
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Li, Zhixu, Sitbon, Laurianne, & Zhou, Xiaofang (2011) PartSS : An efficient
partition-based filtering for edit distance constraints. In Shen, Heng Tao &
Zhang, Yanchun (Eds.) Australasian Database Conference (ADC 2011),
ACS, Perth, Australia , 103-112 .

This file was downloaded from: http://eprints.qut.edu.au/56386/

c© Copyright 2011 Australian Computer Society, Inc.

Copyright 2011, Australian Computer Society, Inc.
This paper appeared at the 22nd Australasian Database Conference (ADC
2011), Perth, Australia, January 2011. Conferences in Research and Prac-
tice in Information Technology (CRPIT), Vol. 115, Heng Tao Shen and
Yanchun Zhang, Ed.
Reproduction for academic, not-for-profit purposes permitted provided this
text is included.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10915282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Sitbon,_Laurianne.html
http://eprints.qut.edu.au/56386/

PartSS: An Efficient Partition-based Filtering for Edit Distance Constraints

Zhixu Li Laurianne Sitbon Xiaofang Zhou

School of Information Technology & Electrical Engineering
The University of Queensland, QLD 4072 Australia

Email: {zhixuli, zxf}@itee.uq.edu.au, l.sitbon@uq.edu.au

Abstract

This paper introduces PartSS, a new partition-based fil-
tering for tasks performing string comparisons under edit
distance constraints. PartSS offers improvements over the
state-of-the-art method NGPP with the implementation of
a new partitioning scheme and also improves filtering abil-
ities by exploiting theoretical results on shifting and scal-
ing ranges, thus accelerating the rate of calculating edit
distance between strings. PartSS filtering has been imple-
mented within two major tasks of data integration: simi-
larity join and approximate membership extraction under
edit distance constraints. The evaluation on an extensive
range of real-world datasets demonstrates major gain in
efficiency over NGPP and QGrams approaches.

Keywords: edit distance, partition-based, similarity join,
approximate membership extraction

1 Introduction

Nowadays, with the fast growing of data sources and the
inconsistency between them, our demands for approxi-
mate data integration also increase sharply. Two key tasks
in data integration are: a) similarity join between data
sources to reconcile different representations of the same
entities and b) approximate membership extraction, which
targets the identification of the substrings from an unstruc-
tured text which approximately matches with any member
of a given large dictionary of known entities. The enti-
ties in the two tasks can be gene or protein names (bioin-
formatics), geographical locations (geotagging), person or
product’s names (business information system) etc. Due
to their importance, similarity join and approximate mem-
bership extraction have been studied in many areas such as
data cleaning, information integration and bioinformatics.

These two tasks rely on string similarity functions.
According to the requirements of different applications,
various string similarity functions have been considered.
Some applications may prefer to ignore the order of to-
kens appearing in the text, such as recognizing plagia-
risms which share almost the same word set as the origi-
nal one, or identifying junk mails where some commercial
words are frequently used. Therefore, token-based simi-
larity functions such as jaccard similarity, cosine similar-
ity etc. are to be used properly (Sarawagi & Kirpal 2004,
S. Chaudhuri & Kaushik 2006, Arasu et al. 2006, Bayardo
et al. 2007). Other applications are sensitive to token or-
ders, such as retrieving results for typo keywords in infor-
mation retrieval or recognizing homologous DNA strands

Copyright c⃝2011, Australian Computer Society, Inc. This paper ap-
peared at the 22nd Australasian Database Conference (ADC 2011),
Perth, Australia, January 2011. Conferences in Research and Prac-
tice in Information Technology (CRPIT), Vol. 115, Heng Tao Shen and
Yanchun Zhang, Ed. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

in bioinformatics. In these situations, edit distance tends
to be a good choice, as it measures the minimum number
of edit operations, including insertion, deletion and substi-
tution, to transform one string into another. Several works
have used edit distance in similarity join and approximate
membership extraction (Zobel & Dart 1995, Bilenko et al.
2003, Gravano et al. 2001, Wang et al. 2009).

Applying edit distance raises great efficiency chal-
lenges in Edit Distance similarity Join (EDJ) or Approxi-
mate Membership Extraction with Edit Distance threshold
(ED-AME) since its computation is expensive(O(n2) time
complexity in standard dynamic programming (Wagner &
Fischer 1974)). For EDJ between two sets of strings, a
naive pairwise similarity join costs O(N2 · n2) running
time, where N is the number of strings in each set and n
is the average length of the strings. For ED-AME from
a document D w.r.t. a dictionary of string entities R, the
naive enumeration method costs O(|D| · |R| · n2) in run-
ning time.

To tackle the low efficiency problem brought by com-
puting edit distance, several approaches have been pro-
posed that raise the efficiency by pruning unmatched pairs
of strings with filtering techniques. A widely adopted
filter is the conversion of the edit distance constraint be-
tween two strings into the overlap between their q-grams
sets (Gravano et al. 2001). The main inconvenient of this
approach is the sensitivity to the choice of the size of q-
grams. Another line of works are developing filtration
based on finding common neighbors between strings. Bo-
cek et. al. proposed to generate τ -deletion neighbor-
hood sets by deleting no more than τ characters at all
possible positions of a string, where τ is the given edit
distance threshold. If two strings are within τ edit dis-
tance to each other, they must share at least one τ -deletion
neighborhood. This filtering may only work well for short
strings with a small edit distance threshold τ , otherwise
the size of deletion neighborhood O(|s|τ) can be large,
where |s| denotes the length of the string s. To further re-
duce the neighborhood size, an improved method called
NGPP (stands for Neighborhood Generation with parti-
tioning and prefix-based pruning) was proposed by Wang
et. al. (Wang et al. 2009). NGPP first partitions a string
s into several partitions, then slightly adjusts the position
and length of these partitions to generate variants for each
partition. It is guaranteed that for any string s′ within τ
edit distance to s there must be at least one partition of s′
within 1 edit distance to a variant of the partition which
lies at the same position in s. Only 1-deletion neighbor-
hoods are generated for each partition variant of s and the
overall neighborhood size of s is O(|s|τ + τ2).

NGPP greatly decreases the time and space complex-
ity of EDJ or ED-AME, but it still need to generate 1-
deletion neighborhoods and the neighborhood size also
becomes large when |s| is a long string. In this paper,
we propose a novel partition-based filtering technique to
be implemented with EDJ and ED-AME. The new par-

tition scheme PlusOne and partition variation generation
rule are proposed, leading to the generation of O(τ2) par-
tition variants for string s, such that for any string s′ that
within τ edit distance to s, there must be at least one par-
tition of s′ equals to a variant of the partition which lies at
the same position of s. In order to prevent the generation
of unnecessary partition variants, we also develop some
non-trivial techniques to give a stricter variation genera-
tion rule for our method. By applying the prefix-based fil-
tering (Wang et al. 2009), the size of partition signatures
can be further reduced to O(lp · τ), where lp is the length
of prefix set in the prefix-based pruning.

