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Abstract 

An investigation of the effect of nano particles on natural convection of water based nanofluids contained in an open 

rectangular cavity is carried out numerically. The flow pattern and heat transfer characteristics are studied for different 

values of volume fraction in the range 0.20  , Rayleigh number in the range 9101  Ra  and the nano particles with 

different thermo physical properties. It was found that for low Rayleigh numbers, heat transfer exhibits a decreasing trend 

for increasing values of volume fraction of oxide nanofluids, whereas for higher values of Rayleigh numbers, an increasing 

trend of heat transfer was observed due to increase in the volume fraction of nanofluids.  
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Nomenclature 

A    aspect ratio   yx,    non dimensional coordinate axis 

pC    specific heat at constant pressure )( 1JK   Greek symbols 

g   
 acceleration due to gravity )( 2ms       thermal diffusivity (k/ρCp)  

H    height of the enclosure       thermal expansion coefficient )( 1K   

h    mesh spacing       non dimensional temperature  

),( ji    nodal locations of ),( yx  on grid      
 dynamic viscosity )( 11  sm   

JI ,    maximum grids along coordinate axis       kinematic viscosity 
112  Kgsm   

k    thermal conductivity )( 11  KWm   
    

 density of fluid )( 3Kgm   

L    length of the cavity       nano particles volume fraction  

Nu    local Nusselt number       stream function )( 112  Kgsm   

uN    average Nusselt number       non dimensional stream function  

p    fluid pressure (Pa)       dimensional vorticity function )( 1s   

Pr    Prandtl number of fluid       non dimensional vorticity function 

Ra    Raleigh number  Subscripts 

T    dimensional temperature )(K    s    solid particles properties  

CH TT ,    maximum and minimum temperature )(K   f    fluid properties  

0T    average/reference temperature )(K    nf    nanofluid properties  

t    dimensional time )(s    eff    effective property  

t    non dimensional time   in    incoming  



vu ,    velocity components )( 1ms    out    outgoing  

vu,    non dimensional velocity components   0    reference state  

yx,   dimensional coordinate axis )(m      

1. Introduction 

Nano fluid is a remarkable advancement in heat transfer engineering, as it has numerous applications in the practical 

situations where enhanced heat transfer is required. Heat transfer enhancement can be acheived by suspending nano size 

solid particles of relatively larger thermal conductivity in pure fluids. This idea of nanofluids was first proposed by Choi [1]. 

Khanafer et al. [2] numerically investigated the natural convection of nanofluids in a two dimensional enclosure. They 

considered different models of nanofluids and showed that the heat transfer of nanofluids is greater than that of pure fluid 

for all values of Grashof number. Hwang et al. [3] conducted the buoyancy-driven heat transfer study of water-based 32OAl  

nanofluids in a rectangular cavity. Ho et al. [4] considered natural convection of nanofluid in a square enclosure. They used 

water 32OAl  nano fluid to compare the heat transfer for four different models of effective dynamic viscosity and effective 

thermal conductivity that were found in literature. Oztop and Abu-Nada [5] considered natural convection of water based 

nanofluids in partially heated rectangular enclosures. They considered three different types of nano particles namely Copper 

(Cu), 32OAl  and 3TiO . They considered the volume fraction in the range 0.20  . The implementation of boundary 

conditions for open ended rectangular domains differ a lot from the usual solid wall boundary conditions. A detailed 

description can be seen in Roache[6], whereas recent work on open ended domains is considered by Saleem et al. [7,8]. We 

consider the natural convection of water based nanofluid in an open rectangular domain, and focus on investigating the heat 

transfer of nanofluids in open ended domain. 

 

2. Mathematical Formulation 

Consider two-dimensional flow of a nanofluid confined in an open rectangular cavity of length L  and height H . The left 

wall is assumed to be at temperature HT . The temperature of the fluid that enters the cavity region from the right end is 

supposed CT  at 0=t  (where CH TT > ). We use the subscripts 'in' for incoming, and 'out' for outgoing fluid respectively. 

Moreover the subscripts 's' and 'f' are respectively taken for physical properties of solid particles and pure fluid, whereas the 

subscript 'nf' stands for the physical properties of nanofluid. Flow configuration and physical boundary conditions are 

shown in Figure 1.  

