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. 
Abstract 

The aim of this paper is to implement a Game-Theory 
based offline mission path planner for aerial inspection 
tasks of large linear infrastructures. Like most real-
world optimisation problems, mission path planning 
involves a number of objectives which ideally should be 
minimised simultaneously. The goal of this work is then 
to develop a Multi-Objective (MO) optimisation tool 
able to provide a set of optimal solutions for the 
inspection task, given the environment data, the mission 
requirements and the definition of the objectives to 
minimise. Results indicate the robustness and capability 
of the method to find the trade-off between the Pareto-
optimal solutions. 

1   Introduction 
Nowadays most of the world relies on complex 
frameworks of oil/gas/power distribution as well as 
goods delivery infrastructure such as highways and 
railways. In the last years, the use of Unmanned 
Aerial Systems (UAS) for civil applications had an 
increasing trend, so that today UAS can be 
considered as a valid alternative for long and 
monotonous civil missions such as the inspection 
of a large linear infrastructure. The use of UAS for 
linear infrastructure inspection has been explored 
by a number of researchers [3], [7], but the benefits 
of using UAS may be compromised if the mission 
planning is inadequate. Typically, monitoring 
missions of linear infrastructures alternate a 
number of on-service and off-service legs, and the 
total time spent for the off-service part of the 
mission may amount to a significant portion of the 
whole duration of the mission. Therefore, a well-
designed mission should be targeted to minimise 
the costs due to the off-service legs with respect to 
the on-service legs. 

The rest of the paper is organised as follows: 

in Section 2 the methodology adopted and the 
formulation of the problem are described. Section 3 
presents an overview of NSGA-II, Nash-GAs and 
Hybrid Game. Section 4 describes how the Hybrid 
Game framework is implemented and details the 
strategies for the players of Hybrid Game. Section 
5 presents some test bench cases. Section 6 details 
a novel formulation of the Multi-Objective 
Travelling Salesman Problem (MO-TSP) and the 
techniques adopted for its solution; the operators 
and the way they are used by the players of the 
Hybrid Game are detailed. Section 7, details the 
application of the MO-TSP solver to the mission 
path planning problem for aerial inspection of large 
linear infrastructures. Finally, the results obtained 
for two practical cases are presented. A discussion 
of the findings of this works is given in Section 8. 

2    Methodology and problem formulation 
The goal of the paper is to implement a novel MO 
Genetic Algorithm based on Hybrid Game strategy 
in Matlab. The core of the algorithm is an enhanced 
version of NSGA-II and original solutions for the 
strategy of Hybrid Game are proposed. The 
performance of the algorithm is evaluated against 
some bench test optimisation problems. Then, the 
Hybrid Game framework is used to solve 
Travelling Salesman Problems (TSP). The issues of 
such combinatorial optimisation problem are 
analysed and the definition of the chromosomes 
and the genetic operators are customised for the 
solution of the TSP. A MO formulation of the TSP 
(MO-TSP) is detailed and some bench instances of 
MO-TSP are created and tested. 

The MO-TSP formulation is then used to 
define the two-dimensional environment of a large 
infrastructure inspection task. In order to reproduce 
realistic environments the digital scenario includes 
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both the infrastructure to inspect and a number of 
risk areas, thus allowing to formulate the mission 
path planning problem as a Multi-Objective 
Optimisation Problem (MOOP) involving the 
length of the trajectory and a risk function as the 
objectives. The model adopted to describe the 
trajectory of the UAS is based on Dubins curves. 
Finally, a number of scenarios reproducing the 
complete railway network of Queensland, 
Australia, are used to test the software. The 
hardware used for all the tests is a PC running 
Windows 7 64 bit with a 2.40 GHz Intel(R) Core(TM) 
i5-M450 CPU and 4GB of RAM. 

3   Background 

3.1   Multi-Objective Evolutionary Algorithms 

Most real-world optimisation problems involve 
simultaneous minimisation of several conflicting 
objectives. Multi-Objective Evolutionary 
Algorithms (MOEAs) have been developed to find 
sets of optimal trade-off solutions for MOOPs. In 
this work we focus on NSGA-II, as it is a well-
known algorithm and it showed good performance 
in many bench tests [1], [11]. The procedure of 
NSGA-II may be arranged into 7 steps [13], [14]: 
1) the main evolutionary parameters (i.e. 

population size and maximum number of 
generations) are given and the objective 
functions are defined; 

2) the population is randomly initialised; all 
objective functions are evaluated for each 
individual and is stored; 

3) the population is sorted into fronts based on 
non-domination: a rank is assigned to each 
individual so that individuals having rank j 
dominate all individuals having rank k>j and are 
dominated by all individuals having rank i<j. 
Then, within each front, all individuals are 
classified depending on their crowding distance, 
that is a measure of how close an individual is to 
its neighbours and it is used in order to preserve 
diversity in the population; 

4) a mating pool is picked by means of a binary 
tournament selection based on individual rank 
and crowding distance; 

5) generic operator on the mating pool is 
conducted to generate an offspring population; 
the evolution consists either in a Simulated 

Binary Crossover (SBX) or in a genetic 
mutation based on polynomial mutation [4]; 

6) the resulting intermediate population, which 
includes both parents and offspring, is in turn 
sorted based on the same criteria of non-
domination and crowding distance; 

7) a selection of the population is performed, i.e. 
only the individuals belonging to the first fronts 
survive while the others are discarded. 