Our main contributions in this paper are summarized
below:

• We propose a novel partition-based filter for EDJ and
ED-AME using a new partition scheme PlusOne re-
ducing the space complexity to O(τ2) in addition to
reducing the probability of false-positives.

• We develop a strict partition variant generation rule,
which gives tighter upper-bounds to the range of
shifting and scaling operations applied to partitions
of the string.

• We apply this filter into both EDJ and ED-AME
demonstrate the effectiveness of the filtration based
on our partition-based scheme on several real-world
datasets.

The outline of this paper is as follows: Section 2 cov-
ers related work. We introduce preliminaries in Section
3. Section 4 presents the novel partition-based signature
scheme for edit distance. We then introduce how we adapt
our scheme into EDJ and ED-AME in Section 5 and 6.
The experimental study is given in Section 7.

2 Related Work

Edit distance is a widely-used distance function for
strings, which can be computed in O(n2) time and O(n)
space using the standard dynamic programming (Wagner
& Fischer 1974). In order to enhance the computing ef-
ficiency, some techniques have been proposed in the past
several decades, such as the Four-Russians (Masek & Pa-
terson 1980) which improves the time complexity into
O(n2/log(n)), or a bit-parallel algorithm (Ukkonen 1983)
which reaches an average time complexity of O(n + d2)
(d is the edit distance between two strings).

Recently, edit distance was introduced into the Simi-
larity Join (SJ) and Approximate Membership Extraction
(AME) (Zobel & Dart 1995, Bilenko et al. 2003, Gravano
et al. 2001, Wang et al. 2009), making efficiency prob-
lems arise. The state-of-art approaches to process edit
similarity join or edit approximate membership extraction
are mainly based on a popular filtration-verification frame-
work. In the filtration step, a great amount of string pairs
(or substring and entity pairs) are pruned and the similar-
ity of the remaining pairs is calculated in the verification
step,

A popular filtering scheme is to convert the edit dis-
tance constraint into a weaker count filtering on the num-
ber of matching q-grams. Q-grams are generated by slid-
ing a window of width q over a string. If two strings s
and t are within edit distance τ , they must share at least
LBs,t = max(|s|, |t|) − q + 1 − q · τ q-grams (Gravano
et al. 2001). Other methods were also suggested to com-
plement the count filtering. length filtering guarantees that
s and t’s length disparity should be within τ . Position fil-
tering requires that there are at least LBs,t matching po-
sitional q-grams (Gravano et al. 2001). Since generating
all pairs of strings satisfying the count filtering rule is a
bottleneck, the prefix filtering strategy was used later to

quickly discard some unmatched pairs without accessing
all of their q-grams (S. Chaudhuri & Kaushik 2006). As
state-of-the-art techniques, Xiao et. al. proposed location-
based mismatch filtering and content-based mismatch fil-
tering, which can be incorporated into previous strategies
to make the edit similarity join be more efficient (Xiao
et al. 2008). However, it is a dilemma to choose proper
length of q-grams when using q-gram-based approaches to
find approximate matches. On the one hand, q should be
smaller than Lmin+1

τ+1 (Lmin is the shortest length of entity
string) to guarantee at least one common q-gram between
matching strings. On the other hand, short q-grams lead
to long posting lists impacting the overall cost of similar-
ity join (Xiao et al. 2008, Zobel & Dart 1995). Besides,
q-gram-based approaches are less selective for short enti-
ties, and it is hard to share computation (Wang et al. 2009).

Both SJ and AME have been studied extensively in the
literature. SJ is related to record linkage (Winkler 1999),
name matching (Bilenko et al. 2003), data deduplication
(Sarawagi & Bhamidipaty 2002) etc. AME is also known
as Membership Checking or Approximate Entity Extrac-
tion. Besides edit distance, various alternative similarity
functions have been used in SJ and AME. These works
are also mainly based on the filtration-verification frame-
work. In the filtration step, various kinds of signature
schemes (S. Chaudhuri & Kaushik 2006, Chandel et al.
2006, Arasu et al. 2006, Gionis et al. 1999), or inverted
list index (Chandel et al. 2006, Singhal 2001), or combi-
nations (Chakrabarti et al. 2008, Lu et al. 2009, Wang et al.
2009) have been proposed.

Also related field of SJ and AME, “approximate string
matching” focuses on finding a pattern string approxi-
mately in a text. This problem has been studied exten-
sively in algorithmic, information retrieval and natural
language process communities. An excellent survey is
given in (Navarro 2001).

3 Preliminaries

Our proposed method builds on previous filtering ap-
proaches that we briefly review in this section.

3.1 Neighborhood Generation-based filtering

A series of approaches based on neighborhood generation
has been developed to deal with edit distance constraints.
All the strings that are at most at τ edit distance away from
a string s constitute the τ neighborhood of s, formally rep-
resented as Uτ (s) = {s′|ed(s, s′) ≤ τ}, where ed(s, s′)
is the edit distance between s and s′. Therefore, if string
t can approximate match with s, it must be contained in
the τ neighborhood of s. However, since the size of the
neighborhood Uτ (s) is O(|s|τ · |

∑
|τ) in practice, it is

impossible to generate and use all the neighborhood di-
rectly.

The deletion neighborhood was proposed as a comple-
ment (Bocek et al. 2007). The τ -deletion neighborhood
of a string s consists of all deletion variants of s, each
of which is generated by deleting no more than τ char-
acters at all possible positions of s. If another string t is
within the edit distance τ of s, then they share at least one
common variant in their τ deletion neighborhood. Based
on the property of deletion neighborhood, the FastSS al-
gorithm proposed in (Bocek et al. 2007) successfully re-
duces the size of the neighborhood to O(|s|τ). However
this algorithm is suitable for short strings with a small edit
distance threshold τ .

3.2 NGPP

The improved neighborhood generation-based method
NGPP has been proposed (Wang et al. 2009) to further
reduce the size of the deletion neighborhood to O(lp · τ2),
where lp is the length of the prefix set in the prefix-based
pruning. Now we briefly introduce NGPP.

The partition scheme defined in NGPP partitions a
string into kτ = ⌊ τ+1

2 ⌋ partitions, with the first kτ − 1
partitions of length ⌊m

kτ
⌋, and the kτ (the last) partition

taking the rest of the string, where m is the length of the
string. For a string s and any of its τ -neighborhood string
s′ (a string within τ edit distance of s), at least one par-
tition of s, subject to appropriate amount of shifting and
scaling operation, is within edit distance 1 to the partition
at the same position of s′. The shifting and scaling oper-
ations are defined to generate variations for partitions of
s.

• Shifting by a moves the partition s[i...j] by a posi-
tions to s[(i+ a)...(j + a)]

• Scaling by b changes the length of s[i...j] by b to
s[i...(j + b)].

Table 1 presents the constraints on the shifting and
scaling ranges for each partition of string s, according to
the possible length and position dispatch between s and its
τ -neighborhood string.