 
Fig.1. Flow configuration in coordinate system 

 

Let   be the volume fraction of nanoparticles with in the fluid, and s , f  be the densities of the solid particles and the 

fluid respectively, then the effective density of the nanofluid is given by (see Khanafer et al. [2], Oztop and Abu-Nada [5]) 

sfnf   )(1=   

(1) 

Like wise the effective heat capacity for nanofluid is expressed as   

spfpnfp CCC )())((1=)(  
 

Further we approximate the effective thermal conductivity of the nanofluid by the relation 

(2) 
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Moreover the viscosity of nanofluid is given by                 
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Here the effective thermal conductivity and the effective dynamic viscosity are chosen in view of the maximum heat 

transfer enhancement (see also [3-5]). Finally the thermal diffusivity of nanofluid is given by  
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Further we introduce the non dimensional variables by using the following transformations for stream vorticity form 
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(6) 

where yx,  are the non dimensional coordinate axis, vu,  are the non dimensional velocity components,   and   are the 

non dimensional stream and vorticity functions, t  is the non dimensional time,   is the non dimensional temperature, 

whereas A  is the aspect ratio of the cavity. By making use of these dimensionless parameters, for the unsteady motion of 

nanofluid, the Navier Stokes equations in stream-vorticity form, along with the energy equation in dimensionless 

rectangular coordinate system are given by (see [3-5]) 
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with the following boundary conditions (see [6-8)) 
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are respectively the Prandtl number, the Rayleigh number and the diffusion coefficient for the energy equation of nanofluid. 

We finally define the dimensionless local and average heat transfer rate of the left wall for nanofluid the following relations 

(see also [5]).  
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where dy  is the element of length y  along the wall. In order to compare the heat transfer characteristics pure fluid and the 

fluid with nano-particles, we consider three different water based nanofluid combinations. The physical properties of the 

fluid and nano-particles are given in table 1. (see[5]) 

 
Table 1. Thermo physical properties of pure fluid (water) and nano particles under consideration  

  Physical   Pure fluid   Copper   Aluminum Oxide   Telinium Oxide  

properties   Water ( OH2 )  Cu   32OAl    3TiO   

 pC    4179   385   765   686.2  

    997.1   8933   3970   4250  

k   0.613   400   40   8.9538  

    7101.47    4101.1631     5101.317     6103.07    

    6102.1    5101.67    4108.5    4109   

3. Method of Solution 

The dimensionless form of the governing equations given by (8) and (9) are descretized using the Alternate Direct Implicit 

method. For non linear terms of these equations, we used the second upwind difference technique. The elliptic partial 

differential equation (8), is solved using the Successive Over Relaxation technique with residual tolerance of the order of 
510 . The solution is complemented with the descretized form of boundary conditions given in equations (10). With H  as 

the reference height of the cavity, we have considered a uniform grid of size 1)/(= JHh , where J  is the maximum 

number of grids along coordinate axes. Throughout the computation we take 1=H . In order to meet the convergence to the 

steady state, we have considered the tolerance of order 810 . Further details of the employed method can also be found in 

[6-8]. All computations are performed for 2=A . Intel 1.83 GHz C machine is used for the entire computation. 

4. Results and Discussion 

We have considered the natural convection of water based nanofluid in an open rectangular cavity. The left wall is 

considered at a higher temperature than the one of the opening. The effect of volume fraction of nano particles, and 

Rayleigh number for three different nanofluids is studied. The result are graphically represented in terms of streamlines, 

isotherms, and heat transfer rate for different values of these governing parameters. 
 

4.1 The Effect of Volume Fraction 

 

 
Fig.2. Comparison of streamlines pattern at 

5105= Ra , 6.2=Pr , A =2 for (a) pure fluid (water 0==s ), (b) water-copper nanofluid 

( 0.05=,101.67= 5  s ) (c) water- 32OAl  nanofluid ( 0.05=,100.85= 5  s ) (d) water- 3TiO  nanofluid 

( 0.05=,100.9= 5  s ) 

 

Figure 2 represents the comparison of streamlines between pure fluid (water) and water based nanofluids while 
5105= Ra , 6.2=Pr . Figure 2 (a) represents the streamline pattern for pure fluid. Comparing Figure 2 (a) and 2 (b), we 

see that the magnitude of the strength of flow close to the opening in case of water is 68.9, whereas it is 85.8 in case of 



water-Cu nanofluid. Thus the flow strength of nanofluid is greater than that of the pure fluid in this case. Figure 2 (c) and 2 

(d)show the stream line pattern for water- 32OAl  and water- 3TiO  nano fluids, whereas their strength is numerically 76.8 and 

78.7 respectively. From Figure 2, it can be discerned that the flow in case of nanofluid increases. Moreover, comparing 

Figure 2 (b)-2 (d) one can see that the strength of metal based nanofluid is maximum. Although the nanofluids of oxides 

have greater strength than that of the pure fluid, yet the flow is not more than that of the water-Cu nanofluid.  

