table V.
v′79 = v53 ⊕ v35 ⊕ v33 ⊕ v28 ⊕ v4 ⊕ k72 ⊕ k46 ⊕ k36 ⊕ k28 ⊕ k6

v′78 = v52 ⊕ v34 ⊕ v32 ⊕ v27 ⊕ v3 ⊕ k71 ⊕ k45 ⊕ k35 ⊕ k27 ⊕ k5

v′77 = v51 ⊕ v33 ⊕ v31 ⊕ v26 ⊕ v2 ⊕ k70 ⊕ k44 ⊕ k34 ⊕ k26 ⊕ k4

v′76 = v50 ⊕ v32 ⊕ v30 ⊕ v25 ⊕ v1 ⊕ k69 ⊕ k43 ⊕ k33 ⊕ k25 ⊕ k3

v′75 = v49 ⊕ v31 ⊕ v29 ⊕ v24 ⊕ v0 ⊕ k68 ⊕ k42 ⊕ k32 ⊕ k24 ⊕ k2

v′74 = v48 ⊕ v30 ⊕ v28 ⊕ v23 ⊕ k79 ⊕ k67 ⊕ k41 ⊕ k31 ⊕ k23 ⊕ k1 ⊕ 1

v′73 = v47 ⊕ v29 ⊕ v27 ⊕ v22 ⊕ k78 ⊕ k66 ⊕ k40 ⊕ k30 ⊕ k22 ⊕ k0

v′72 = v46 ⊕ v28 ⊕ v26 ⊕ v21 ⊕ k77 ⊕ k65 ⊕ k39 ⊕ k29 ⊕ k21 ⊕ 1 = 0

v′71 = v45 ⊕ v27 ⊕ v25 ⊕ v20 ⊕ k76 ⊕ k64 ⊕ k38 ⊕ k28 ⊕ k20 = 0

v′70 = v44 ⊕ v26 ⊕ v24 ⊕ v19 ⊕ k75 ⊕ k63 ⊕ k37 ⊕ k27 ⊕ k19 = 0

v′69 = v43 ⊕ v25 ⊕ v23 ⊕ v18 ⊕ k74 ⊕ k62 ⊕ k36 ⊕ k26 ⊕ k18 = a3

v′68 = v42 ⊕ v24 ⊕ v22 ⊕ v17 ⊕ k73 ⊕ k61 ⊕ k35 ⊕ k25 ⊕ k17 ⊕ 1 = 0

v′67 = v41 ⊕ v23 ⊕ v21 ⊕ v16 ⊕ k72 ⊕ k60 ⊕ k34 ⊕ k24 ⊕ k16 = 0

v′66 = v40 ⊕ v22 ⊕ v20 ⊕ v15 ⊕ k71 ⊕ k59 ⊕ k33 ⊕ k23 ⊕ k15 = 0

v′65 = v39 ⊕ v21 ⊕ v19 ⊕ v14 ⊕ k70 ⊕ k58 ⊕ k32 ⊕ k22 ⊕ k14 = 0

v′64 = v38 ⊕ v20 ⊕ v18 ⊕ v13 ⊕ k69 ⊕ k57 ⊕ k31 ⊕ k21 ⊕ k13 = 0

v′63 = v37 ⊕ v19 ⊕ v17 ⊕ v12 ⊕ k68 ⊕ k56 ⊕ k30 ⊕ k20 ⊕ k12 = 0

v′62 = v36 ⊕ v18 ⊕ v16 ⊕ v11 ⊕ k67 ⊕ k55 ⊕ k29 ⊕ k19 ⊕ k11 = 0



v′61 = v79 = 0

v′60 = v78 = 0

v′59 = v77 = 0

v′58 = v76 = 0

v′57 = v75 = 0

v′56 = v74 = 0

v′55 = v73 = 0

v′54 = v72 = 0

v′53 = v71 ⊕ y8
6,8

v′52 = v70 = 0

v′51 = v69 = 0

v′50 = v68

v′49 = v67

v′48 = v66

v′47 = v65 ⊕ 1

v′46 = v64

v′45 = v63

v′44 = v62 = 0

v′43 = v61 = 0

v′42 = v60 = 0

v′41 = v59

v′40 = v58 = 0

v′39 = v57 = 0

v′38 = v56 = 0

v′37 = v55 = 0

v′36 = v54 = 0

v′35 = v53 = 1

v′34 = v52 = 0

v′33 = v51

v′32 = v50

v′31 = v49

v′30 = v48

v′29 = v47

v′28 = v46

v′27 = v45

v′26 = v44

v′25 = v43

v′24 = v42

v′23 = v41

v′22 = v40

