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Abstract. As business process management technology matures, organisations acquire more and more
business process models. The resulting collections can consist of hundreds, even thousands of models
and their management poses real challenges. One of these challenges concerns model retrieval where
support should be provided for the formulation and efficient execution of business process model queries.
As queries based on only structural information cannot deal with all querying requirements in practice,
there should be support for queries that require knowledge of process model semantics. In this paper we
formally define a process model query language that is based on semantic relationships between tasks in
process models and is independent of any particular process modelling notation.

1 Introduction

With the increasing maturity of business process management, more and more organisations need to
manage large numbers of business process models, and among these may be models of high complexity.
Business process models constitute valuable intellectual property capturing the way an organisation conducts
its business. Processes may be defined along the entire value chain and over time a business may gather
hundreds and even thousands of business process models. As an example consider Suncorp, one of the largest
Australian insurers. Over the years, Suncorp have gone through a number of organizational mergers and
acquisitions, as a result of which the company has accumulated over 3,000 process models for the various
lines of insurance. In this context, support for business process retrieval, e.g. for the purposes of process reuse
or process standardization, is a challenging proposition.

While several query languages exist that can be used to retrieve process models from a repository, e.g.
BPMN-Q [1] or BP-QL [2, 3], these languages are based on syntactic relationships between tasks and not on
semantic relationships between them.

While in a process graph, a task A may follow a task B this does not mean that during execution task B
will always follow sometime after taskA. Let us consider for example the two process models in Fig. 1. These
models represent two variants of a business process for opening bank accounts in the BPMN notation [4].
Each variant consists of a number of tasks (represented by rectangles) and dependencies between these tasks.
Arcs represent sequential dependencies, while diamonds represent decisions (if there is one incoming arc
and multiple outgoing arcs) and simple merges (if there are multiple incoming arcs and one outgoing arc).
These two variants could capture the way an account is opened in two different states in which the company
operates, and could be part of a collection of various process models for all states in which the bank operates.
Now let us assume that an analyst needs to find all states which require an assessment of the customer’s credit
history when opening an account. In this case, by only using the structural relationships between tasks, we
cannot discern between the two variants, i.e. we would retrieve them both, since in both models there is at
least a path from task “Receive customer request” to task “Analyse customer credit history”. However, if we
consider semantic relationships, we can see that task “Analyse customer credit history” always follows task
“Receive customer request” in all instances of the first process variant, but this is not the case for one instance
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Fig. 1: Two variants of a business process for opening bank accounts.

of the second variant (the one where task “Open VIP account” is run). Thus we can correctly exclude the
second variant from the results of our query, and return the first variant only.

A process model retrieval language based on semantic relationships is indeed in line with process exe-
cution, e.g. through a workflow management system. One challenge though, when it comes to determining
semantic relationships between tasks, is how to determine these relationships in a feasible manner, i.e. without
suffering from the well-known state space explosion problem.

In light of the above, in this work we aim to address the development of an expressive business process
model query language. We do so by proposing a new query language for process model repositories, namely
“A Process-model Query Language” (APQL). This language relies on a number of basic temporal relation-
ships between tasks which can be composed to obtain complex relationships between them. These predicates
allow us to express queries that can discriminate over single process instances or task instances.

Since the language relies on temporal relationships between tasks, it is independent of a specific business
process modelling notation. In order to demonstrate its feasibility, in [5], we worked on a concrete realization
of this language in the context of Petri nets. To this end, we adopted the theory of unfoldings [6], a well-known
theory for dealing with the state space explosion problem; in particular, we explored the result on derivation
of finite initial parts of unfoldings called complete finite prefixes [6, 7]. We proposed an index structure,
called the directed bigraphs, as extension of the complete prefix unfolding of a net system and relied on
this structure to compute temporal relationships between Petri net transitions. Later, flaws were detected by
Artem Polyvyanyy in the algorithms for deriving temporal relationships between Petri net transitions from
the directed bigraphs. While the directed bigraphs of a net system represent the system’s behaviour, due to
the fact that they are an extension of the complete finite prefix of the net system, a single representation
of behaviour is by far not sufficient to suit all the proposed algorithms. For instance, one can validate that
the alwoccur predicate, cf. Algorithm 7 in [5], when applied to the net system in Fig. 5(a) in [5] and its
transition I , computes to false erroneously. Note that the problem of finding an effective general purpose
data structure for representing the behaviour of a concurrent system is an area of active research with many
existing solutions often targeting the “convenient” validation of some limited set of attributes [8]. To address
the identified flaws, one either needs to account for another representation of behaviour or to replace several
of the algorithms with ones that are more expensive.