The number of generations evaluated is used as the 
stopping criterion, so steps 4, 5, 6, and 7 are 
cyclically run until the maximum number of 
generations is achieved. 

3.2   Nash-Genetic Algorithms 

A MOOP can be solved using as many players as 
the objectives of the problem: each player 
optimises one criterion keeping all other criteria 
fixed by the other players. Such a strategy is called 
Nash-strategy and tends to the so called Nash-
equilibrium, i.e. the condition when no player can 
further improve its own objective [10], [29]. 

Nash-strategies can be implemented within a 
Genetic Algorithm in order to obtain Nash-
equilibrium solutions of MO problems [15], [16], 
[18]. A technique to implement a Nash-GA for an 
M-Objective optimisation problem is to create M 
distinct populations assigned to M Nash-players; 
each player evolves its own population based on its 
own criterion and send its best solution to the other 
players, which in turn optimise their own criterion 
without changing any criterion optimised by the 
other players. The scheme proceeds generation 
after generation and the evolution can be 
considered completed when the Nash-equilibrium 
is reached. Figure 1 shows the flow-chart of a 
Nash-GA for a 2-objective problem. 

3.3   Hybrid Game Genetic Algorithms 

Hybrid Games are advanced optimisation methods 
which couple different strategies within one single 
framework. A suitable implementation of Hybrid 
Game consists in one Pareto-player and a number 
of Nash-players exchanging information each other 
to produce Nash-equilibrium and Pareto-optimal 
solutions at one time [15]. 

The goal of coupling the Nash-strategy and 
the Pareto-strategy into a Hybrid Game is to speed 
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up the convergence of the solutions found by the 
Pareto-player towards the Pareto-optimal front. The 
role of the Nash-players within a Hybrid Game is 
therefore to explore the extreme zones of the 
objective space and seed useful information to the 
Pareto-player and to the other Nash-players. 

The Hybrid Game developed in this work is a 
variant of the original Hybrid Game, [14] [15], 
[16]. The exchange of information is conducted by 
sending and seeding some elite members from each 
population to the other ones. Such a technique, 
further discussed in Section 4.3, is called migration 
and performed cyclically during the evolution. 

 
Figure 1. Flow-chart for a 2-objective Nash-GA. 

4   Hybrid Game framework 

4.1   Pareto-player’s MO strategy 

The Pareto-player of the algorithm presented in this 
paper consists of a MOEA based on the well-
known NSGA-II algorithm. In its original 
formulation, NSGA-II works on a population of 
predetermined constant size [5]. The computational 
cost to evaluate one generation is 𝑂(𝑀𝑁2), being 
𝑀 the number of objective functions and 𝑁 the 
population size [2]. The basic idea encouraging the 
new scheme proposed in this work is to reduce the 
computational cost of the MOEA by making it 
work on a population whose size varies in 
accordance with a given law type, in order to obtain 
better convergence towards the Pareto-front in 
lower computational time [8]. All the tests 
presented in this work are conducted with 
populations varying quadratically. 

4.2   Nash-Players’ single-objective strategy 

Each Nash-player of Hybrid Game optimises one 
objective and produces optimal solutions speeding-
up the convergence of the global Pareto-player 
towards the Pareto-optimal solutions set. The Nash-
player’s strategy is implemented following the 
usual structure of a generic EA. The parent-
selection and the population-sorting operators used 
by Nash-players are different from those used by 
the Pareto-player. In particular, the mating pool of 
the Nash-players is obtained by merging two 
subsets of individuals, one filled up using an elitist 
criterion and one formed by randomly picked 
members. The purpose of such a combined parent-
selection is to guarantee the involvement of the 
new members coming from other populations in 
the evolution of the Nash-populations. 

Another important feature of the Nash-players 
strategy is that the application of the genetic 
operators occurs after the selection of the decision 
variables specific for that Nash-player. The action 
of a given Nash-player is hence restricted to just 
some genes of the whole chromosome while the 
other genes are kept frozen. An important issue in 
the development of a Hybrid Game algorithm is 
consequently the selection of the decision variables 
on which every Nash-player is allowed to operate 
on. The most pragmatic consequence of this feature 
of Hybrid Game is that the formulation of the 
model describing the optimization problem is a 
crucial matter, since the problem should be 
carefully formulated in such a way that the effect of 
the decision variables can be easily discerned and 
an efficient strategy can be implemented. 

4.3   Elite migration technique 

The exchange of information between the players 
of Hybrid Game occurs by means of cyclic 
migrations of some individuals (elite group) 
between the populations involved into the 
evolution process. 