v′21 = v39

v′20 = v38

v′19 = v37

v′18 = v36

v′17 = v35

v′16 = v34

v′15 = v33

v′14 = v32

v′13 = v31

v′12 = v30

v′11 = v29

v′10 = v28 = 0

v′9 = v27 = 0

v′8 = v26 = 0

v′7 = v25

v′6 = v24 = 0

v′5 = v23 = 0

v′4 = v22 = 0

v′3 = v21 = 0

v′2 = v20 = 0

v′1 = v19 = 1

v′0 = v18 ⊕ 1 = 1

k′79 = v17

k′78 = v16

k′77 = v15

k′76 = v14

k′75 = v13

k′74 = v12 ⊕ y13
6,8

k′73 = v11

k′72 = v10

k′71 = v9

k′70 = v8

k′69 = v7

k′68 = v6 ⊕ 1

k′67 = v5

k′66 = v4

k′65 = v3

k′64 = v2

k′63 = v1

k′62 = v0

k′61 = k79

k′60 = k78

k′59 = k77

k′58 = k76 = 0

k′57 = k75 = 0

k′56 = k74 = 0

k′55 = k73

k′54 = k72 = 0

k′53 = k71 = 0

k′52 = k70 = 0

k′51 = k69 = 0

k′50 = k68 = 0

k′49 = k67 = 1

k′48 = k66 = 0

k′47 = k65

k′46 = k64

k′45 = k63

k′44 = k62

k′43 = k61

k′42 = k60

k′41 = k59

k′40 = k58

k′39 = k57

k′38 = k56

k′37 = k55 ⊕ 1

k′36 = k54

k′35 = k53

k′34 = k52

k′33 = k51

k′32 = k50

k′31 = k49 = 0

k′30 = k48 = 0

k′29 = k47 = 0

k′28 = k46 = 1

k′27 = k45 = 0

k′26 = k44 = 0

k′25 = k43 = 0

k′24 = k42 = 0

k′23 = k41 = 0

k′22 = k40 = 1

k′21 = k39 = 0

k′20 = k38

k′19 = k37 ⊕ y6
6,8

k′18 = k36

k′17 = k35

k′16 = k34

k′15 = k33

k′14 = k32

k′13 = k31

k′12 = k30 ⊕ 1

k′11 = k29

k′10 = k28

k′9 = k27

k′8 = k26

k′7 = k25

k′6 = k24

k′5 = k23

k′4 = k22

k′3 = k21

k′2 = k20 = 0

k′1 = k19 = 0

k′0 = k18 = 0

Note that 43 bits of v′ and 25 bits of k′ are fixed by the
above relations.

TABLE V: 2 alternative inputs and outputs to the S-box at α = 18

Condition Input Output
x8 a3 v59 v25 k73 y13

8 y8
8 y6

8

b1 1 1 1 0 0 0 0
b2 0 0 0 1 1 1 1

3) slid pair at α = 19: For the slid pair at α = 19, there
are 46 and 35 bits of key and IV respectively which must take
fixed value as follow.