Hence, in this updated report, we only cover the APQL language with a slightly revised formalization and
leave out its realization in Petri nets. The remainder of this report focuses on the definition of APQL includ-
ing both its syntax (Section 2) and semantics (Section 3). Examples are included to assist in understanding
of the language definition. We also briefly discuss related work (Section 4) and finally conclude the paper
(Section 5).

2 The Syntax of APQL

In this section we first look at the design rationale for APQL and provide an informal introduction to this
language. The syntax of APQL is presented in the form of an abstract syntax, the advantages of which over a
concrete syntax have been espoused by Meyer [9]. In essence, in an abstract syntax we can avoid committing
ourselves prematurely to specific choices for keywords or to the order of various statements. For illustration
purposes, we provide sample queries based on the abstract syntax of APQL.
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2.1 Informal Description

APQL is designed as a process model retrieval language that is independent of the actual process mod-
elling language used. This is important as in practice a variety of modelling languages is used (e.g. BPMN,
EPCs) and the language should be generally applicable. Another important starting point is the fact that pro-
cess models have a semantics and it should be possible to exploit this semantics when querying. For example,
let ti (where i = 1, 2, ..., n) be a task identifier, while task t1 may follow task t2 in process model r (i.e. there
is a directed path from task t1 to task t2), it may be the case that due to the presence of certain splits and
joins, task t2 cannot actually be executed after task t1. Hence, a language based on the syntax (i.e. structure)
of a process model is not always powerful enough.

In order to achieve language independence we define a set of 20 basic predicates to capture, in business
process models, the occurrences of tasks as well as the semantic relationships between tasks. Below, the first
two predicates capture the occurrence of a task in some or every execution of a given process model.

1. posoccur(t1, r): there exists some execution of process model r where at least one instance of t1 occurs.
2. alwoccur(t1, r): in every execution of process model r, at least one instance of t1 occurs.

The next two predicates capture the exclusive and concurrent relationships between task occurrences. Note
that these two predicates do not assume that an instance of t1 or t2 should eventually occur.

3. exclusive(t1, t2, r): in every execution of process model r, it is never possible that an instance of t1 and
an instance of t2 both occur.

4. concur(t1, t2, r): t1 and t2 are not causally related, and in every execution of process model r, if an
instance of t1 occurs then an instance of t2 occurs and vice versa.

Then we consider various forms of causal relationship between task occurrences. The relationship can be
precedence or succession, where one task may occur immediately or eventually preceding or succeeding
another task. It may hold for any or every occurrence of the tasks in some or every process execution.
Combining all these considerations results in 16 forms of causal relationships which are captured by the
remaining 16 basic predicates as follows.

Let Φ be one of the following intermediate predicates,

1. succany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is eventually succeeded
by an instance of t2 (e.g. ...t1...t2...).

2. succevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and every instance of t1 is
eventually succeeded by an instance of t2 (e.g. t1...t1...t2).

3. predany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is eventually preceded by
an instance of t2 (e.g. ...t2...t1...).

4. predevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and every instance of t1 is
eventually preceded by an instance of t2 (e.g. t2...t1...t1).

5. isuccany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is immediately succeeded
by an instance of t2 (e.g. ...t1t2...).

6. isuccevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and every instance of t1 is
immediately succeeded by an instance of t2 (e.g. t1t2...t1t2).

7. ipredany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is immediately preceded
by an instance of t2 (e.g. ...t2t1...).

8. ipredevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and every instance of t1 is
immediately preceded by an instance of t2 (e.g. t2t1...t2t1).

then

– Φ∀(t1, t2, r): Φ(t1, t2, i) holds for every process execution i of process model r, i.e. Φ(t1, t2, i) always
holds in process r.