Table 1: Shifting and Scaling Range for Each Partition in
NGPP

Partition Shifting Range Scaling Range
the first one 0 [−2, 2]

the last one [−τ, τ]
equals to

shifting amount
others [−τ, τ] [−2, 2]

Once partition variants are generated for a string s, 1-
deletion neighborhood variants are generated for each par-
tition variant. Thus O(τ · |s|+ τ2) deletion neighborhood
are generated for s. In order to measure if another string
s′ is a τ -neighborhood string of s, all partition variations
(⌊ |t|

kτ
− 2⌋) are generated for s′.

Example 1 Given a string s = “Leonardo Dicaprio”
and a misspell string t = “Leeonardo Diecabrio”.
When τ = 3, we have kτ = 2. According to the parti-
tion scheme, s and s′ can be partitioned as follows, where
we use # to represent the blank between words:

s={[Leonardo], [#Dicaprio]}
s′={[Leeonardo#], [Diecabrio]}

The 1-deletion variants for all partitions of s are:

⟨[Leonar], 1⟩ ⟨[Leonard], 1⟩
⟨[Leonardo], 1⟩ ⟨[Leonardo#], 1⟩
⟨[Leonardo#D], 1⟩ ⟨[rdo#Dicaprio], 2⟩
⟨[do#Dicaprio], 2⟩ ⟨[o#Dicaprio], 2⟩
⟨[#Dicaprio], 2⟩ ⟨[Dicaprio], 2⟩
⟨[icaprio], 2⟩ ⟨[caprio], 2⟩

Since the first partition of s′, [Leeonardo#], shares a 1-
deletion variant [Leonardo#] with s’s partition variation
[Leonardo#], s′ is within τ edit distance from s.

When s and s′ are long, not only space complexity
increases to store the variations of s, but also time com-
plexity in matching partition variants of s′ against those
of s. In order to reduce these complexities, a prefix-based
pruning was introduced. When a partition is longer than
a prefix length lp, only 1-deletion neighborhood variants
are generated for the lp-prefix of the partition.

Example 2 Continuing with Example 1, With lp = 3, the
following 1-deletion variants are generated from the pre-
fixes :

⟨[Leo], 1⟩ ⟨[rdo], 2⟩ ⟨[do#], 2⟩
⟨[o#D], 2⟩ ⟨[#Di], 2⟩ ⟨[Dic], 2⟩
⟨[ica], 2⟩ ⟨[cap], 2⟩

For each string s′, a neighborhood of O(lp · τ2) vari-
ants are generated and searched against all variants of s.
The approach we propose in this paper is another pure
partition-based approach without generating deletion vari-
ants, which only generates O(|s| + τ2) partition variants.
Combining with prefix-based method, the size of variants
can be further reduced to O(lp · τ).

3.3 PartEnum

PartEnum is another partition-based approach proposed
for edit distance constraints (Arasu et al. 2006). Based
on the pigeon hole principle, it first divides a string into
several partitions, then generates signatures for each par-
tition using an enumeration scheme. This scheme guaran-
tees that if two strings are matched within a given edit
distance threshold, they must share at least one signa-
ture. It shows good performances for small edit distance
threshold. However, since the performance of PartEnum
is greatly dependent on the partitioning parameters, it is
hard to set the parameters that work well for both short
and long entities (Wang et al. 2009).

4 PartSS: A New Partition-Based Filtering

In this section, we introduce a new partition-based fil-
ter – PartSS, which stands for Partition-based filter with
Shifting and Scaling operations. We present our parti-
tion scheme PlusOne firstly, then develop some non-trivial
techniques to tighten the partition variants set.

4.1 Partitioning

The principle of PartSS is directly inspired by that of
NGPP. By setting the partition number to k disjoint par-
titions, according to the pigeon hole principle, there exists
at least one partition which only need at most ⌊ τ

k ⌋ edit op-
erations for changing s into any other string s′ which edit
distance to s is within τ . In NGPP kτ = ⌈ τ+1

2 ⌉. In order
to avoid the generation of a deletion neighborhood, we
choose to set kτ = τ + 1, so that there exists at least one
partition in s, after subjecting to some shifting and scaling,
that directly equals to the partition in the same position of
s′.

PlusOne Partition Scheme: Given an edit distance
threshold τ , PlusOne partition scheme partitions a string
s into kτ = τ + 1 partitions, where the first n1 =

kτ − |s|%kτ partitions have length l1 = ⌊ |s|
kτ
⌋, and the

other n2 = |s|%kτ partitions have length l2 = ⌈ |s|
kτ
⌉, such

that n1 · l1 + n2 · l2 = |s|. (As shown in Fig. 1)

l1 l1
l2 l2S

1
n

2
n

Figure 1: The Partitions of String s under PlusOne
Scheme

Due to the length and position deviation between cor-
responding partitions in s and s′, we have to adjust the

length and position of partitions in s. Here we adopt the
two operations (shifting and scaling) defined in NGPP, as
introduced in Section 3. Under PlusOne, the baseline rule
on how to apply shifting and scaling operations to every
partition of a string is given below and summarised in Ta-
ble 2. This baseline rule is similar to the one used in NGPP
(Wang et al. 2009).

Rule 1 (Baseline Variants Generation Rule) Given the
edit distance threshold τ , a string s is partitioned into τ+1
partitions under the PlusOne partitioning scheme. Then
for the i-th partition of s:

• if i = 1, we scale the partition within the range of
[−1, 1] to generate its variants.

• if i = τ + 1, we scale and shift the partition to the
same amount within the range of [−τ, τ] to generate
its variants.

• if 1 < i < τ , we scale the partition within the range
of [−τ, τ], while also shifting it within the range of
[−2, 2], to generate its variants.

Table 2: Baseline Shifting and Scaling Rule for Each Par-
tition

Partition Shifting Range Scaling Range
the first one 0 [−1, 1]

the last one [−τ, τ]
equals to

shifting amount
others [−τ, τ] [−1, 1]

Based on our proposed PlusOne partitioning scheme and
partition variants generation rules, the partitions have the
following properties:

Property 1 (Partition Variants Property) Given a string
s and an edit distance threshold τ , if we partition s with
PlusOne partitioning scheme and generate partition vari-
ants according to the baseline rule above, for any string s′

which satisfy ed(s, s′) ≤ τ , there must be at least one par-
tition in a position of s′ (also partitioned with PlusOne)
matching with a variant of the partition in the same posi-
tion of s.

As mentioned in Section 3, NGPP generates O(m ·τ+
τ2) variants for a string, whereas the baseline rule based
on PlusOne reduces the size of variants to O(τ2).

4.2 Tightening the Shifting and Scaling Ranges

In the baseline rule, the boundaries of the shifting and
scaling ranges are set very loose to guarantee full cover-
age. On the other hand, loose boundaries also lead to more
false-positives, since more unpromising matches will be
considered as candidate matches. In order to give a mini-
mum coverage of all τ -neighborhood, we expect to find a
stricter rule to tighten the boundaries of shifting and scal-
ing ranges, such that unnecessary variants of partitions are
not generated. Meanwhile, this new rule should also sat-
isfy Property 1.