ki = 0, i ∈{77, 76, 75, 74, 72, 71, 70, 69, 67, 66, 50, 49, 48,
46, 45, 44, 43, 42, 40, 39, 21, 20, 19, 17, 16, . . . , 0}

ki = 1, i ∈{68, 41, 18, 17}

(k73, k47) =



(0, 0) for x8 = b1 and x9 = e1
(0, 1) for x8 = b1 and x9 = e2
(0, 1) for x8 = b1 and x9 = e3
(1, 0) for x8 = b2 and x9 = e1
(1, 1) for x8 = b2 and x9 = e2
(1, 1) for x8 = b2 and x9 = e3

vi = 0, i ∈{79, 78, 76, 75, 74, 73, 72, 71, 70, 69, 63, 62, 61, 58,
57, 56, 55, 53, 52, 29, 28, 27, 24, 23, 22, 21, 19, 18}

vi = 1, i ∈{54, 20}

(v77, v76, v60, v59, v26, v25) =



(0, 0, 0, 0, 1, 0) for x8 = b1 and x9 = e1
(0, 0, 1, 0, 0, 0) for x8 = b1 and x9 = e2
(1, 0, 0, 0, 0, 0) for x8 = b1 and x9 = e3
(0, 1, 0, 1, 1, 1) for x8 = b2 and x9 = e1
(0, 1, 1, 1, 0, 1) for x8 = b2 and x9 = e2
(1, 1, 0, 1, 0, 1) for x8 = b2 and x9 = e3

As for the cases α = 17 and 18, expressions can again
be determined for (k′, v′) in terms of (k, v). These are not
reported in this paper.

All the slid pairs are obtained using computer simulation
for all possible inputs and outputs of the S-box. As shown
previously, slid pairs occur according to specific conditions
at time t ≥ 17. Slid pairs occur with a limitation, where the
pipeline can not be reset to all zeros.

C. Shifted keystream

We now consider the additional constraints which must be
satisfied in order for slid pair (k, v) and (k′, v′) to generate
shifted keystream sequences. These constraints depend on the
degree of the similarity between the state update functions
during the initialisation and keystream generation processes.

To obtain a shifted keystream from the slid pairs at α = 17,
all the output of the S-box for the last 17 iterations of the
initialisation process (from t = 111 to t = 128) should be
all zeros to get the linear feedback during these iterations of
the initialisation process. Therefore, the input of the S-box
from t = 104 to t = 121 should be zeros. To ensure all the
relevent input bits are zeros, there are 187 bits which should
be fixed and another 17 bits to be fixed for the linear feedback
function. The total fixed bits are 204 bits. The probability of
satisfying 204 independent constraints is 2−204. In this case,
the free bits at the loaded state are 90 bits. Hence, there are
290 possible slid pairs and the probability of slid pair gives
an out of phase keystream is 2−204. Therefore, the expected
number of shifted keystream sequences from these slid pairs
= 2−204 × 290 = 2−114. So, it seems extremely unlikely that
any shifted keystream will result from any of the slid pairs.

Similarly, for the slid pairs at α = 18 and 19, the last
18 and 19 outputs of the S-box should be zeros respectively.



The total fixed bits in these cases are 211 and 218 bits. The
probability of satisfying 211 and 218 independent constraints
are 2−211 and 2−218 respectively. In this case, the free bits
at the loaded state are 84 and 79 bits. Therefore expected
number of keystream out of phase shifted by 18 and 19 bits
from any of the relevant slid pairs are 2(−211+84) = 2−127

and 2(−218+79) = 2−139.

VI. ATTACK PROCEDURE

Since Sfinks has an 80-bit key and a 256-bit shift register,
it is not feasible to simply guess the whole secret key and
then generate the keystream to check whether the guess is
correct. However, if it is possible to identify the occurrence
of a slid pair (extremely unlikely as discussed in Section V),
this enables us to use the resulting relationship to reduce the
number of key bits that need to be guessed, forming the basis
for an attack on the cipher. The attack presented in this paper
uses the properties of the slide attacks. We assume a known-
plaintext attack scenario. The following algorithm outlines the
attacking procedure.