– Φ∃(t1, t2, r): there exists some process execution i of process model r where Φ(t1, t2, i) holds, i.e. it is
possible that Φ(t1, t2, i) holds in process r.

Note that the above predicates are all defined in terms of the execution of a process.
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2.2 Abstract Syntax

We define the abstract syntax of APQL using the notation introduced in [9]. In APQL a query is a set of
Assignments combined with a Predicate.

Query , s : Assignments; p : Predicate

Assignments , Assignment∗

The result is those process models that satisfy the Predicate. An Assignment assigns a TaskSet to a variable
and when evaluating the Predicate every variable is replaced by the corresponding TaskSet (via the identifier
of such task set).

Assignment , v : Varname; ts : TaskSet

Varname , identifier

TaskSets can be enumerations of tasks or they can be defined in terms of other TaskSets either by Construction
or by Application. A TaskSet can also be defined through a variable, a TaskSetVar.

TaskSet , SetofTasks | Construction | Application | TaskSetVar

A Task can be defined as a combination of a TaskLabel (which is a string) and a SimDegree (which is a real
number). The idea is that one may be interested in Tasks of which the task label bears (at least) a certain
degree of similarity to a given activity name. There are a number of definitions in the literature concerning
label similarity and for a concrete implementation of the language one has to commit to one of these.

SetofTasks , Task+

Task , l : TaskLabel ; d : SimDegree

TaskLabel , string

SimDegree , real [0..1]

A TaskSetVar is simply a variable that carries the identifier of the set of the tasks. Such a task set may be used
in assignments.

TaskSetVar , identifier

A TaskSet can be composed from other TaskSets through the application of the well-known set operators
such as union, difference, and intersection. Another way to construct a TaskSet is by the application of a
TaskCompOp (i.e. one of the basic predicates introduced earlier, but now interpreted as a function) on another
TaskSet. In that case we have to specify whether we are interested in the tasks that have that particular relation
with all or with any of the tasks in the TaskSet. For example, an expression with TaskSet S, TaskCompOp
PosSuccAny (i.e. succany∃) and with AnyAll indicator all, should yield those tasks that any instance of such
a task succeeds an instance of each individual task in S in some process execution.

Construction , ts1, ts2 : TaskSet ; o : Set_Op

Set_Op , Union | Difference | Intersection

Application , ts : TaskSet ; o : TaskCompOp; a : AnyAll

TaskCompOp , Exclusive | Concur |
AlwSuccAny | AlwSuccEvery | AlwPredAny | AlwPredEvery |
PosSuccAny | PosSuccEvery | PosPredAny | PosPredEvery |
AlwISuccAny | AlwISuccEvery | PosISuccAny | PosISuccEvery |
AlwIPredAny | AlwIPredEvery | PosIPredAny | PosIPredEvery

AnyAll , Any | All

A Predicate can consist of a simple TaskPos, with the intended semantics what the basic predicate posoccur
specifies; a TaskAlw, with the intended semantics what the basic predicate alwoccur specifies; a TaskRel, with
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the intended semantics that all process models satisfying that particular relation should be retreived; or, it can
be recursively defined as a binary or unary Predicate through the application of logical operators.

Predicate , TaskPos | TaskAlw | TaskRel | Bin_Predicate | Un_Predicate

Bin_Predicate , o : BinLogOp; p1, p2 : Predicate

Un_Predicate , o : UnLogOp; p : Predicate

BinLogOp , And | Or

UnLogOp , Not

TaskPos , l : TaskLabel ; d : SimDegree

TaskAlw , l : TaskLabel ; d : SimDegree

A TaskRel can be 1) a relationship between a Task and a TaskSet checking whether that Task occurs in that
TaskSet (TaskInTaskSet), 2) a relationship between a Task and a TaskSet and involving a TaskCompOp and
an AnyAll indicator determining whether the Task has the TaskCompOp relationship with any/all Tasks in the
TaskSet (Task_TaskSet), 3) a relationship between two Tasks involving a TaskCompOp predicate determining
whether for the two Tasks that predicate holds (Task_Task), 4) a relationship between two TaskSets involv-
ing a TaskCompOp and an AnyAll indicator determining whether the Tasks in those TaskSets all have that
TaskCompOp relationship to each other or whether for each Task in the first TaskSet there is a correspond-
ing Task in the second TaskSet for which the relationship holds (Elt_TaskSet_TaskSet), or 5) a relationship
between two TaskSets determined by a set comparison operator (Set_TaskSet_TaskSet).

