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Abstract. In this paper, we present WebPut, a prototype system that adopts a
novel web-based approach to the data imputation problem. Towards this, Webput
utilizes the available information in an incomplete database in conjunction with
the data consistency principle. Moreover, WebPut extends effective Information
Extraction (IE) methods for the purpose of formulating web search queries that
are capable of effectively retrieving missing values with high accuracy. WebPut
employs a confidence-based scheme that efficiently leverages our suite of data
imputation queries to automatically select the most effective imputation query
for each missing value. A greedy iterative algorithm is also proposed to schedule
the imputation order of the different missing values in a database, and in turn the
issuing of their corresponding imputation queries, for improving the accuracy and
efficiency of WebPut. Experiments based on several real-world data collections
demonstrate that WebPut outperforms existing approaches.
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1 Introduction

Data incompleteness is one of the most pervasive data quality problems especially for
web databases [13]. The process of filling in missing attribute values is well-known as
Data Imputation [5, 16]. Commonly used data imputation approaches assign a missing
value to “the most common attribute value”, “a special value” [8], or a “closest-fit”
value from the most similar context within the data set [6, 11]. Another line of data
imputation approaches attempts to predict an estimation for the missing values using
models built on the incomplete data set [15, 18, 21]. Such approaches could effectively
smooth the influence of missing attribute values on some statistical data analysis. Both
approaches, however, typically fall short in replacing the individual missing attribute
values, especially when those values are unique within the data set (e.g., the missing
Email addresses in Table 1), which is precisely the context we address in this paper.

The premise underlying our work is that most of the missing data in a wide range
of online databases is typically available from some external data sources on the world
wide web. The effective and efficient retrieval and extraction of this data, however,
remains a challenging task, which motivated us to propose our novel Web-based data
imputation (WebPut) approach.



Table 1. A Personal Information Table with Missing Data

Name(N) Email(E) Title(T) University(U) State(S)
1 Jack Davis jdavis@mit.edu Professor MIT MA
2 Tom Smith tomsmith2@cs.cmu.edu CMU PA
3 Bill Wilson Doctor UIUC IL
4 Bob Brown bbrown7@yale.edu A/Professor Yale NY
5 Ama Jones Ms CA
6 lank@ucla.edu

In principle, WebPut could be perceived as a novel Information Extraction (IE) ap-
proach. In particular, classical IE tasks typically process web documents for the purpose
of recognizing a category of entities (such as locations), or relations (such as company-
headquarter pairs) [1, 4, 19, 17]. WebPut, however, formulates the extraction tasks
around the missing attribute values in a database, which greatly challenges the existing
IE techniques. Towards this, WebPut utilizes the available information in the incom-
plete data set in conjunction with the data consistency principle. That is, the values in
the same tuple are of the same instance, while the values in the same column are of
the same domain. To this end, WebPut extends effective IE methods for the purpose
of formulating web search queries that are capable of effectively retrieving the missing
values in a database. The main contributions of this paper are summarized as follows:

1. We implement a WebPut prototype system that employs and extends a suite of
traditional IE methods for the purpose of formulating effective web-based data im-
putation queries.

2. We propose a confidence-based scheme that efficiently leverages our suite of data
imputation queries so that to automatically select the most effective imputation
query for each missing value.

3. We propose a novel greedy iterative algorithm to schedule the imputation order of
the different missing values in a database, and in turn the issuing of their corre-
sponding imputation queries, for improving the accuracy and efficiency of WebPut.

Our experimental results on several real-world data collections show that WebPut out-
performs all previous approaches and can achieve up to 80% accuracy. In addition, our
proposed query scheduling techniques improve the efficiency of WebPut by up to 50%,
as compared to the baseline approach.

Roadmap: We discuss both our system model and problem definition in Sec. 2, then
present our proposed WebPut approach in Sec. 3. We report on our experimental results
in Sec. 4, and then cover related work in Sec. 5. Then we conclude this paper in Sec. 6.