For convenience of presentation, we differentiate the
original shifting and scaling operations into four differ-
ent operations: negative shifting, positive shifting, nega-
tive scaling and positive scaling. The shifting or scaling
amount of any of the four operations is a non negative nu-
meric referred to as the variation amount of that operation.

In order to achieve minimum coverage, we give differ-
ent upper-bounds to the variation amount of each opera-
tion applied to partitions at different positions. A straight-
forward approach is to enumerate all τ -neighborhoods of
the string s: for any neighborhood string s′, there must

exists one partition of s that requires the least variation
amount of an operation to become the corresponding par-
tition of s′. We call this partition as the key partition in
transforming from s to s′ (denoted ps→s′

key). When there are
more than one key partitions in a transformation, only the
one at the first position is considered. To reach a minimum
coverage, we deem that only the operations applied on key
partition in each transformation are necessary. Accord-
ingly, the following property on the tightest upper-bound
of operations to each partition holds:

Property 2 (Tightest upper-bound Property) Given a
string s, the tightest upper-bound of an operation on a
partition of s is the maximum variation amount of the op-
eration to that partition when it acts as a key partition.

Although it is impractical to enumerate all τ -
neighborhoods of s, they can be classified into four
types according to their length and position deviation to
s, and we can discuss the upper-bounds of the variation
amount of the four operations in the four different
transformation situations below:

Four Transformation Situations: Given the edit distance
threshold τ , assume we need α insertion, β deletion and γ
substitution to transform s into a τ−neighborhood string
s′ such that α+ β + γ ≤ τ . Since the insertion and dele-
tion operations introduce position and length changes, all
strings within τ edit distance to s can be classified into
one of the four situations depending on the value of α
and β. Based on the PlusOne partition scheme, at most
two kinds of partitions with different length are gener-
ated for each string. Here we assume the first n1 par-
titions have length l1, and the remaining n2 partitions
have length l2 in s. According to the PlusOne scheme,
l1 +1 = l2, n1 + n2 = τ +1. We also define l0 = l1 − 1,
l3 = l2 + 1, which are possible lengthes of partitions in
τ -neighborhood strings as shown in Fig. 2.

• Situation 1: If 0 ≤ α − β ≤ n1, then the first n1 −
(α − β) partitions have length l1, and the other ones
have length l2;

• Situation 2: If n1 ≤ α − β ≤ τ , then the first n1 +
(τ − α + β + 1) partitions have length l2, and the
other ones have length l3;

• Situation 3: If 0 ≤ β − α ≤ n2, then the first n1 +
(β − α) partitions have length l1, and the other ones
have length l2;

• Situation 4: If n2 ≤ β − α ≤ τ , then the first n1 +
(τ + α − β + 1) partitions have length l0, and the
other ones have length l1.

In the remainder of this section, we use σ+(i) and
σ−(i) to denote the variation amount of the positive and
negative shifting operations and ω+(i) and ω−(i) to de-
note the variation amount of positive and negative scal-
ing operations that have to be applied to the i-th parti-
tion. We also use σ+(i), σ−(i), ω+(i), ω−(i) to denote
the upper-bounds of their variation amounts. It is worth
noting that: ω+(i) only needs to be discussed in situation
1 and 2, while ω−(i) only needs to be discussed in situa-
tion 3 and 4. We only provide the detailed deduction pro-
cess in situation 1 as the deduction process for the other
three situations follows the same principle.

Situation 1: 0 ≤ α − β ≤ n1, since α + β <= τ , we
have: 0 ≤ α ≤ τ+n1

2 . According to the difference be-
tween partition lengthes at the same position of s and s′,
the partition set can be divided into three disjoint consec-
utive parts. We use p1 and p2 to denote the last partition

l1l1 l1
l2l2S

S´

p1 p2

l2l2 l2l2

l1

l1l1

n1 n2

(a) Situation 1: 0 ≤ α − β ≤ n1

l1l1
l2l2S

S´

p1
p2

l3l3
l2l2

l2l2

l2l2

n2n1

1

(b) Situation 2: n1 ≤ α − β ≤ τ

l1l1 l1
l2l2

S

S´

p1
p2

l2l2 l2l2

l1

l1l1

n2n1

(c) Situation 3: 0 ≤ β − α ≤ n2

S

S´

p1 p2
l1l1 l1

l2l2l1

l0l0
l1l1 l1l1

n1 n2

1

(d) Situation 4: n2 ≤ β − α ≤ τ

Figure 2: The Transformation from s to s′ in Four Situa-
tions

position within the first and second parts respectively such
that: 0 ≤ p1 = n1 − (α− β) ≤ n1 and p2 = n1.

Positive scaling ω+(i): We can easily observe the
length variation for partitions of three different parts in
Figure 2. Equation 1 gives the value of ω+(i) for the i-th
partition.

ω+(i) =

{
0 (1 ≤ i ≤ p1)
1 (p1 + 1 ≤ i ≤ n1)
0 (n1 + 1 ≤ i ≤ τ + 1)

(1)

Positive shifting σ+(i): Equation 2 gives the maxi-
mum value of σ+(i) for the i-th partition, where αpre de-
notes the insertions applied to the partitions before the i-th
one.

σ+(i) =

0 (i = 1)
αpre (2 ≤ i ≤ p1)
αpre − i+ p1 + 1 (p1 + 1 ≤ i ≤ n1)
αpre + p1 − n1 (n1 + 1 ≤ i ≤ τ + 1)

(2)
Since the function given in Equation 2 is declining, the

condition on the i-th partition acting as the key partition is
that at least one edit operation should be applied to each
partition after the i-th one (except for those whose varia-
tion amount of positive scaling equals to that of the i-th
one). Given αpre ≤ α ≤ τ+n1

2 , the maximum value of
αpre is:

αpre =

 min(p1,
τ+n1

2) = p1 (2 ≤ i ≤ p1)
min(i− 1, τ+n1

2) = i− 1 (p1 + 1 ≤ i ≤ n1)
min(τ, τ+n1

2) = τ+n1

2 (n1 + 1 ≤ i ≤ τ + 1)
(3)

Considering the maximum value of αpre, the maxi-

mum value of σ+(i) is:

σ+(i) =

0 (i = 1)
p1 (2 ≤ i ≤ p1)
p1 (p1 + 1 ≤ i ≤ n1)
τ+n1

2 (n1 + 1 ≤ i ≤ τ + 1)

(4)

Given the range of p1, the range of σ+(i) or σ+(i) and
its corresponding value of ω+(i) is in Table 3 and 4.

Table 3: σ+(i) and corresponding ω+(i) I
i-th Partition σ+(i) ω+(i)
i = 1 0 0
2 ≤ i ≤ n1 [0, n1] 0
1 ≤ i ≤ n1 [0, i− 1] 1
n1 + 1 ≤ i ≤ τ + 1 [0, τ+n1

2] 0

Table 4: σ+(i) and corresponding ω+(i) in situation 1
i-th Partition σ+(i) ω+(i)
i = 1 0 1
2 ≤ i ≤ n1 [0, i− 1] 1
2 ≤ i ≤ n1 [i, n1] 0
n1 + 1 ≤ i ≤ τ + 1 [0, τ+n1

2] 0

Negative shifting σ−(i): Equation 5 gives the maxi-
mum value of σ−(i) for the i-th partition, where βpre de-
notes the deletions applied to the partitions before the i-th
one.