In the algorithm, the elite group sent from the 
Nash-population A to the Nash-population 𝐵 is 
populated selecting the members of population A 
having the best fitness value from the standpoint of 
the Nash-player B. Analogously, the subgroup 
migrating from any Nash-population N to the 
Pareto-population P is composed by the members 
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of the populations N having the lowest rank. This 
mechanism aims to keep the exchange of 
information during the evolution as high as 
possible while simultaneously reducing the risk to 
get trapped in some local minima. Also the 
subgroup  sent from the Pareto-population P to any 
Nash-population N is populated by the members of 
the origin population P having the lowest rank. 

5   Test bench problems 

5.1   Mathematical test cases: ZDT functions 

The Zitzler-Deb-Thiele’s (ZDT) functions are two-
objective optimisation problems commonly used in 
literature [2], [12], [14]defined in the general form: 
Minimise: 𝑓1(𝒙)  (1) 
 𝑓2(𝒙) = 𝑔(𝒙) · ℎ�𝑓1(𝒙), 𝑔(𝒙)�   
where: 𝒙 = 𝑥𝑖     𝑖 = [1, 𝑛] 

Depending on the expressions assumed by the 
functions f1(x), g(x), and h(x), six problems were 
defined [12]. The ZDT functions used as bench 
tests in this work are the ZDT1, ZDT2, ZDT3, 
ZDT4 and ZDT6. The value of the decision 
variable xi is the ith gene of the chromosomes used 
in the evolutionary optimisation. The only decision 
variables assigned to the first Nash-player is x1, 
while all the other variables are assigned to the 
second Nash-player. The evolutionary parameters 
used for the optimisation of the ZDTs are 
summarised in Table 1. 

 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
main pop.size 20:100 20:100 20:100 20:100 20:100 
Nash-pop.size 15:50 15:50 15:50 15:50 15:50 

growth exponent 2 2 2 2 2 
elite group size 2 2 2 2 2 
max time [s] 30 30 45 60 15 

generations evaluated 1150 1124 1672 2395 1949 
Table 1. Evolutionary parameters used for the bench tests.  

The final Pareto-fronts of the ZDT functions were 
computed but only a few are shown here due to 
space restrictions. 

5.2   MO Engineering problems 

We also considered the Gear train design, the Two-
bar truss design and the Welded beam design 
problems. [19], [20], [21] and the evolutionary 
parameters used for the optimisation of this set of 
problems are summarised in Table 2. 

 Gear train Truss Welded beam 
main pop.size 40:100 40:100 40:100 

Nash-pop.size 15:50 15:50 15:50 
growth exponent 2 2 2 
elite groups size 2 2 2 

penalty value on 𝑓1 - 102 102 
penalty value on 𝑓2 - 107 10−1 
maximum time [s] 120 120 120 

generations evaluated 2676 2487 2060 
Table 2. Evolutionary parameters used for the Engineering 

optimisation test problems. 

5.3  Results and discussion 

The algorithm proved to be able to find the true 
Pareto-front of all the ZDT functions but the ZDT4. 
Such an anomalous behaviour is supposed to be 
due to intrinsic complexity of the ZDT4 function, 
which has 219 of local Pareto-fronts in the problem. 
Such a considerably high number of local minima 
makes the algorithm get stuck in one of them 
preventing the convergence towards the global 
Pareto-front. 

Figure 2. Pareto-front found for function ZDT3. 

 
Figure 3. Pareto-front found for function ZDT4. 

Amongst the Engineering optimisation problems 
evaluated, the true Pareto-front was available only 
in the gear design case. Some values of the true 
Pareto-front were not found by the algorithm, but a 
globally well spread set of optimal solutions was 
found. On the contrary, no direct numerical 
comparison of the results obtained for the truss 
design and the welded beam optimisation problems 
was available. 
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Figure 4. Pareto-front found for the gear train problem. 

An intrinsic difficulty of the Engineering problems 
tested here is that the effects of each decision 
variable on the objective functions are not 
straightforward to identify. This probably 
prevented an adequate assignment of the decision 
variables to the Nash-players, leading to the 
adoption of a weak overall strategy of the Hybrid 
Game framework. 

6   Multi-Objective TSP 

The Travelling Salesman Problem (TSP) is a 
combinatorial optimisation problem stated as [22]: 
Minimise: ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑁

𝑗=1
𝑁
𝑖=1  (2) 

subject to: ∑ 𝑥𝑖𝑗𝑁
𝑖=1 = 1,     𝑗 = 1, … ,𝑁 

 ∑ 𝑥𝑖𝑗𝑁
𝑗=1 = 1,     𝑖 = 1, … ,𝑁 

 𝑥𝑖𝑗 = {0,1} 
The problem requires to minimise the total cost of a 
tour between a set of N cities, given the cost 
function dij=dji between each pair of cities i and j; 
xij is a discrete variable which can assume only 
value 0 or 1. The constraints indicate that the tour 
must visit each city only once, thus the solution of 
the TSP is the shortest Hamiltonian cycle (i.e. a 
close cycle visiting each node exactly once) of the 
graph whose nodes are the cities. 

The solution of a TSP by comparison of all 
the possible (𝑁 − 1)! solutions becomes 
practically impossible for a few tens of cities. Many 
optimisation algorithms and heuristic techniques 
have been proposed during the last decades to solve 
the TSP. Currently, Concorde software is one of 
the best TSP solvers [22], and its solution is used in 
this work as the reference to estimate the quality of 
the paths found. 