 

         Let us now consider the effect of volume fraction on these nanofluids separately. Figure 3 shows the average heat 

transfer rate as a function of volume fraction for (a) water-Cu, (b) water- 32OAl  and (c) water- 3TiO  nanofluids while Pr=6.2 

at four different values of Rayleigh number. Let us first consider Figure 3 (a). It can be seen that heat transfer increases with 

the increase in volume fraction of solid particles. Even at 310=Ra , heat transfer increases from 0.775 to 1.3, which does 

not seem significant due to large scale of the figure along axisy  . Now comparing 3 (a) with 3 (b) and 3 (c), we observe 

that this increasing trend is more prominent in water-Cu nanofluid for 654 ,10,1010=Ra . For instance at 610=Ra , in 

Figure 3 (a), heat transfer increases from 22.6 to 38.3 between 0.20   for water-Cu nanofluid, whereas it reaches up to 

32.6 for water- 32OAl  as in Figure 3 (b), and has a maximum value of 31.6 in case of water- 3TiO  nanofluid at 0.2=  as 

shown in Figure 3 (c). However the behavior of heat transfer in Figure 3 (b) and 3 (c) at 310=Ra  require some attention. 

There is a very slight decline in the heat transfer rate at 310=Ra  in Figure 3 (b) and 3 (c), which is not significantly visible 

due to scale of the Figure. This deviating behavior for water- 32OAl  in Figure 3 (b) is such that the heat transfer very 

slightly increases from 0.775 to 0.779 between 0.050  , and then decreases up to 0.602 in the range 0.20.05  . 

This variation of heat transfer water- 32OAl  nanofluid was so slight in comparison to the other values in Figure 3 (b) that it 

was not visible. Now for water- 3TiO  nanofluid, first the heat transfer rate increases from 0.775 to 0.797 in the range 

0.070  , then it decreases up to 0.704 between 0.20.07  . Thus we can say that for water-Cu (metallic) nanofluid, 

Heat transfer rate increases with volume fraction for all Rayleigh numbers in the Range 63 1010  Ra . However heat 

transfer does not monotonically increase with volume fraction at 310=Ra , for 32OAl  and water- 3TiO  (oxide) nanofluids 

at 310=Ra .  

 

           
 

Fig.3. Average heat transfer rates as a function of volume fraction of nanofluids at different values of Rayleigh number for (a) water-Cu nanofluid (b) 

water- 32OAl  nanofluid (c) water- 3TiO  nanofluid combinations 

 

4.2 The Effect of Rayleigh number 

   

Fig.4. Streamlines of water- 3TiO  nanofluid at 6.2=Pr , A =2, 0.04= , 0.5=t  for (a) 
310=Ra  (b)

510=Ra   (c)
710=Ra  

              Figure 4 shows the pattern of streamlines of water- 3TiO  nanofluid while 6.2=Pr , A =2, 0.04= , 0.5=t  for (a) 
310=Ra  (b)

510=Ra  (c) 
710=Ra  respectively. It can be seen from Figure 4 (a) that at 

310=Ra , the strength of flow is 

very weak. Comparing it with Figure 4 (b) and (c) we see that the strength of the flow increases and the recirculation starts 

to grow. As can be seen from Figure 4 (c), the strength of flow close to the opening is 230 for 
710=Ra , whereas it was 



merely 3.5 for 310=Ra  shown in Figure 4 (a). Finally, Figure 5 shows a comparison of the average heat transfer rate as a 

function of Rayleigh number for different nanofluids. This Figure also depicts that visible increase in heat transfer for all 

combinations takes place beyond 310>Ra . By comparison it can be seen that heat transfer for all nanofluids is greater than 

the base fluid (water), at any given value of Rayleigh number. However by carefully observing the graph we see that heat 

transfer in case of water-Cu nanofluid is maximum. For instance at 810=Ra , Heat transfer rate of pure water is 51.4, 

whereas its value is 59.0, 58.5, and 57.4 for water-Cu, water- 32OAl  nanofluid and water- 3TiO  nanofluid combinations 

respectively. It can now again be seen that heat transfer of water-Cu nanofluid is maximum among these three at any given 

value of Rayleigh number.  

  
  

Fig.5. Comparison of the average Nusselt number of  heated wall as a function of Rayleigh number, between pure fluid (water 0== s , 6.2=Pr , 

A =2), and different water based nanofluid combinations at 0.05= , 6.2=Pr , A =2. 

 

5. Conclusions 
 

Natural convection of three different types of water based nanofluids in an open rectangular cavity is numerically studied. It 

was found that for low Rayleigh numbers ( 310=Ra ), heat transfer exhibits a decreasing trend for increasing values of 

volume fraction of oxide nanofluids in the range 0.20.05  , whereas for higher values of Rayleigh numbers where the 

dominant convection takes place ( 64 1010  Ra , an increasing trend of heat transfer was observed due to increase in the 

volume fraction of nanofluids. However, water-Cu nanofluid showed an increasing trend for all values of Rayleigh number 

considered. In comparison to the other two oxide nanofluids considered, water-Cu nano fluid proved to be a better nanofluid 

in the sense that it has greater heat transfer efficacy and shows an increasing trend for range of Rayleigh number considered. 

A heat transfer comparison of the nanofluids with that of pure fluid is also made for different values of Raleigh numbers in 

the range 9101  Ra , and it is seen that heat transfer in case of nanofluid is greater than that of the base fluid in the region 

of dominant convection ( 93 1010  Ra . 
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