σ−(i) =

0 (i = 1)
βpre (2 ≤ i ≤ p1)
βpre + i− p1 − 1 (p1 + 1 ≤ i ≤ n1)
βpre − p1 + n1 (n1 + 1 ≤ i ≤ τ + 1)

(5)
Since the function given in Equation 5 is increasing,

the condition on the i-th partition acting as the key parti-
tion is that at least one edit operation is applied to each
partition before the i-th one, which do not give any con-
straint on the value of βpre. Given βpre ≤ p1 − p2 + α ≤
τ−n1

2 + p1, the maximum value of βpre is τ−n1

2 + p1.
Considering the maximum value of βpre, the maxi-

mum value of σ−(i) is:

σ−(i) =

0 (i = 1)
τ−n1

2 + p1 (2 ≤ i ≤ p1)
τ−n1

2 + i− 1 (p1 + 1 ≤ i ≤ n1)
τ+n1

2 (n1 + 1 ≤ i ≤ τ + 1)

(6)

Given the range of p1, the range of σ−(i) or σ−(i) and
its corresponding value of ω+(i) is in Table 5 and 6.

Table 5: σ−(i) and corresponding ω+(i) I
i-th Partition σ−(i) ω+(i)
i = 1 0 0
2 ≤ i ≤ n1 [0, τ+n1

2] 0
1 ≤ i ≤ n1 [0, τ−n1

2 + i− 1] 1
n1 + 1 ≤ i ≤ τ + 1 [0, τ+n1

2] 0

Summary: Following the same analysis to generate cor-
respondences values for situations 2, 3 and 4, the over-
all tight partition variants generation rules are deducted
as presented in Table 7-10. The four tables give different
upper-bounds to the variation amount of each operation
applied to partitions at at different positions.

Table 6: σ−(i) and corresponding ω+(i) in situation 1
i-th Partition σ−(i) ω+(i)
i = 1 0 1
2 ≤ i ≤ n1 [0, τ−n1

2 + i− 1] 1
2 ≤ i ≤ n1 [τ−n1

2 + i, τ+n1

2] 0
n1 + 1 ≤ i ≤ τ + 1 [0, τ+n1

2] 0

Table 7: σ+(i) and corresponding ω+(i)
i-th Partition σ+(i) ω+(i)
i = 1 0 1
2 ≤ i ≤ n1 [0, i− 1] 1

[i, n1] 0
i = n1 + 1 [0, τ+n1

2] 0
n1 + 2 ≤ i ≤ τ + 1 [0, i− n1 − 1] 1

[i− n1,
τ+n1

2] 0

Table 8: σ+(i) and corresponding ω−(i)
i-th Partition σ+(i) ω−(i)
i = 1 0 0
2 ≤ i ≤ n1 [0, τ

2] 1
n1 + 1 ≤ i ≤ τ + 1 [0, τ

2 + i− n1 − 1] 1
[τ2 + i− n1,

n1−3
2 + i] 0

Table 9: σ−(i) and corresponding ω+(i)
i-th Partition σ−(i) ω+(i)
i = 1 0 1
2 ≤ i ≤ n1 [0, τ − n1 + i− 1] 1

[τ − n1 + i, τ+n1

2] 0
i = n1 + 1 [0, τ] 0
n1 + 2 ≤ i ≤ τ + 1 [0, i− 2] 1

[i− 1, τ] 0

Table 10: σ−(i) and corresponding ω−(i)
i-th Partition σ−(i) ω−(i)
i = 1 0 1
2 ≤ i ≤ n1 0 1

[1,min(n1, τ − n1−1
2)] 0

n1 + 1 ≤ i ≤ τ + 1 [0, n1] 1
[n1 + 1, τ + n1+3

2 − i] 0

Example 3 Based on the same string and setting as Ex-
ample 1, when τ = 3, kτ = 4, according to the partition
scheme, s and t can be partitioned into:

s={[Leon], [ardo], [#Dic], [aprio]}
t={[Leeo], [nardo], [#Diec], [abrio]}

In the next step, shifting and scaling operations should
be applied to the partitions of s to generate variants.
Through calculation, we have the tightened shifting and
scaling ranges for partitions of s as shown in Table 11.

The second partition of t is nardo, and can be found
in the variants of the second partition of s. Therefore, t
passes the filtration and becomes a candidate string within
the 3 edit distance to s.

4.3 Combining with Prefix-based Filtering

The size of the variants set can be further reduced by
adopting the prefix-based filtering used in (Wang et al.
2009). A fix length lp prefix of each variant can reduce
the number of the variants without leading to any false-
negatives. By applying the prefix-based filtering (Wang

Table 11: All Variants of Partitions in
“Leonardo Dicaprio”

Partition Variants
[Leon] ⟨Leo, 0⟩, ⟨Leon, 0⟩, ⟨Leona, 0⟩

[ardo]

⟨ona, 1⟩, ⟨onar, 1⟩, ⟨onard, 1⟩,
⟨nar, 1⟩ , ⟨nard, 1⟩, ⟨nardo, 1⟩,
⟨ard, 1⟩, ⟨ardo, 1⟩, ⟨ardo#, 1⟩,
⟨rdo, 1⟩, ⟨rdo#, 1⟩, ⟨rdo#D, 1⟩,
⟨do#, 1⟩, ⟨do#D, 1⟩, ⟨do#Di, 1⟩,
⟨o#D, 1⟩, ⟨o#Di, 1⟩, ⟨o#Dic, 1⟩

[#Dic]

⟨do#D, 2⟩, ⟨do#Di, 2⟩, ⟨o#Di, 2⟩,
⟨o#Dic, 2⟩, ⟨#Dic, 2⟩, ⟨#Dica, 2⟩,
⟨Dica, 2⟩, ⟨Dicap, 2⟩, ⟨icap, 2⟩,
⟨icapr, 2⟩, ⟨capr, 2⟩, ⟨capri, 2⟩

[aprio]
⟨Dicaprio, 3⟩, ⟨icaprio, 3⟩, ⟨caprio, 3⟩,
⟨aprio, 3⟩, ⟨prio, 3⟩, ⟨rio, 3⟩, ⟨io, 3⟩

et al. 2009), the size of partition signatures can be further
reduced to O(lp · τ).

Example 4 Continuing with example 3, by setting the
prefix length to lp = 3, we have the prefix of variants of s
as shown in Table 12.