2 Model and Problem Definition

Our Web-based approach for data imputation (WebPut) leverages traditional Informa-
tion Extraction (IE) methods together with the capabilities of Web search engines to-
wards the goal of completing missing attribute values in relational tables such as the



one shown in Table 1. Towards this, WebPut introduces what we call a Web-based data
imputation query, which is basically a web search query specially formulated for the
purpose of data imputation. Such data imputation query is formally defined as follows:

Definition 1. For a relational tuple t, a data imputation query q(X → y) is a web
search query formulated to utilize the existing values of a certain set of attributes
{X} = {x1, x2, ...} to retrieve the missing value of a certain attribute y. Hence, in
q(X → y), X is denoted as the utilized attributes and y is denoted as the target
attribute.

In addition to formulating effective data imputation queries, the distribution of com-
plete and missing values throughout the relational table makes the data imputation prob-
lem further challenging. Specifically, in a typical incomplete table, each tuple t might
contain multiple target attributes: y1, y2, ... and for each one of those target attributes
there might exist multiple sets of possible utilized attributes: X1, X2, .... For instance,
in the 5th tuple of Table 1, there are three existing attribute values (Name, Title, State)
and two missing values (Email, University). Any combination of the three existing at-
tributes {N}, {T}, {S}, {N,T}, {N,S}, {T, S} or {N,T, S} could be utilized in a
data imputation query targeting one of the two missing values.

Problem Definition: Given the above, our work presented in this paper addresses and
proposes solutions to the following critical questions:

1. Given a pair < X, y >, how to formulate q(X → y) to effectively retrieve the
missing value y? (Sec. 3.1)

2. In the presence of multiple sets of possible utilized attributes: X1, X2, ... for the
same target attribute y, how to select which set X is the best to impute y? (Sec.
3.2), and

3. In the presence of multiple target attributes: y1, y2, ..., how to schedule the impu-
tation order of each yj? (Sec. 3.3)

3 The WebPut Approach

In this section, we present WebPut, our web-based approach for data imputation. WebPut
integrates several novel methods that provide effective and efficient solutions to the
challenges listed above.

3.1 Web-based Data Imputation

WebPut extends popular and effective IE methods for the purpose of formulating effec-
tive data imputation queries. In particular, WebPut leverages existing complete tuples
together with IE methods to learn the different query formulations suitable for the im-
putation of each missing value in a relational table. Central to that idea is searching
for Web documents that contain some of the data in those complete tuples and extract-
ing some auxiliary information from those documents to use in future data imputation
queries. Given that approach, our previous definition of data imputation query could be



further refined as: q(X,A→ y) whereA is the auxiliary information required for query
formulation. The particular nature of this auxiliary information depends on the adopted
IE method. While our approach described above is general enough to accommodate
and extend any relevant IE method towards our goal of Web-based data imputation. In
this paper, however, we focus on two particular IE methods, namely: the Pattern based
IE method [1] and the Co-occurrence based IE method [12]. Our choice is based on
the high effectiveness of these methods as shown in [12]. Investigating other methods
remains part of our future work.

Fig. 1. Example Learning and Retrieving Process of the Two Retrieval Ways

Pattern based Data Imputation (P-DI) Our pattern based data imputation extends the
classical Pattern based IE method [10, 1], which relies on syntactic patterns to identify
instances of a given entity type (such as University) or relation type (such as (Univer-
sity, State)). Early research in that area focused only on high-quality patterns known as
Hearst Patterns (such as “... such as...”) to identify new entities or relations [10]. Later,
bootstrapping Pattern based IE methods were proposed, in which patterns learned from
seed instances are used to find more instances of the same type (such as Snowball [1]).

Applying pattern based data imputation in WebPut involves learning and using aux-
iliary information in the form of patterns, which is accomplished via the following three
tasks: (1) identifying all possible utilized and target attributes pairs as <Xi, yj> based
on the existing attribute values and missing values per tuple, (2) learning auxiliary in-
formation Ai,j for each possible pair <Xi, yj > in the set of complete tuples, and (3)
applying those learned auxiliary information to formulate data imputation queries for
incomplete tuples.

For example, as shown in Figure 1(a), to learn auxiliary information (i.e., patterns)
based on complete instances such as (“Jack M. Davis”, “jdavis @mit.edu”) and (“Tom
Smith”, “tomsmith2 @cs.cmu.edu”), we issue a Learning Query based on each one of



those complete tuples. A learning query is a Web search query that returns a set of doc-
uments that are further utilized for pattern extraction. In particular, from the retrieved
documents, we may learn patterns corresponding to < {Name}, Email > such as:
“send email to [NAME] (Email: [EMAIL])” (as shown in Figure 1(a)). Finally, we can
easily formulate a data imputation query for each tuple with a missing Email value
using the values of Name and the extracted pattern. For example “send email to Bill
wilson (Email:” + “)”(The string in a quotation is taken as an unseparated keyword)
and extract the missing Email value from the retrieved documents.