TaskRel , TaskInTaskSet | Task_TaskSet |
Task_Task | Elt_TaskSet_TaskSet |
Set_TaskSet_TaskSet

TaskInTaskSet , t : Task ; ts : TaskSet

Task_TaskSet , t : Task ; ts : TaskSet ;

o : TaskCompOp; a : AnyAll

Task_Task , t1, t2 : Task ; o : TaskCompOp

Elt_TaskSet_TaskSet , ts1, ts2 : TaskSet ; o : TaskCompOp;

a : AnyAll

Set_TaskSet_TaskSet , ts1, ts2 : TaskSet ; o : SetCompOp

SetCompOp , Identical | Subsetof | Overlap

2.3 Sample Queries

In this section we will show some sample queries and how they can be captured in APQL in order to
further illustrate the language. The sample queries, specified in natural language, are listed below (and num-
bered Q1 to Q10). In these queries, by default the value for the AnyAll identifier, when applicable, is all, and
by default the value for the SimDegree is 1. Fig. 2 shows the grammar trees for queriesQ1 toQ6, while Fig. 3
shows the grammar trees for queries Q7 to Q10. Note that in the following A to L are task labels (i.e. activity
names).

Q1. Select all process models where task A occurs in some process execution and task B occurs in every
process execution.

Q2. Select all process models where in every process execution task A may occur before task D.
Q3. Select all process models where in every process execution task A always occurs before task D.
Q4. Select all process models where in some process execution task A may occur before task B and task B

may occur before task K.
Q5. Select all process models where in some process execution task A always occurs before task B.
Q6. Select all process models where task B occurs in parallel with task C.
Q7. Select all process models where task B occurs in parallel with task C and where task A occurs in parallel

with task H.
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Q8. Select all process models where in every process execution task B and task C never occur together.
Q9. Select all process models where in every process execution the immediate predecessors of task H are

among the immediate successors of task B.
Q10. Select all process models where in some process execution the immediate predecessors of task H may

occur after the common immediate successors of task B and task C.

Fig. 2: The APQL grammar trees of sample queries Q1 −Q6

3 APQL Semantics

In this section, we use denotational semantics to formally describe the semantics of APQL. For each
nonterminal T we introduce a semantic function MT which defines the meaning of the nonterminal in terms
of its parts. The notation that we adopt throughout this section is the notation used in [9].

First, we introduce some auxiliary notation in order to facilitate the subsequent definition of the semantics.

Definition 1 (overriding union). The overriding union of f : X → Y by g : X → Y , denoted as f ⊕ g, is
defined by g ∪ f\{(x, f(x)) | x ∈ dom(f) ∩ dom(g)}.

With the set of 20 basic predicates defined in the previous section, we use BPu to denote the set of two unary
predicates {posoccur, alwoccur} which specify unary task relations, and similarly we use BPb to denote the
set of other 18 binary predicates which specify binary task relations. The following two definitions introduce
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Fig. 3: The APQL grammar trees of sample queries Q7 −Q10
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a higher order predicate that takes as input a unary or binary predicate, respectively. Note that the semantics
of each predicate (φ/ψ) is language independent. For a task t in process model N , LN (t) specifies the label
of t. A process model may have silent tasks which do not capture any task or activity in the process but are
used for modelling purposes, e.g. a silent task used to capture an internal action that cannot observed by
external uses. For a silent task t, we let L(t) = τ .

Definition 2. Let N be a process model and T the set of tasks in N , for t1, t2 ∈ T and φ ∈ BPb

refφ(t1, t2, N) =

{
φ(t1, t2, N) if LN (t1) 6= τ ∧ LN (t2) 6= τ
FALSE otherwise

i.e. the relation φ should hold between t1 and t2 in net N if both are non-silent tasks.

Definition 3. Let N be a process model and T the set of tasks in N , for t1 ∈ T and ψ ∈ BPu

refψ(t1, N) =

{
ψ(t1, N) if LN (t1) 6= τ
FALSE otherwise

i.e. the relation ψ should hold for t1 in net N if t1 is a non-silent task.