Table 12: Prefix Variants of “Leonardo Dicaprio”
Partition Variants
[Leon] ⟨Leo, 0⟩
[ardo]

⟨ona, 1⟩, ⟨nar, 1⟩, ⟨ard#, 1⟩
, ⟨rdo, 1⟩, ⟨do#, 1⟩, ⟨o#D, 1⟩

[#Dic]
⟨do#, 2⟩, ⟨o#D, 2⟩, ⟨#Di, 2⟩
, ⟨Dic, 2⟩, ⟨ica, 2⟩, ⟨cap, 2⟩

[aprio]
⟨Dic, 3⟩, ⟨ica, 3⟩, ⟨cap, 3⟩, ⟨apr, 3⟩
, ⟨pri, 3⟩, ⟨rio, 3⟩, ⟨io, 3⟩

5 Implementing PartSS Filtering in EDJ

Given two sets of strings R and S, the task of edit similar-
ity join (or similarity join with an edit distance threshold
τ) is to find all pairs of strings (r, s) (r ∈ R and s ∈ S)
such that their edit distance is no larger than the given
threshold τ , ie., {(r, s)|ed(r, s) ≤ τ, r ∈ R, s ∈ S}.

To avoid pairwise comparison between two string sets
R and S, an inverted list is usually leveraged, with one
set of strings indexed with their signatures in the inverted
list. In this inverted list, a signature sig is mapped to a
posting list Isig , in which each entity records the id and
other information about the string which has sig in its sig-
nature set. Strings in the other set are taken as queries to
search against the inverted list. Candidate matches of a
query string are retrieved by generating signatures for the
query string and searching them against the inverted list.
Final results can be found by verifying the true edit dis-
tance between the query string and retrieved ones. Filter-
ing techniques can be applied during this query and can-
didate generation process.

We observe that most signature schemes (including
PartEnum, Q-gram based) are symmetrical in applying
the same signature generation method to both the in-
dexed strings and the query strings. PartSS asymmetri-
cally generates partition variants for indexed strings with
both PlusOne partition scheme and partition variant gen-
eration scheme, then only generates partitions for query
strings with the PlusOne partition scheme. In the inverted
list, each entry in the posting list Isig is in the form of
(rid, pid), where rid refers to the id of the string which
has sig as one of its partition variants, and pid refers to the
position of the partition which has sig as one of its variants

in rid string. Then for each query string s, τ+1 positional
partitions are generated and searched against the inverted
list, with each partition in the form of (partition, pid′).
The retrieved indexed strings which satisfy the following
two conditions become candidate matches of s:

• Positional Partition Filtering: at least one partition
(variant) should be in the same position as the re-
trieved index string and the string s, ie., pid = pid′.

• Length Filtering: the deviation between the length of
the retrieved partition and that of s should be within
τ .

6 Implementing PartSS Filtering in ED-AME

Given a dictionary of string entities R, for an input doc-
ument D, the task of approximate membership extrac-
tion with edit distance threshold τ is to find all substrings
from D within τ edit distance from one entity in R,
ie., {D[i...j] | ∃r ∈ R, ed(D[i...j], r) ≤ τ}, where
D[i...j] represents a substring located at positions from i
to j in D.

A straightforward way to apply PartSS in ED-AME is
to index the dictionary R in an inverted list in the same
way as we do in EDJ, then enumerate all the possible sub-
strings within the length [Lmin− τ, Lmax+ τ] (Lmin and
Lmax represent the shortest and longest length of enti-
ties in R) from the given document D as query segments.
Candidate entities can be retrieved by probing each query
segment against the inverted list. The final results of ED-
AME can be obtained by verifying all query segments and
entity pairs. Although promising a full coverage, this al-
gorithm inefficiently exhausts too many query segments,
some of which have no match at all.

A more efficient query document processing algorithm
was proposed and combined with NGPP by Wang et. al.
(Wang et al. 2009), which can jump across many unnec-
essary substring and entity pairs by leveraging fixed prefix
of partitions. Here we briefly introduce how to combine
this document processing algorithm with PartSS. In this
algorithm: all dictionary entities are classified into long
entities and short entities and indexed into two inverted
index I long and Ishort respectively. For each long entity
no shorter than kτ ·lp, we generate partition variants by the
PlusOne and Variant Generation rule, then all lp−prefixes
of partitions are generated and then indexed into I long .
For each short entity shorter than kτ · lp + τ , a prefix
of min(|e|, lp) is taken to generate its τ−variant deletion
neighborhood (see section 3.1), which are then indexed
into Ishort (note that entities between kτ · lp and kτ · lp+τ
are mapped into both indexes to ensure no match will be
missing in the document processing (Wang et al. 2009)).

Once all dictionary entities are indexed, for a query
document D, we enumerate all lp-length segments, de-
noted as {seg = D[p...p + lp − 1] | 0 ≤ p ≤ |D| −
Lmin + τ + 1}, and search them against the two inverted
indexes in the following manner.

• Searching against Long Index: we use seg to search
against the long index I long to find all entities which
have seg as a prefix of a partition variant at any po-
sition of the entity. Then for each entity e in the re-
trieved candidate set E, assume seg is the prefix of
variant of its pid-th partition, such that e might match
with any substring which has seg as prefix of its pid-
th partition in D. To locate these substrings in D, for
any possible length m within [|e|−τ, |e|+τ] (see the
Length Filtering in section 5.2), the partition size can
be decided as ⌊ m

τ+1⌋ for the first kτ − |s|%kτ parti-
tions and ⌈ m

τ+1⌉ for the other partitions (see the Plu-
sOne partition scheme in section 4.1), so that we can

easily deduce the location of the substring (including
starting and ending position) in D. This procedure is
called query segment instantiation.

• Searching against Short Index: we generate τ -
deletion neighborhood for each possible substring
which length is within the range Lmin − τ, lp in seg.
If the query segment is shorter than lp, we directly
probe it against the index to find all possible match
entities. Otherwise, a simplified query segment in-
stantiation is needed to find all 2τ +1 possible query
segments.

Remarks: The prefix length lp determines whether a
string should be indexed in the short or long inverted
list. The larger the prefix length, the more strings in-
dexed in the short inverted list. When lp is larger than
Lmax

(τ+1) , all strings are only indexed in the short inverted
list such that this document processing algorithm degrades
into pure deletion neighborhood generation-based algo-
rithm FastSS(Bocek et al. 2007). In real-world applica-
tion, an optimal value for lp should be determined empiri-
cally.

7 Experimental Study

In this section, PartSS is compared to the two current state-
of-the-art methods QGRAM or NGPP when applied to
EDJ (Edit Distance similarity Join) or ED-AME (Approx-
imate Membership Extraction with Edit Distance thresh-
old) on several real-world data sets.

• QGRAM: The q-gram-based filter which not only
contains the three filtering techniques including
count, position and length filtering proposed in (Gra-
vano et al. 2001), but also incorporate state-of-art
techniques such as prefix filtering (S. Chaudhuri &
Kaushik 2006), location-based filering and content-
based filtering (Xiao et al. 2008). In the experiments,
we set different size of q-grams for strings with dif-
ferent length. The following optimal q-gram size for
string s with different length is adopted from the pa-
per (Wang et al. 2009).

q =

{
2 (1 ≤ |s| ≤ 13)
3 (12 ≤ |s| ≤ 20)
4 (|s| ≥ 18)

• NGPP: The Neighborhood Generation with Parti-
tioning and Prefix-based pruning, proposed in (Wang
et al. 2009).