Co-occurrence based Data Imputation (C-DI) Co-occurrence based data imputation
extends the co-occurrence based IE method [12]. In the context of IE, the co-occurrence
based method was proposed to circumvent the limitations of the pattern based approach,
given that patterns are sometimes too strict to capture most of the existing entities or
relations on the web. In particular, a Co-occurrence based extraction method learns
common context terms instead of patterns from seed instances of a given relation [12].
For example, from instances such as (MIT, MA), (CMU, PA), (Yale, NY), we could
learn some common context terms for the relation (University, Location) such as “lo-
cated at”, which are mentioned closely and frequently with these instance pairs in some
web pages. With these context terms, we expect to find the Location of another univer-
sity like (UIUC, ?). Different from pattern-based extraction, the co-occurrence based
extraction method relies on Named Entity Recognition(NER) [14] to extract the entity
or relation from the documents.

Employing C-DI in WebPut involves almost the same three steps as the P-DI. There
are three minor differences, however, which could be observed in the example in Figure
1(b): (1) C-DI learns common context terms, instead of patterns, as the auxiliary infor-
mation, (2) The formulated imputation query only requires the retrieved documents to
contain the common context terms at any position, (3) From the retrieved documents,
we apply NER to identify all Universities, the one with the highest frequency will be
taken as the missing value we are looking for.

Multiple Data Imputation Queries: To simplify the presentation, so far we have as-
sumed that all the learning queries for each <Xi, yj > pair will return the same auxil-
iary information, being a pattern or a set of context terms, and in turn result in formulat-
ing a single data imputation query. For instance, Figure 1(a) shows that all the learning
queries return the same pattern “send email to [Name] (Email:[Email])”. In reality,
however, WebPut could extract multiple auxiliary information for the same <Xi, yj>
pair from the retrieved documents. For instance, the learning queries in Figure 1(a)
could have returned other patterns such as: “contact [Name] through [Email]”
and “Name: [Name], Email: [Name].”. Similarly, for each target attribute yi there
might exist multiple sets of possible utilized attributes:X1, X2, .... For example, for the
{Email} target attribute, {Name} could be a utilized attribute (as shown Figure 1(a))
but also all other combinations of attributes form a valid set of utilized attributes (e.g.,
{Name, University}, etc.). As such, for each yj WebPut can formulate a signifi-
cantly large number of data imputation queries. The decision of which of these queries



to use brings additional complexity to our WebPut approach which is addressed in the
next section.

3.2 Confidence-based Selection of Data Imputation Queries

In this section, we propose the use of confidence values as a method for effective and
efficient data imputation in the presence of multiple applicable data imputation queries.
As discussed in the previous section, it is typically the case that WebPut can formulate a
significantly large number of data imputation queries for each target attribute yj . In par-
ticular, for each yj WebPut formulates a set of imputation queries Qj where the number
of queries in Qj is equal to the number of valid combinations of utilized attributes and
auxiliary information that is applicable to the target attribute yj and each q(yj) ∈ Qj

represents exactly one of those valid combinations.
In a naive implementation, WebPut would fire all queries in Qj for the imputation

of each yj and select for imputation the value agreed upon by most of the queries in Qj

(i.e., high frequency). This approach is inefficient as it incurs a large overhead in terms
of the number of issued queries and their corresponding delays. Moreover, applying
a voting mechanism based on frequency might jeopardize the accuracy of imputation
since frequency does not necessarily translate into high-quality.

In the rest of this section we focus on our proposed confidence-based scheme for
effective imputation. In summary, our scheme ranks each candidate value returned by
a a data imputation query q ∈ Qj according to two factors: 1) the confidence in the
data imputation query, and 2) the confidence in the values utilized by that query. Then
in turn selects the value with the highest rank.

The first factor (i.e., confidence of data imputation query) is simply based on the
query’s success in retrieving values similar to those already existing in the complete
tuples during the learning phase. Hence, our scheme naturally relies on the concepts of
coverage and support, which are defined as:

Definition 1. A data imputation query q(yj) covers a target attribute yj in tuple t, if
and only if: (1) all the utilized attribute values of q(yj) exist in t; and (2) q(yj) could
retrieve a value for yj .