This algorithm is described for 17-bit shifted versions of
keystream. However, it can be extended to other shifts as
well. The algorithm depends on two keystreams with unknown
secret keys and known IV’s such that the resulting keystreams
are shifted versions of one another as mentioned in Section II.
Note that we are interested here to find the secret key.

Recalling the specification of the loading phase of Sfinks
in Section III, it is impossible to find two shifted keystreams
generated by a secret key with different IV’s. Therefore, in
this case, we are focusing on two keystreams generated by
diferent key-IV pairs, (k, v) and (k′, v′).

Attack Algorithm:
Inputs: Pairs of plaintext and ciphertext.
Step1: From the known-plaintext-ciphertext attack, XOR the

plaintext with the corresponding ciphertext to get the
keystream sequence

Step2: Divide each keystream sequence into separate
keystreams. Each keystream corresponds to a dif-
ferent key-IV combination based on the rekying
process.

Step3: Check the similarity of keystreami and
keystreamj � 17 for every available key-IV
pair, using keystreami ⊕ keystreamj � 17.
• If so, note the key-IV pairs (k, v) and (k′, v′).
• If not, the algorithm fails for this 17-bit shift.

Step4: If shifted keystream has been identified, guess and
check each possible key, as follows
• Using the relevant of t = 17 equations in

Section V, where the IV’s v and v′ are known.
• Due to the slid pairs, there are 40 and 23 bits of

the k and k′ are known and fixed,
• Guess the 40 free key bits of k in the relevant

set of equations in Section V.
• Use these free key bits and the known IV’s to

calculate the remaining key bits of k′ using the
related equations in Section V.

• Use the generated secret key k′ with the corre-
sponding v′ to generate its keystream using the
Sfinks algorithm.

• Compare between the generated keystream and
the known keystream.
– If they are identical, the secret keys k and k′

have been found.
– If not, repeat the process for another guess of
k and calculate the k′.

Step5: Use the secret key k and k′ with known IV’s to
decrypt the entire related ciphertexts.

Outputs: The secret keys k and k′.
In step 3, if two keystreams have been identified as shifted

keystream by 17 bits, then the guessing process should cover
the 40 free key bits instead of the 80 key bits. For each guess,
it requires to substitute the guessed key bits into the relevant
equations in Section V to find the secret key k′. At this time,
it is not clear whether the guessed key is correct or not. The
proposed key must be verified by generating a keystream that
should be same as the known keystream.

If the generated keystream is similar to the known keystream
then the secret key is correct, if not use another guess. Note
that, the above algorithm is for 17-bit shifts. If it fails, then it
is possible to try for 18-bit shifts or more.

Attacking Complexity: In step 3, the comparison depends
on the available length of the plaintext and its corresponding
ciphertext. If an attacker has enough plaintext-ciphertext pairs,
it is possible to check the shifted keystreams. As mentioned in
Section V, the probability of obtaining shifted keystreams from
a given slid pair is 2−204, and the total number of possible slid
pairs is 290. Then the expected number of shifted keystreams
from slid pairs is 2−114. Thus this cipher appears to be secure
for slid attacks, but the presence of slid pairs is still a concern.

VII. ANALYSIS OF SFINKS WITH SLIGHT MODIFICATION

This section analyses a slightly modified version of Sfinks,
where the modification is applied to the padding format of
Sfinks during the loading phase. This analysis shows that
the effect of a minor change in the padding increases the
probability of occurrence of slid pairs and the probability of
obtaining shifted keystreams from given slid pairs.

In this modification, we change the pattern of the padding
to be zeros for all stages (s95 to s90). In other words, we set
the content of stage s95 to 0 instead of 1. The slid pairs may
now occur after only one clock under two conditions. Firstly,
the 16-bit input to the S-box must be zero at time t = 1. This
requires us to fix the values of 8 stages (s2551 ,s2441 , s2271 , s1931 ,
s1611 , s1341 , s1051 , s981 ) to be zeros to ensure that the pipeline is
still in the initial condition. The last seven of these stages can
be expressed in terms of key and IV bits as (k66, k39, k10, k3,
v69, v52, v18). In addition, since s255 = x16 must be zero, the
linear feedback function imposes a condition that the XOR of
the following bits must be zero: (k68, k56, k30, k20, k12, v34,
v19, v17, v12), so that s2551 = 0. Secondly, the content of s960
must be similar to the padding, that is s960 = s950 = 0.