As queries may use variables, we must know their values during query evaluation. A Binding is an assignment
of task sets to variables:

Binding , ProcessModel ×Varname � 2Task

Queries are applied to a repository of process models, i.e.

Repository , 2ProcessModel

A process model r consists of a collection of tasks Tr. For each task t in process model r we can retrieve its
label as Lr(t). Label similarity can be determined through the function Sim, where Sim(l1, l2) determines
the degree of similarity between labels l1 and l2 (which yields a value in the range [0,1]). Note that Sim
is a parameter of the approach in which case one can choose his/her own similarity notion and returns the
similarity evaluation result to this parameter.

The query evaluation function MQuery takes a query and a repository as input and yields the collection
of process models in that repository that satisfy the query:

MQuery : Query × Repository → 2ProcessModel

This function is defined as follows:

MQuery [q : Query , R : Repository ] ,MPredicate(q.p,R,MAssignments(q.s, R,∅))

The evaluation of the query evaluation function depends on the evaluation of the predicate involved and the
assignments involved. When evaluating a sequence of assignments we have to remember the values that have
been assigned to the variables involved. Inititally this set of assignments is empty.

MAssignments : Assignments × Repository × Binding → Binding

The result of a sequence of assignments is a binding where the variables used in the assignments are bound
to sets of tasks. If a variable was already assigned a set of tasks in an earlier assignment in the sequence the
latest assignment takes precedence over the earlier assignment.

MAssignments [s : Assignments, R : Repository , B : Binding ] ,
if ¬(s.TAIL).EMPTY then
MAssignments(s.TAIL, R,B ⊕MAssignment(s.FIRST , R,B))

else B

The result of an individual assignment is also a binding where the variable is linked to the set of tasks involved.
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MAssignment : Assignment × Repository × Binding → Binding

MAssignment [a : Assignment , R : Repository , B : Binding)] ,
{((r, a.v),MTaskSet(a.ts, R,B)(r)) | r ∈ R}

A predicate can be evaluated in the context of a repository and a binding and the result is a set of process
models from that repository.

MPredicate : Predicate × Repository × Binding → 2ProcessModel

A predicate which is a task yields all process models in the repository that contain a task sufficiently similar
to that task (with respect to the task label and similarity degree). A predicate which is a relationship between
tasks (i.e. a TaskRel) yields all the process models that satisfy this relationship. A disjunction yields the union
of the process models of the predicates involved, while a conjunction yields the intersection. The negation of
a predicate yields the process models in the repository that do not satisfy the predicate.

MPredicate(p : Predicate, R : Repository , B : Binding) ,
case p of

TaskPos ⇒ {r ∈ R | ∃t ∈ Tr[Sim(p.l, Lr(t)) ≥ p.d ∧ posoccur(t, r)]}
TaskAlw ⇒ {r ∈ R | ∃t ∈ Tr[Sim(p.l, Lr(t)) ≥ p.d ∧ alwoccur(t, r)]
TaskRel ⇒MTaskRel(p,R,B)
Bin_Predicate ⇒

case p.o of
And ⇒MPredicate(p.p1, R,B) ∩MPredicate(p.p2, R,B)
Or ⇒MPredicate(p.p1, R,B) ∪MPredicate(p.p2, R,B)

end
Un_Predicate ⇒ R\MPredicate(p,R,B)

end

A TaskRel in the context of a repository and a binding yields a set of process models in that repository.

MTaskRel : TaskRel × Repository × Binding → 2ProcessModel

A TaskRel can be used to determine whether a task in a process model occurs in a given task set, whether a
given basic predicate holds between a task in a process model and one or all tasks in a given task set, whether
a given basic predicate holds between tasks in a process model, whether a given basic predicate holds between
two or between all tasks in two given task sets, or whether a given set comparison relation holds between two
given task sets.