Many efforts were also done to solve the TSP 
by means of Evolutionary Algorithms [17], [23], 
[24]. The major issues concerning the application 
of Evolutionary Algorithms to the TSP are related 

to the chromosome definition and the genetic 
operators. In order to obtain suitable 
implementations, the chromosomes must be 
designed in such a way that their genes can 
represent the properties of feasible solutions; the 
generic operators must be able to combine the 
parents transferring useful information to the 
offspring in a non-destructive manner [25]. 

The algorithm presented here can be 
conceptually divided into three steps, which are run 
in sequence: 
• pre-processing: the environment data is 

imported and decoded; the evolutionary 
parameters are set and the initial populations are 
initialised; 

• processing: the populations evolve until a 
stopping criterion is met; 

• post-processing: the chromosomes belonging to 
the final Pareto-front of the main population are 
stored in an external file and the results are 
shown graphically to the user. 

In order to formulate a model for the 
implementation of a TSP solver, one of the major 
issues is the implementation of a method to 
describe a candidate solution. In this work the 
approach used is the so called path representation, 
i.e. the cities are labelled with progressive 
numbering, so that the chromosome is simply the 
ordered sequence of the cities which gives the 
candidate path. 

 
Figure 5. Representation of two example paths. 

As an example, let us consider the simple TSP of 9 
random cities (Figure 5). The path representation of 
two possible solutions path1 and path2 of such a 
TSP is then: 

path1=[1 6 5 7 9 4 3 2 8] 
path2=[8 6 4 7 9 5 3 1 2] 

They are representative of the paths (a) and (b) of 
Figure 5 respectively. An important feature of the 
path representation is that a complete path through 
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the cities of a 𝑉-dimensional TSP can be expressed 
in 2𝑉 possible ways, due to the circularity of the 
solution of the TSP. Such a peculiarity is 
conveniently exploited by some of the genetic 
operators implemented in this work. 

6.1   Objective functions definition 

In order to build-up a model which can be later 
exploited as the basis for the aerial mission path 
planning, the MO-TSP formulation presented here 
involves the two following cost functions 𝑓1 and 
𝑓2, where: 
• 𝑓1 = 𝐿 is the length travelled, i.e. in a two-

dimensional environment the Euclidean 
distance between the coordinates of any 
couple of consecutive cities of the tour; 

• 𝑓2 = 𝑅 is an additional cost function referred 
to as the risk of the tour. 

To introduce the risk function, the model includes a 
number of elements, called dangerous points, 
whose presence induces a cost to the paths passing 
in its vicinity closer than a certain threshold. The 
risk f2(i,j) of the edge between the cities i and j is 
then defined as the total number of dangerous 
points encountered during the travel from i to j on 
the left and right side of the edge. Figure 6 shows 
the 9-city example TSP described previously where 
50 randomly placed dangerous points are 
considered. The tour path1 is also shown as a 
dashed blue line. The yellow-shaded area plotted in 
the same picture identifies the region 
(threshold=0.05) within which any dangerous 
points affects the risk of an edge. 

 
Figure 6. Example MO-TSP and risk evaluation of an edge. 

The two cost functions just defined are additive 
functions, meaning that the values of the cost 
functions of a complete tour through the cities is 
given by the sum of the cost functions of each 
single edge forming the tour. 

6.2   Look-up tables 

The computational time needed for the evaluation 
of the cost function increases with the dimension of 
the problem (i.e. number of the cities to visit) as 
well as the total number of dangerous points 
considered [26]. In order to make the evolutionary 
process faster, a timesaving technique is adopted to 
save computational resources during the evolution: 
in the pre-processing phase, the cost functions of all 
the edges are evaluated and stored into 
tridimensional matrices used as look-up tables 
during the evolution. This solution makes the time 
required for the evolution absolutely independent 
of the time taken to evaluate the cost functions. 

6.3   Genetic operators for MO-TSP 

The MO-TSP belongs to the class of combinatorial 
problems. Due to the different nature of the 
problems, five crossover operators and four 
mutation operators were specifically designed for 
the TSP and implemented to be used by the MO-
TSP solver instead of the SBX and the usual 
mutation operator. 

6.3.1   Partially Mapped Crossover 
This crossover performs a mapping between the set 
of consecutive cities which in the two parent 
chromosomes occupy the random positions from i 
to j, while keeping the order of the other cities 
unchanged. 

6.3.2   Order-Based Crossover 
This crossover keeps unchanged the order of a set 
of consecutive cities occupying the random 
positions from i to j of each parent and changes the 
order of the other cities in accordance of the order 
of those cities in the other parent. 

6.3.3   Sub-path Crossover 
A random city X is picked and the cities Y1 and Y2 
following X in the parent paths are identified. The 
sub-path of the second parent p2 going from X to 
Y1 and the sub-path of the first parent p1 going 
from X to Y2 are isolated and placed between X and 
Y1 in p1 and between X and Y2 in p2. The rest of 
the cities are kept unchanged. 