• PartSS: The Partition-based filtering with Scaling
and Shifting operations proposed in this paper.

7.1 Experimental Settings

We evaluate the performance of the three filters in EDJ on
the following three real-world datasets.

• DBLP-Papers: A set of 300k randomly selected pa-
per titles from the DBLP database 1.

• GENE: A random selection of 200k entities from
more than 1M Gene/Protein lexicon generated from
MEDLINE documents by (Tanabe & Wilbur 2004).

• TEXAS: 150k records from Texas 2, a text dump of
Broker and Sales Licensees database from the Texas
Real Estate Commission. Texas has been used in (Li

1http://www.informatik.uni-trier.de/ ley/db
2http://www.trec.state.tx.us/LicenseeDataDownloads/trecfile.txt

et al. 2007, Xiao et al. 2008). Each record in Texas
is a concatenation of 19 attributes, including person
names, addresses, and licence information.

We also evaluate the performance of the three filters in
ED-AME on the three real-world datasets below.

• DBLP-Persons: A set of 250k person’s names ran-
domly selected from the DBLP bibliography dataset
as the dictionary. The documents are 5k references
extracted from CiteSeer 3, each containing paper id,
author, title and venue information.

• GENE: The dictionary is the GENE we mentioned
above. The documents are 10k references from the
TREC9 Filtering Track Collections 4. Each reference
contains author, title and abstract fields.

• CONLL: The dictionary is composed of 8.2k en-
tities including person’s names, organizations and
locations, from the shared task of Conference on
Computational Natural Lauguage Learning 2003 5.
The documents are 20K news articles from Reuters
dataset 6.

The properties of those datasets are provided in Table 13
and 14 below.

Table 13: Properties of the datasets used for evaluation I
Dataset Size Average Length
DBLP-Papers 300k 66.4
GENE 200k 22.4
TEXAS 150k 112.1

Table 14: Properties of the datasets used for evaluation II
Dataset Size Average Length
DBLP-Persons (Dict) 250k 13.9
CiteSeer (Doc) 5k 123.2
GENE (Dict) 200k 22.4
TREC (Doc) 10k 1134.5
CONLL (Dict) 8.2k 11.5
Reuters (Doc) 20k 668.5

The edit distance threshold τ is set within range [1, 3],
as it covers many important applications (Lee et al. 2007).
We also adopt the local edit distance threshold τ ′ for
strings with different length according to (Wang et al.
2009).

τ ′ =

{
min(1, τ) (1 ≤ |s| ≤ 5)
min(2, τ) (6 ≤ |s| ≤ 11)
τ (|s| ≥ 12)

In this section, we mainly compare the performance of the
three filters in EDJ and ED-AME through the following
two measures: 1) Run Time: The overall running time,
which is the most important factor to judge if a filtering
works well; 2) Cand Size: The numbers of candidate pairs
before the verification procedure, which can also reflect
the effectiveness of the filtering. Besides, we also measure
the size of index entries generated in ED-AME, which re-
flects the space complexity of filters. Our experimental
environment is an Intel 2.13GHz Pentium Dual-Core pro-
cessor, 2GB memory, running Windows XP Professional.
All the approaches are implemented using Java.

3http://citeseer.ist.psu.edu/
4http://trec.nist.gov/data/t9 filtering.html
5http://www.cnts.ua.ac.be/conll2003/ner
6http://www.daviddlewis.com/resources/testcollections/reuters21578/

7.2 Measure the Prefix Length

The “prefix length” lp is the only parameter in our method,
hence its optimal value is empirically established through
preliminary experiments. The effect of lp is measured on
all datasets by setting τ = 1, 2, 3.

As we can see from the detailed results in Figure 3,
as the value of lp increases (before reaching Lmax

(τ+1)), the
size of index increases, while the size of candidate size
decreases. It can be explained by the features of PartSS
and FastSS: although the entries of FastSS are more se-
lective than PartSS, FastSS usually generates more entries
than PartSS (especially when τ is large). Meanwhile, the
overall time to set up the index and do the edit similar-
ity join first decreases, then increases. We conclude that
the optimal value of lp for the GENE is 9 since it reaches
the highest efficiency as shown in Figure 3[c]. Through
experimental study on other data sets, we found that the
optimal value of lp decreases as the average length of dic-
tionary string entries increases. The optimal value of lp
for other datasets are: lp = 6 for DBLP-Persons, lp = 3
for DBLP-Papers, lp = 2 for TEXAS, lp = 8 for CONLL.

7.3 Edit Similarity Join

We now compare the performance of PartSS and QGRAM
filterings in EDJ on three datasets. As we can see in
Figure 4(d),(e),(f), the general trend is that running time
grows exponentially as the τ increases. For all settings,
PartSS is more efficient than QGram. Although QGrams
usually prunes even more join pairs than PartSS (Figure
4(a),(b),(c)), the count filtering is still a bottleneck.

7.4 Approximate Membership Extraction

We compare the performance of filters in ED-AME over
three datasets. Here the optimal value of lp for NPGG are:
lp = 10 for DBLP-Persons, lp = 10 for GENE, lp =
7 for CONLL. As τ increases, the running time of both
methods grows exponentially (Figure 5(g),(h),(i)). For all
settings, PartSS is more efficient than NGPP. As expected,
the generation of deletion neighborhood for each partition
of a query segment by NGPP leads to slower processing,
although it shares almost the same searching strategy with
PartSS.

8 Conclusion

In this paper, we proposed a novel partition-based filter
PartSS for EDJ and ED-AME, which improves over the
state-of-the-art method NGPP with the implementation of
a new partitioning scheme and variants generation rules.
Without generating deletion neighborhood, we need less
space and time to filter more false positive string pairs
than NGPP. We presented how this filter can be applied
into both EDJ and ED-AME and an experimental study
based on several real-world data sets demonstrated the ef-
fectiveness of the filtration based on our partition-based
scheme.

As future works, we will apply this filter into real-
world applications such as retrieving results for typo key-
words in information retrieval or recognizing homologous
DNA strands in bioinformatics. To reach the best perfor-
mance in our target applications, we will determine how
to combine several filter techniques.

References

Arasu, A., Ganti, V. & Kaushik, R. (2006), Efficient exact set-similarity
joins, in ‘Proceedings of the 32nd International Conference on Very
Large Data Bases’, p. 929.