MTaskRel(tr : TaskRel , R : Repository , B : Binding) ,
case tr of

TaskInTaskSet ⇒
{r ∈ R | ∃v ∈MTaskSet(tr.ts, R,B)(r)[Sim(tr.t.l, Lr(v)) ≥ tr.t.d]}

Task_TaskSet ⇒
case tr.a of

Any ⇒ {r ∈ R | ∃t1 ∈ Tr ∃t2 ∈MTaskSet(tr.ts, R,B)(r)
[Sim(tr.t.l, Lr(t1)) ≥ tr.t.d ∧ reltr.o(t1, t2, r)]}

All ⇒ {r ∈ R | ∃t1 ∈ Tr ∀t2 ∈MTaskSet(tr.ts, R,B)(r)
[Sim(tr.t.l, Lr(t1)) ≥ tr.t.d ∧ reltr.o(t1, t2, r)]}

end
Task_Task ⇒ {r ∈ R | ∃v1, v2 ∈ Tr[Sim(tr.t1.l, Lr(v1)) ≥ tr.t1.d∧

Sim(tr.t2.l, Lr(v2)) ≥ tr.t2.d ∧ reltr.o(v1, v2, r)]}
Elt_TaskSet_TaskSet ⇒

case tr.a of
Any ⇒ {r ∈ R | ∃t1 ∈MTaskSet(tr.ts1, R,B)(r)
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∃t2 ∈MTaskSet(tr.ts2, R,B)(r)[reltr.o(t1, t2, r)]}
All ⇒ {r ∈ R | ∀t1 ∈MTaskSet(tr.ts1, R,B)(r)

∀t2 ∈MTaskSet(tr.ts2, R,B)(r)[reltr.o(t1, t2, r)]}
end

Set_TaskSet_TaskSet ⇒
case tr.o of

Identical ⇒
{r ∈ R |MTaskSet(tr.ts1, R,B)(r) =MTaskSet(tr.ts2, R,B)(r)}

Subsetof ⇒
{r ∈ R |MTaskSet(tr.ts1, R,B)(r) ⊆MTaskSet(tr.ts2, R,B)(r)}

Overlap ⇒
{r ∈ R |MTaskSet(tr.ts1, R,B)(r) ∩MTaskSet(tr.ts2, R,B)(r) 6= ∅}

end
end

A TaskSet within the context of a repository and a binding yields a mapping which assigns to each process
model in the repository the collection of tasks within that model that satisfy the restriction imposed by the
TaskSet.

MTaskSet : TaskSet × Repository × Binding → (ProcessModel → 2Task )

When a TaskSet is a set of tasks, then for each process model the result is the set of tasks within that process
model that are sufficiently similar to at least one of the tasks in that TaskSet. When the TaskSet is a variable,
then the evaluation is similar except that the task set used is the task set currently bound to that variable.
TaskSets can also be formed through Construction (where the set operators union, difference, and intersection
are used) or Application (where task sets are formed through set comprehension, i.e. they are defined through
properties that they have - these properties relate to the basic predicates).

MTaskSet(tks : TaskSet , R : Repository , B : Binding) ,
case tks of

SetofTasks ⇒
{(r, {t ∈ Tr | ∃1≤i≤tks.LENGTH [Sim(tks(i).l, Lr(t)) ≥ tks(i).d]}) | r ∈ R}

TaskSetVar ⇒
{(r,X) | r ∈ R} where

X =

{
B(r, tks) if (r, tks) ∈ dom(B)
∅ otherwise

Construction ⇒
case tks.o of

Union ⇒
{(r,MTaskSet(tks.ts1, R,B)(r) ∪MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

Difference ⇒
{(r,MTaskSet(tks.ts1, R,B)(r)\MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

Intersection ⇒
{(r,MTaskSet(tks.ts1, R,B)(r) ∩MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

end
Application ⇒

case tks.a of
Any ⇒
{(r, {t ∈ Tr | ∃v ∈MTaskSet(tks.ts, R,B)(r)[reltks.o(t, v, r)]}) | r ∈ R}

All ⇒
{(r, {t ∈ Tr | ∀v ∈MTaskSet(tks.ts, R,B)(r)[reltks.o(t, v, r)]}) | r ∈ R}

end
end

Semantics of Sample Queries In order to illustrate the formal semantics of APQL, a number of process
models, represented in BPMN, are presented in Fig. 4. For each sample query of Section 2.3 and for each
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model it is indicated whether the model is part of the answer to the query (in that case the box corresponding
to the query is ticked otherwise the box is not ticked). Note that in some models tasks with the same label
occur (e.g. there are two tasks labeled A in model f), in which case, APQL will treat these tasks as same tasks
during query evaluation.8

