

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Bunker, Jonathan M. (2013) High load transit line passenger transmission and productiveness efficiencies. In Perk, Victoria (Ed.) *Transportation Research Board 92nd Annual Meeting*, January 13-17, 2013, Washington, D. C.

This file was downloaded from: http://eprints.qut.edu.au/56554/

© Copyright 2013 the author.

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

High Load Transit Line Passenger Transmission and Productiveness Efficiencies

Introduction

- Measures describing productive performance of individual transit service or whole line are very useful in quantifying:
 - Resources' capabilities
 - Passengers' Quality of Service
- This paper extends productive performance measures to quantify:
 - Efficiency
 - Operating fashion
- These are demonstrated to be useful to transit operator in planning, design, operational activities

Definitions and Propositions

- *Transit work* is the product of transported objects and distance carried (p-km)
- Passenger transmission is the product of spaces utilized and vehicle speed (p-km/h)
- Transit productiveness is the work delivered over time along a line (p-km/h)
- *Ideal conditions* occurs where and when service operates at Maximum Scheduled Load and according to schedule
- Passenger transmission efficiency is the ratio of actual to ideal
- Transit productiveness efficiency is the ratio of actual to ideal
- Passenger churn the ratio between total boardings and total work performed during a time period (p/p-km)
- Av. proportion line length traveled is the ratio of average distance traveled by passenger and line length (%)

Variation along Line

- Passenger demand is spread out both over space and time
- This prevents offered capacity from being fully utilized throughout peak period
- Analyzing an entire line in terms of utilized work provides a picture of total transit performance during a time period

High Passenger Load Conditions

- Pass-ups occur where passengers are left behind, when a service departs under Maximum Scheduled Load
 - peak spreading
 - irregularities in stop dwell times between services
 - irregularities in services' travel times

Service h Transmission Efficiency along Line L

$$\eta\{\mathcal{O}_{h,L}\} = \frac{T_{S,h,L} \sum_{i=1}^{n} P_{OB,h,i} s_i}{T_{h,n} P_{MSL,h} \sum_{i=1}^{n} s_i}$$
Scheduled journey time, actual journey time, Max. Scheduled Load, by segment: passengers on-board, segment length

Service h Productiveness Efficiency during Time Period Z

$$\eta\{\Pi_{h,Z}\} = \frac{\sum_{i=p}^{q} P_{OB,h,i} \, s_i}{P_{MSL,h} \sum_{i=n}^{q} \, s_i} \qquad \text{Max. Scheduled Load,} \\ \text{by segment: passengers on-board, segment length}$$

Jonathan M Bunker Science and Engineering Faculty Queensland University of Technology

Hypothetical Transit Line Peak Hour Example

- Buses with 65p Max Scheduled Load (MSL)
- 10 min schedule frequency
- Pass-ups occurring where MSL is exceeded:
 - Service 5 on Segment 5
 - Service 6 on Segments 4, 5
 - Recovered by Service 7
- Path of each service:
 - Dashed represent the schedule
 - Solid colored are actual
 - e.g. service 6 falls behind schedule along segments 5 onwards

Productiveness Efficiencies (Load Factors)

- Overall line productiveness efficiency 61.6%
- Some 100% efficiencies are occurring
 - In this example corresponding to pass-ups, recoveries
 - These flag potential pass-up activity
 - Operator should investigate any segment where 2 or more successive services exhibit 100% values using field observations, driver logs, APC

Passenger Transmission Efficiencies

- Overall line transmission efficiency 59.6%
- Match productiveness on Segments 1 to 4
- Lower on Segment 5 for all service because the schedule is exceeded
- Higher on Segment 6 for Services 2 and 3 due to schedule recovery

Differences in Overall Efficiencies

- Where Productiveness > Transmission schedule is not being met by service/s
- Where Productiveness < Transmission service/s are running ahead of schedule

TRB 92nd Annual Meeting Session 422 Paper 13-0035

Hypothetical Transit Line Daytime Hour Example

- Buses 65p Max Scheduled Load
- 15 min schedule frequency
- No pass-ups
 - Reflected by no 100% productiveness efficiency values
- All services are running to schedule
 - Productiveness efficiencies (load factors) = transmission efficiencies
 - Overall line productiveness efficiency 55.2%

Comparator	Peak Hour	Daytime	Comment
Overall line productiveness	2,808p-km/h	1,665p-km/h	Less daytime demand for travel
Overall line prod'ness efficiency	61.6%	55.2%	Similar resource effectiveness
Av. proportion line length traveled	40%	25%	Shorter, mixed suburban daytime trips compared to commuter peak hour

Conclusions

- 100% Productiveness Efficiency for successive services at a stop flags to Operator potential pass-up activity
- Differences between a line's Productiveness Efficiency and Transmission Efficiency profiles for a given time period flags to the Operator poor schedule adherence
- Insight into temporal variation in a line's operating fashion can be gained by comparing between different time periods (e.g. a.m. peak, daytime)
 - Productiveness Efficiency profiles
 - Average Proportion Line Length Traveled values
- Variation in a line's operating fashion can be used to target improvements in planning, design, operational activities such as
 - Stop spacing specification
 - Stop amenities provision
 - Passenger Quality of Service evaluation

Future Research

- Refine guidance to the Operator on potential pass-up activity through 100% Productiveness Efficiency flag
- Determine suitable Policy Productiveness Efficiency value or range relevant to Operator / system type
- Apply methodology to an actual bus line's operation
 - throughout a typical weekday
 - using APC data, field observations of pass-ups
 - Investigating variation in operating fashion using Average Proportion Line Length Traveled

Acknowledgments

- Academic Strategic Research Alliance (ASTRA)
- Queensland Department of Transport and Main Roads' TransLink Division, Australia