6.3.4   City-Centred Crossover 
A random city X is picked and the path of p1 from 
the first city to X is copied to the first child c1, and 
the path of p2 from the first city to X is copied to 
the second child c2. The rest of c1 is filled in 
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according to the order the remaining cities appear 
in p2 and the rest of c2 is filled in according to the 
order the remaining cities appear in p1. 

6.3.5   Edge-Recombination Crossover 
This crossover is targeted to obtain offspring 
chromosomes having as many edges as possible 
equal to the edges of the parents. The operator first 
evaluates the edges of each parent and identifies the 
ones common to both of them. The offspring 
chromosomes are built using the edges common to 
both parents; if no common edges are available the 
rest of the offspring chromosome is built randomly. 

6.3.6   Shortest sub-path mutation 
This mutation reorders heuristically the cities of the 
subpath of the parent p3 from i to j while keeping 
the other cities unchanged. The method used to 
reorder the cities from i to j is to place after each 
city X the city Y of the remaining ones such that the 
cost of the edge (X,Y) is the lowest. 

6.3.7   Single-point insertion mutation 
This mutation picks a random city X and moves it 
between the consecutive cities A and B such that 
the total length of the subpath [A-X-B] is the 
shortest. The order of the other cities is kept 
unchanged. 

6.3.8   Simple swap mutation 
This mutation mutually exchange the position of 
two cities picked randomly. 

6.3.9   Single-edge-insertion mutation 
This mutation is the dual version of the single-point 
insertion operator: it randomly picks two 
consecutive cities A and B of the parent 
chromosome and interposes between them the city 
X for which the total length of the subpath [A-X-B] 
is the lowest. The order of the other cities is kept 
unchanged. 

6.4   Sub-tour inversion operator 

Besides the crossover and mutation operators 
detailed above, another type of operator was 
implemented. The operator can be conceptually 
considered as a mutation, since it gets as an input a 
single chromosome and returns as an output a 
single child. It is used as a regular mutation 
operator by all the players of Hybrid Game, but 
also as a specific optimiser of the offspring of the 

Nash-players. This operator, called sub-tour 
inversion, explores the possibility to reduce the cost 
of a complete tour [A…Z] by inverting any 
intermediate sequence [X…Y] of consecutive cities: 

p3=[A … X … Y … Z] 
c3=[A … Y … X … Z] 

This operator is very effective, since it always 
returns as an output a chromosome whose fitness is 
not worse than the parent chromosome. Its 
drawback relies in the computational time, which is 
longer than any other operator implemented. 

6.5   Hybrid strategy for MO-TSP 

The algorithm presented in Section 4 is customised 
to solve MO-TSP cases. The framework imports 
the problem data (i.e. the position of the cities and 
of the dangerous points) and creates the matrix of 
look-up tables. Then the main population is 
initialised and the cost functions of all its members 
are evaluated. After the initialisation of the 
population operated by the Nash-players, the 
subtourinversion operator is applied to their 
members: each member of the population of the mth 
Nash-player is linearised with respect of the mth 
objective function, so that the useful action of the 
Nash-players be efficient from the first generation. 
Once all the populations are properly initialised, the 
evolutionary optimisation is conducted by 
following the general scheme of the Hybrid Game 
detailed in the previous section. 

The first difference with respect to the Hybrid 
Game algorithm described in Section 4 concerns 
the variable assignment at Nash-players. The 
results of the Engineering problems proposed in 
Section 5.2 revealed that the separability of the 
variables of a MOOP, and consequently a proper 
assignment of the decision variables to each Nash-
player, is a complex aspect of the definition of an 
efficient Hybrid Game strategy. Hence, a novel 
automatic procedure for the variable assignment is 
proposed here. Such a procedure was made 
possible by the introduction of the look-up tables 
and it is adopted for the MO-TSP solver and for the 
infrastructure inspection task path planner as well. 
Keeping in mind that the cost function of the global 
trajectory is given by the sum of the cost of each 
edge, the contribution to the total cost of a complete 
tour due to the presence of the city X in the tour, is 
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given by the sum of the cost to go from the city A 
to X and from X to B, being A and B the cities 
preceding and following X respectively. The cost of 
visiting the city X of a V-dimensional MO-TSP is 
equal to the sum of the costs of the (V-1) edges 
connecting X to the other cities of the problem. 
According to this definition, the risk of visiting the 
city X can be evaluated by summing-up all the 
elements of the Xth  row of the look-up table of the 
risk, since the table contains the costs of all the 
possible edges between X and any other city of the 
problem. The risk of each city is evaluated and the 
cities are sorted based on their risk. At this stage, 
the first Nsafe and the last Ndangerous cities are stored 
as the safest and most dangerous cities of the 
problem. The value of Nsafe and Ndangerous can be 
chosen by the user; in all the following cases it is 
assumed Nsafe=Ndangerous=0.25V. 