4 Related work

Mindful of the importance of query languages for business process models, the Business Process Man-
agement Initiative (BPMI) proposed to define a standard process model query language in 20049. While such
a standard has never been published, two major research efforts have been dedicated to the development
of query languages for process models. One is known as BP-QL [3], a graphical query language based on
an abstract representation of BPEL and supported by a formal model of graph grammars for processing of
queries. BP-QL can be used to query process specifications written in BPEL rather than possible executions,
and ignores the run-time semantics of certain BPEL constructs such as conditional execution and parallel
execution.

The other effort, namely BPMN-Q [1, 10], is also a visual query language which extends a subset of
the BPMN modelling notation and supports graph-based query processing. Similarly to BP-QL, BPMN-Q
only captures the structural (i.e. syntactical) relationships between tasks, and not their behavioral interrela-
tionships. In [11], the authors explore the use of an information retrieval technique to derive similarities of
activity names, and develop an ontological expansion of BPMN-Q to tackle the problem of querying business
processes that are developed with different terminologies. A framework of tool support for querying process
model repositories using BPMN-Q and its extensions is presented in [12].

APQL presents three distinguishing features compared to the above languages. First, its abstract syntax
and semantics have been purposefully defined to be independent of a specific process modelling language
(such as BPEL or BPMN). This will allow APQL and its query evaluation technique to be implemented for a
variety of process modelling languages. Second, APQL can express all possible temporal-ordering relations
(precedence/succession, concurrence and exclusivity) between individual tasks, between an individual task
and a set of tasks as well as between different sets of tasks. Third, APQL querying constructs need to be
evaluated over the execution semantics of process models, rather than their structural relationships. In fact,
structural characteristics alone are not able to capture all possible order relations among tasks which can
occur during execution, in particular with respect to cycles and task occurrences.

In earlier work [13], we provided an initial attempt at defining a query language based on execution
semantics of process models. The language was written in linear temporal logic (LTL) and only supported
precedence/succession relations among individual tasks (not sets of tasks).

In addition to the development of a specific process model query language, other techniques are available
in the literature which can be useful for querying process model repositories. In [14, 15] the authors focus
on querying the content of business process models based on metadata search. VisTrails system [16] allows
users to query scientific workflows by example and to refine workflows by analogies. WISE [17] is a workflow
information search engine which supports keyword search on workflow hierarchies. In [18] the authors use
graph reduction techniques to find a match to the query graph in the process graph for querying process
variants, and the approach however works on acyclic graphs only. In [19–21], a group of similarity-based
techniques have been proposed which can be used to support process querying. In previous work, we designed
a technique to query process model repositories based on an input Petri net [22]. Finally, in [23], the notion
of behavioural profile of a process model is defined, which captures dedicated behavioural relations like
exclusiveness or potential occurrence of activities. However, these behavioural relations are derived from the
structure of a process model. Thus, for the reasons mentioned above, behavioral profiles only provide an
approximation of a process model’s behavior, whereas we can precisely determine whether a process model
satisfies or not a given query, since we work at the behavioral level.

8 This is expected because APQL is query language rather than a process modelling language.
9 http://www.bpmi.org/downloads/BPMI_Phase_2.pdf
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Fig. 4: A list of BPMN business process models and evaluation of sample queries Q1 − Q10 in Section 2.3 over these
processes.
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5 Conclusions

This paper contributes an innovative language, namely APQL, for querying process model repositories.
APQL provides three main advantages over the state of the art. First, the language is expressive since it
allows users to specify all possible order relationships among tasks or sets thereof. Second, the language is
precise, since APQL queries are defined for evaluation over process model behavior, while existing query
languages only support structural process characteristics. Third, the language’s syntax and semantics are
defined independently of any specific process modeling language.

Currently APQL only focuses on the control flow perspective of business process models. In the future, we
will extend the language definition in order to include other process perspectives such as data and participating
resources. Moreover, we plan to run structured interviews with domain experts to assess the overall ease of
use and usefulness of APQL.
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