Thus, a slid pair with a zeroed pipeline can be obtained
by fixing 9 bits out of the 160 key-IV bits. Therefore, the
proportion of valid key-IV pairs which lead to these slid pairs
is 2−9. Hence there are 2160−9 = 2151 slid pairs for α = 1.

A slid pair can lead to an out-of-phase keystream by fixing
another 16 bits to ensure that the last iteration of the initial-
isation process at t = 128 is linear. Specifically, we require
that all 16 input bits of the S-box at time t = 121 should
be zeros. The probability of satisfying these 16 independent
constraints is 2−16. Therefore, the expected proportion of Key-
IV pairs that lead to phase shifted keystream with 1 step is
2−9 × 2−16 = 2−25 and the expected number of out of phase
keystream sequences is 2151 × 2−16 = 2135.

We see that a small change in the padding format during
the loading phase of the initialisation has hugely increased
the probability of obtaining both slid pairs and corresponding
shifted keystream. As expressed in this section and Section V,
there are 2151 and 290 out of 2160 possible slid key-IV pairs
for the modified version and current cipher respectively. The
probabilities of a slid pair that gives a shifted keystream are
2−16 and 2−204 for these versions respectively.

VIII. CONCLUSION

The occurrence of slid pairs in a stream cipher depends
on the similarity of state update functions and the similarity
of each iteration in the initialisation process and keystream
generation. For most stream ciphers, the iterations of the
initialisation process are identical, and the iterations of the
keystream generation process are identical too, although the
state update function of the initialisation process may differ
from the state update function of the keystream generation.
Therefore, slid (k, v) pairs with shifted keystream sequences
in stream ciphers are possible. For the Sfinks cipher, the state
update functions of initialisation and keystream generation
processes are quite different, where the initialisation update
function is nonlinear and the keystream generation state update
is a purely linear function.

For Sfinks, the padding pattern and the form of the state
update function defer the first slid pair to 17 iterations. It is
possible to find slid pairs by fixing 70 bits out of 160 key-IV
bits. Although the proportion of valid key-IV pairs which lead
to these slid pairs is small (290) out of (2160), the existence
of such pairs is undesirable property, which can be avoided
by carefully designing the cipher.

It is obvious that the state update functions of the initial-
isation process and the keystream generator and the padding
system affect the complexity of slid pairs. In the slightly
modified version of Sfinks when the padding consists entirely
of zeros, it is possible to get a phase shifted keystream based
on a slid pair every 225 initialisations. Note that for Sfinks
without this modification, it is extremely unlikely that any
of the slid pairs which occur would lead to phase shifted
keystream.

It is a general belief among the designers of stream ciphers
that if the number of iterations of a cipher is increased, the
cipher may become very strong. We have demonstrated that the

slid pairs can occur in Sfinks at time t ≥ 17 for key-IV pairs,
although these pairs are very unlikely to lead to phase shifted
keystream. However, the fact that slid pairs can occur in the
cipher is still a concern because it is equivalent to reducing
the effective number of iterations during initialisation, and this
may decrease the security of the initialisation process of the
cipher.

The probability of success for slide attacks on stream
ciphers like Sfinks can be reduced by increasing the size of
the internal state, destroying the similarity of the state update
functions of the initialisation process and keystream generation
or designing the pattern of padding in a proper way to defer
the slid pairs as long as possible. For example, if the content
of the stage s40 in Sfinks is changed to a 1 in the padding
format, this will defer the occurrence of slid pair to α ≥ 24
and the relevant conditions on the state contents will also be
more complicated as mentioned previously. This will result in
a lower probability of slid pairs occurring.
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