The subtourinversion operator is used by the 
mth Nash-player to improve the fitness of its own 
offspring in the regards of the mth objective. It is in 
this phase that the assignment of the decision 
variables takes place; the look-up table sent as an 
input to the subtourinversion operator contains the 
element of the mth cost function for all the edges 
except the ones connecting the cities assigned to 
the other Nash-player. The value of the cost 
function of such edges is reduced by a certain 
amount in order to force the sub-tour inversion 
algorithm to restore the edges between the cities 
assigned to the other Nash-player. 

Some operators perform heuristics estimations 
and they need the lookup table as an input. When a 
heuristic genetic operator is called by any Nash-
player, the related look-up table is used. Otherwise, 
if a heuristic genetic operator is called by the 
Pareto-player, an equivalent look-up table is built 
averaging the cost functions of each edge. 

6.6   Benchmark results 

Hybrid Game MO-TSP algorithm was tested on a 
few benchmark problems, but only one (namely 
MO_pma343, where 343 cities and 3000 dangerous 
points clustered in six lines are located in the range 
[0,300]×[0,42]) is reported in this work. Other test 
cases can be found in [9]. 

The test case is a benchmark case proposed in 
the TSP toolbox [28] and adapted here to the MO-
TSP formulation. The clusters of dangerous points 

are placed over some edges of the shortest path on 
purpose, with the intention to make the shortest 
path also the most dangerous path and force the 
algorithm to find alternative (i.e. longer but safer) 
solutions. The evolutionary parameters used for the 
test are summarised in Table 3 and the results 
obtained after the evolution are summarised in 
Table 4. The final Pareto-front of the main 
population is plotted in Figure 7, and the shortest, 
the safest and one trade-off path are shown in 
Figure 8 (a), (b) and (c) respectively. 

Main pop.size 50:100 
Nash-pop.size 20:50 

Growth exponent 2 
Elite groups size 2 

Maximum time [s] 720 
Generations evaluated 724 

Table 3. Evolutionary parameters used for MOpma343. 

 Shortest path found Safest path found Trade-off path 
Length 1389.7938 1629.6626 1468.7392 
Risk 1677 0 433 

Table 4. Results of MOpma343. 

 
Figure 7. Final Pareto-front of MOpma343. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Shortest, safest and trade-off paths of MOpma343. 

6.7   Discussion 

A number of paths avoiding the clusters of 
dangerous points were found. This shows that the 
MO-TSP formulation presented in this work is a 
suitable model for representing environments with 
physical obstacles not to be crossed. Comparing the 
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length of the paths obtained by Concorde (1.3898) 
and Hybrid Game (1.3898) it was noticed that the 
Hybrid Game algorithm found paths shorter than 
the ones found by Concorde. These anomalous 
result (noticed for other bench cases as well) is due 
to the fact that Concorde evaluates distances 
rounding to the nearest integer [30]. 

Hence, the performance of the optimiser are 
satisfying. The Pareto-front found is well spread 
and a number of Pareto-optimal solutions found 
represent paths avoiding the obstacles, as 
demonstrated by the plot of the trade-off solution. 
Since the MO-TSP benchmark case evaluated are 
not present in literature, the true Pareto-front of the 
problem is unknown and any comparison with the 
Pareto-front found by the software is prevented. 

7   Infrastructure inspection 

7.1   Problem definition 

One important application of the algorithm 
developed in this paper is the computation of the 
optimal trajectory needed to perform an aerial 
survey on large linear infrastructures like gas/oil 
ducts, power lines, railways or highways. 

7.1.1   Digitalisation and discretisation 
The map of the infrastructure was digitalised to be 
imported in Matlab and be effectively handled by 
the optimization algorithm. The best way to 
describe a linear infrastructure is to describe it as 
the combination of a number of lines whose 
extremes can belong to only one, two or more than 
two lines; in the first case, they are said extreme 
waypoints, in the second case connection 
waypoints and in the third case nodes. The lines to 
inspect are discretised as a list of intermediate 
waypoints between two extreme points of a line. 
The total number of the intermediate waypoints in 
which each line is discretised must be a 
compromise between the loss of detail due to the 
discretisation and the computational difficulty, 
which increases with the number of the waypoints. 

The issue is solved by importing a high-
density waypoint map into Matlab, but reducing the 
number of waypoints considered by the 
optimization algorithm by clustering some 
sequential waypoints of a global line together to 

form sub-lines whose extremes are connection 
waypoints of the lines of the global infrastructure. 
Such sub-lines are treated as unbreakable sub-
paths, so that the goal of the optimisation algorithm 
is to find the best trajectory through those sub-lines. 

This approach allows the optimisation 
algorithm to produce results only as feasible 
trajectories through the actual waypoints of the 
lines of the infrastructure. The discretization 
method described above can thus be applied to 
straight-line infrastructures, typically gas/oil 
pipelines and power lines, or curve-line 
infrastructures, i.e. railways, highways and even 
natural landscapes like rivers and coasts. 

7.1.2   Off-service additional path 
The goal of the optimisation algorithm developed 
in this paper is to compute a feasible trajectory 
above an infrastructure with an Unmanned Aerial 
Vehicle. Its trajectory is given by a composition of 
a certain number of sub-paths which can be 
generally classified as on-service and off-service 
paths. The first are the legs of the total trajectory in 
which the vehicle inspects the infrastructure, while 
the second ones are the legs in which all the 
mission sensors can be switched off because the 
vehicle is not overflying the infrastructure. 