104

105

106

107

108

1 2 3

In
de

x
S

iz
e

Edit Distance

lp=7
lp=8
lp=9

lp=10
lp=11

(a) GENE, Index Size

105

106

107

108

109

1010

1 2 3

C
an

d
S

iz
e

Edit Distance

lp=7
lp=8
lp=9

lp=10
lp=11

(b) GENE, Cand Size

102

103

104

105

106
107
108

1 2 3

T
im

e(
se

co
nd

s)

Edit Distance

lp=7
lp=8
lp=9

lp=10
lp=11

(c) GENE, Time

Figure 3: The Effect of Prefix Length on GENE DataSet)

105

106

1 2 3

C
an

d
S

iz
e

Edit Distance

QGRAM
PartSS

Real-Match

(a) DBLP-Papers, Cand Size

105

106

107

108

109

1010

1 2 3

C
an

d
S

iz
e

Edit Distance

QGRAM
PartSS

Real-Match

(b) GENE, Cand Size

104

105

106

107

1 2 3

C
an

d
S

iz
e

Edit Distance

QGRAM
PartSS

Real-Match

(c) TEXAS, Cand Size

101

102

103

104

105

1 2 3

R
un

 T
im

e(
se

co
nd

s)

Edit Distance

QGRAM
PartSS

(d) DBLP-Papers, Run Time

102

103

104

105

1 2 3

R
un

 T
im

e(
se

co
nd

s)

Edit Distance

QGRAM
PartSS

(e) GENE, Run Time

101

102

103

104

105

1 2 3

R
un

 T
im

e(
se

co
nd

s)

Edit Distance

QGRAM
PartSS

(f) TEXAS, Run Time

Figure 4: Experimental Results for Edit Similarity Join

Bayardo, R., Ma, Y. & Srikant, R. (2007), Scaling up all pairs similarity
search, in ‘Proceedings of the 16th International Conference on World
Wide Web’, p. 140.

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P. & Fienberg, S.
(2003), ‘Adaptive name matching in information integration’, IEEE
Intelligent Systems 18(5), 16–23.

Bocek, B., Hunt, E. & Stiller, B. (2007), ‘Fast Similarity Search in Large
Dictionaries’.

Chakrabarti, K., Chaudhuri, S., Ganti, V. & Xin, D. (2008), An efficient
filter for approximate membership checking, in ‘Proceedings of the
2008 ACM SIGMOD International Conference on Management of
Data’, pp. 805–818.

Chandel, A., Nagesh, P. & Sarawagi, S. (2006), Efficient batch top-k
search for dictionary-based entity recognition, in ‘Proceedings of the
22nd ICDE International Conference on Data Engineering’, p. 28.

Gionis, A., Indyk, P. & Motwani, R. (1999), Similarity search in high di-
mensions via hashing, in ‘Proceedings of the 25th International Con-
ference on Very Large Data Bases’, pp. 518–529.

Gravano, L., Ipeirotis, P., Jagadish, H., Koudas, N., Muthukrishnan, S. &
Srivastava, D. (2001), Approximate string joins in a database (almost)
for free, in ‘Proceedings of the 27th International Conference on Very
Large Data Bases’, pp. 491–500.

Lee, H., Ng, R. & Shim, K. (2007), Extending q-grams to estimate selec-
tivity of string matching with low edit distance, in ‘Proceedings of the
33rd International Conference on Very Large Data Bases’, pp. 195–
206.

Li, C., Wang, B. & Yang, X. (2007), VGRAM: Improving performance
of approximate queries on string collections using variable-length
grams, in ‘Proceedings of the 33rd International Conference on Very
Large Data Bases’, pp. 303–314.

Lu, J., Han, J. & Meng, X. (2009), Efficient algorithms for approximate
member extraction using signature-based inverted lists, in ‘Proceed-
ings of the 18th ACM Conference on Information and Knowledge
Management’, pp. 315–324.

Masek, W. & Paterson, M. (1980), ‘A faster algorithm computing
string edit distances* 1’, Journal of Computer and System sciences
20(1), 18–31.

Navarro, G. (2001), ‘A guided tour to approximate string matching’,
ACM Computing Surveys (CSUR) 33(1), 88.

S. Chaudhuri, V. G. & Kaushik, R. (2006), A Primitive Operator for
Similarity Joins in Data Cleaning, in ‘Proceedings of the 22nd Inter-
national Conference on Data Engineering’.

Sarawagi, S. & Bhamidipaty, A. (2002), Interactive deduplication us-
ing active learning, in ‘Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining’,
pp. 269–278.

Sarawagi, S. & Kirpal, A. (2004), Efficient set joins on similarity predi-
cates, in ‘Proceedings of the 30th ACM SIGMOD International Con-
ference on Management of Data’, p. 754.

Singhal, A. (2001), ‘Modern information retrieval: A brief overview’,
IEEE Data Engineering Bulletin 24(4), 35–43.

Tanabe, L. & Wilbur, W. (2004), ‘Generation of a large gene/protein
lexicon by morphological pattern analysis’, Journal of Bioinformatics
and Computational Biology 1(4), 611–626.

Ukkonen, E. (1983), On approximate string matching, in ‘Foundations
of Computation Theory’, pp. 487–495.

Wagner, R. & Fischer, M. (1974), ‘The string-to-string correction prob-
lem’, Journal of the ACM (JACM) 21(1), 168–173.

105

106

107

108

1 2 3

In
de

x
E

nt
rie

s

Edit Distance

NGPP
PartSS

(a) DBLP-Persons, Index Size

105

106

107

108

1 2 3

In
de

x
E

nt
rie

s

Edit Distance

NGPP
PartSS

(b) GENE, Index Size

104

105

106

107

1 2 3

In
de

x
E

nt
rie

s

Edit Distance

NGPP
PartSS

(c) CONLL, Index Size

104

105

106

107

108

109

1 2 3

C
an

d
S

iz
e

Edit Distance

NGPP
PartSS

Real-Match

(d) DBLP-Persons, Cand Size

106

108

1010

1012

1 2 3
C

an
d

S
iz

e

Edit Distance

NGPP
PartSS

Real-Match

(e) GENE, Cand Size

106

107

108

109

1010

1011

1 2 3

C
an

d
S

iz
e

Edit Distance

NGPP
PartSS

Real-Match

(f) CONLL, Cand Size

103

104

105

106

1 2 3

R
un

 T
im

e(
se

co
nd

s)

Edit Distance

NGPP
PartSS

(g) DBLP-Persons, Run Time

103

105

107

109

1 2 3

R
un

 T
im

e(
se

co
nd

s)

Edit Distance

NGPP
PartSS

(h) GENE, Run Time

103

105

107

109

1 2 3

R
un

 T
im

e(
se

co
nd

s)

Edit Distance

NGPP
PartSS

(i) CONLL, Run Time

Figure 5: Experimental Results for Approximate Membership Extraction with Edit Distance Constraints

Wang, W., Xiao, C., Lin, X. & Zhang, C. (2009), Efficient approximate
entity extraction with edit distance constraints, in ‘Proceedings of the
35th SIGMOD International Conference on Management of Data’,
pp. 759–770.

Winkler, W. (1999), ‘The state of record linkage and current research
problems’, Statistical Research Division, US Bureau of the Census,
Wachington, DC .

Xiao, C., Wang, W. & Lin, X. (2008), ‘Ed-Join: an efficient algorithm
for similarity joins with edit distance constraints’, Proceedings of the
VLDB Endowment 1(1), 933–944.

Zobel, J. & Dart, P. (1995), ‘Finding approximate matches in large lexi-
cons’, Software: Practice and Experience 25(3), 331–345.