In this work, it is assumed is that the aircraft is 
able to follow any bend of the on-service path, as 
well as any trajectory made up by compositions of 
straight lines and arcs of circle tangent each other 
with constant turn radius Rturn. This hypothesis 
allows to model the additional paths as Dubins 
curves [6], i.e. sequences of a maximum of three 
straight or curve primitives. 

7.2   Multi-objective analysis 

The infrastructure inspection mission planning is 
handled as a MOOP with two objective functions 
f1=L and f2=R, being the first one the length of the 
additional path and the second one the risk. 
Similarly to what was done for the MO-TSP, the 
scenario consists of a map of the infrastructure to 
inspect and a number of dangerous zones. The 
dangerous points are clustered into two-
dimensional areas so that they can be used to 
reproduce realistic environments in which cities, 
restricted areas and/or bad-weather zones occur. 
The boundaries of the risk areas are imported by 
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the algorithm and the user is allowed to tune the 
density of dangerous points for each dangerous 
area that the algorithm generates. Once the density 
is set and the boundaries of the dangerous areas are 
imported, the algorithm automatically generates the 
grids of points which are taken into consideration 
during the optimisation process. 

The solution implemented for the MO-TSP 
solver to hold down the computational cost needed 
for the evaluation of the cost functions is also 
adopted here: the length and the risk associated to 
all the possible additional trajectories are evaluated 
before the evolution process starts and stored into 
look-up tables. 

7.3   Chromosome genes 

As the problem was defined, any trajectory 
representing the solution of the inspection task path 
planning problem can be described as an ordered 
list of the sub-lines. Analogously to what has been 
done in the MO-TSP formulation, the sub-lines are 
numbered, so that any permutation of the vector 
[1,2,…,V-1,V], being V the number of sub-lines 
forming the global infrastructure, represents a 
candidate solution to the inspection problem. 

While the cities in the MO-TSP had no 
dimensions, the sub-lines are defined by two 
different extreme waypoints, implying the need to 
specify which is the direction of travel over each 
sub-line. The technique implemented to univocally 
point out one of the eight feasible trajectories 
between any two sub-lines i and j is to define a flag 
binary variable which identifies the direction of 
each line. The eight feasible trajectories between 
the sub-lines i and j are thus defined by four 
variables: two indicating the order and two 
indicating the direction of inspection. Hence, the 
solution trajectory is fully described by the order of 
inspection of all the sub-lines and the direction of 
travelling direction over them. The chromosomes 
of the members involved in the evolutionary 
algorithm are made up of the composition of a 
permutation of [1,2,…,V-1,V] and the vector of the 
flag variables. Such a definition of the 
chromosomes implies that the dimension of the 
look-up tables is [2𝑉 × 2𝑉]. 

7.4   Optimisation method 

Thanks to the analogies between the inspection task 
problem and the MO-TSP, all the genetic operators 
implemented for the MO-TSP solver are used also 
for the infrastructure inspection path planner; 
however to take into account the direction flag 
variables, the genetic operators used for the 
optimisation of the inspection path are allowed to 
work only on the first part of the full chromosome, 
while the flag variables vector is changed in 
accordance to the result of the operator itself. 

Thus, the functionality of all the genetic 
operators is basically unaffected by the presence of 
the direction flag variables; only the sub-tour 
inversion operator applied by the Nash-Players was 
strongly modified with respect to the one used for 
the MO-TSP solver. The sub-tour inversion 
operator used for the inspection path planning is 
indeed allowed to modify directly the flag variables 
vector. While for the MO-TSP the minimum sub-
path which could be swapped was the sequence of 
two cities, for the infrastructure inspection path 
planning, any single sub-line has an orientation and 
can therefore be swapped too. 

7.5   Queensland railway inspection 

The infrastructure considered is the Queensland, 
Australia, railway network (Figure 9). In this 
scenario, the lines to inspect have variable lengths 
and curvatures and therefore they represent a 
complex linear infrastructure. 

7.5.1   Environment definition 
The map of the infrastructure was obtained by 
tracing a number of point-to-point paths matching 
all the available lines in the layer of the rail of 
Queensland on Google Earth. The coordinates (in 
the Earth-Centred–Earth-Fixed reference system) 
of the waypoints were imported in Matlab, where a 
reference system transformation (in accordance to 
the WGS84 ellipsoid model, [27]) was performed. 
The Cartesian coordinates of the waypoints were 
imported in Rhinoceros 4.0, where each railway 
line was rebuilt interpolating the available 
waypoints with polynomial curves of degree three. 
Such curves were finally split into 50-meter long 
segments and the equispaced intermediate 
waypoints exported in text files. At the end of this 
procedure, 251 files containing the Cartesian 
coordinates of 206180 waypoints were created. 
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Figure 9. Overview of the railway network of 

Queensland, Australia. 

In such a scenario, a number of risk-related 
restrictions can be specified: 
• overflying cities for a long period may be unsafe 

due to airspace restrictions; 
• flight in the outback far from airports or 

populated areas is also a consideration; 
• according to forecasts, flying through some 

weather zones should be avoided. 
The restrictions listed above are conveyed into the 
digital environment as risk-inducing clusters of 
dangerous areas located over the major cities of 
Queensland, throughout the outback and far from 
the railway. Different levels of risk are assigned to 
the bad-weather forecasts. Over this environment, a 
number of test cases (on different scales) were 
evaluated and two of them are presented here: 
• Test case 1: inspection of the Brisbane, Gold 

Coast, Ipswich and Toowoomba (BGIT) area 
railway in good-weather conditions; 

• Test case 2: inspection of the BGIT area 
railway with two zones of bad-weather zone are 
considered. 

The density of the dangerous points used for the 
cities is 800km-2, while for the bad-weather zones a 
density of 1000km-2 was used. 

7.5.2   Results 
The software was run for 1200 seconds; 1249 and 
940 generations were evaluate for the test case 1 
and for the test case 2 respectively. All the 
evaluations are performed using Rturn=150m as the 
constant turn radius of the aircraft and 2km for the 
range of risk influence. A trade-off path, as well as 
its position on the final Pareto-front are plotted and 
a summary of the cost functions for each trajectory 
is presented. Table 5 summarises the results 
obtained. 

 

Figure 10. Pareto-front for test case 1. 

 

Figure 11. Pareto-front for test case 2. 

 
Figure 12. Intermediate path over the BGIT area railway 

in good-weather conditions. 

 
Figure 13. One trade-off path over the BGIT area railway 

in bad-weather conditions. 

 Shortest path found Safest path found Trade-off path 
length risk length risk length risk 

Test 
case 1 287km 376 385km 320 303km 331 

Test 
case 2 287km 915 478km 533 369km 560 

Table 5. Summary of the results for the test cases. 
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7.5.3   Discussion 
The results obtained for the railway inspection task 
confirm the good performance of the optimisation 
algorithm displayed for the benchmark cases: in the 
real-world cases evaluated, the difference between 
the maximum and minimum of off-service lengths 
(ΔL) and risk (ΔR) found for are: 

 Test case 1 Test case 2 
𝛥𝐿 98𝑘𝑚 191𝑘𝑚 
𝛥𝑅 56 382 

Hence, the optimal trade-off paths chosen are 
representative of paths which allow a reduction on 
the risk by [80%, 93%] with respect to the shortest 
path paying only [ 16%, 43%] in terms of length. 

Finally, the off-service to total length ratio is 
low for all the trade-off missions planned: the on-
service lengths of the railway to inspect is 575km, 
hence the off-service to total length ratio metric is 
[0.345, 0.390]. 

The shortest paths found in the two cases are 
characterised by the same length although the risk 
related to each one of them is significantly 
different. These results prove that the algorithm is 
able to adapt efficiently to the environment 
definition and the risk constraints considered. 

8   Conclusions 

This paper presented a novel formulation of the 
problem of the mission path planning of aerial 
survey tasks and an advanced Hybrid Game 
Evolutionary Algorithm was implemented for its 
solution. The mission path planning was handled as 
a MOOP where the objectives to minimise are the 
distance travelled and a risk function. These two 
objectives are defined for the purpose of taking into 
account any element of the real environment which 
can generally reduce the safety of the mission; thus, 
the scenarios considered include a number of 
dangerous zones representing restricted airspace, 
populated regions or bad weather areas. The risk 
function was defined in such a way that the risk 
induced by each dangerous zone is adjustable, thus 
allowing to define complex environment involving 
zones having different levels of risk. 

The problem of the mission path planning was 
formulated as an enhanced MO version of the TSP. 
The technique proposed for the discretisation of the 
lines of the infrastructure is applicable to networks 
consisting of either straight and curve lines. 

A specific chromosome definition was 

necessary as well as the implementation of genetic 
operators peculiar for combinatorial optimisation. 
In order to speed up the evolutionary process, a 
novel technique for the evaluation of the fitness of 
the individuals involved into the evolution process 
was developed: the length and the risk of the edges 
are read on look-up tables created in the pre-
processing phase of the software. 

Some of the test cases used to test the 
algorithm were presented. The software was finally 
applied to the mission path planning problem of the 
inspection task of the railway of Queensland, 
Australia. The results obtained were satisfying in 
all the cases: in all the cases evaluated, the software 
produced well spread sets of optimal trade-off 
solutions, proving that the software developed in 
this paper is a suitable and versatile tool for the 
offline mission path planning  of aerial inspection 
tasks of large network infrastructures. 

Even though the algorithm was initially meant 
as an offline path planner for UAS, a possible 
future development based on this work could be the 
implementation of a Graphical User Interface to 
run the software on the UAV Controller Station. 
The risk areas could be updated downloading the 
information of the on-board Weather Surveillance 
Radar and the software could be used as a real-time 
re-planner in case of sudden change of the 
environmental data. Future works will also 
consider the airfield locations and aircraft 
endurance to determine an optimal path into 
package missions, as well as the control and 
guidance required for real-world applicability 
[31],[32].  
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