Definition 2. A complete tuple t supports a data imputation query q(yj), if and only
if: (1) q(yj) covers t; and (2) the missing value returned by q(yj) equals to the existing
value of the target attribute yj in the complete tuple t.

The second condition in Definition 1 is necessary because sometimes a query might
fail to retrieve any value for its target attribute. Moreover, notice that even though the
definition of support is based on that of cover, it only applies for complete tuples.

1. Confidence of Data Imputation Queries Given the definitions of both coverage
and support, the confidence of a data imputation query is estimated as:

Conf(q) =
|Support(q)|
|Cover(q)|

(1)



where |Cover(q)| is the number of complete tuples that are covered by q, whereas
|Support(q)| is the number of complete tuples that support q, as defined above.

Notice, however, that a data imputation query q is only valid (i.e., can be applied to
impute missing values), if and only its confidence and cover are higher than predefined
thresholds τ and η respectively. This approach is mainly to avoid employing outlier
queries (i.e., low cover) or poor-quality queries (i.e., low support). The values of τ and
η are system’s parameters and their settings are discussed in Section 4.

2. Confidence of Imputed Values The confidence of a new imputed value is directly
computed according to the confidence of its corresponding data imputation query q as
well as the set of utilized attribute values X . More specifically,

Conf(yj,t, q) = Conf(q)
∏

xi∈X

Conf(xi,t) (2)

where the confidence of each utilized attribute value xi,t is either pre-determined (for
existing values) or it is computed (for already imputed values) in the same way. When
several data imputation queries are applied to a missing value, and different data impu-
tation queries lead to different values, only the value with the highest confidence will
be used to impute the missing value.

3.3 Efficient Scheduling of Data Imputation Queries

WebPut aims to impute each missing value with the highest-confidence value while at
the same time minimizing the number of issued data imputation queries. In this sec-
tion, we propose efficient algorithms for the scheduling of data imputation queries that
achieve these goals. As opposed to the naive approach discussed in the previous section
(Sec. 3.2), the following algorithms share the principle idea of leveraging the confidence
of data imputation queries to achieve high efficiency and effectiveness.

Fig. 2. The Architectures of the Iterative WebPut Algorithm

1. One-Pass Scheduling Algorithm (Baseline) In this baseline algorithm, WebPut im-
putes all missing values in one pass. First, based on existing complete tuples, it estimates
the confidence of all the data imputation queries targeting any incomplete attributes in
the given database. Second, it uses those valid data imputation queries to retrieve values



for missing values. However, when several queries are available for the same missing
value, it selects the one with the highest confidence to be issued under the assumption
that it should provide the highest confidence value.

Fig. 3. Imputation Results in an Example Tuple with Two Different Algorithms

For example, consider the 5th tuple in Table 1 in which there are two missing values
(=Email and University) and three existing values (=Name, Title, State). As shown in
Figure 3(a), data imputation queries q1, q2, q3 can be applied to the University missing
value, among which q3 has the highest confidence. Meanwhile q4 and q5 can be applied
to the Email missing value, among which q5 has the highest confidence. By applying
both of the high-confidence queries (i.e., q3 and q5), we assign “CalTech” with 0.75
confidence for the University missing value; and “ajones@ucla.edu” with 0.65 confi-
dence for the Email missing value as shown in Figure 3(b). While both values have a
reasonable confidence, they are inconsistent with each other: people from one Univer-
sity are unlikely to use an email belonging to another university. This example shows
that one-pass algorithm suffers from one major drawback: the imputed value of one
imputed missing data is not further utilized to impute values of other missing data.
Consequently, it may lose the chance to retrieve a better value with a higher confidence
for some missing values.

2. Iterative Scheduling Algorithm To address the drawbacks of the one-pass algo-
rithm described above, we introduce an iterative scheduling algorithm. In each itera-
tion of this algorithm, we impute the missing values, similar to the one-pass algorithm.
However, after each iteration, the imputed values are stored in an intermediate instance
database (Figure 2). In the next iteration, some of those imputed values are further uti-
lized to impute already imputed ones if they are of high confidence and they support
high-confidence queries.

To further illustrate the iterative algorithm, let’s consider again the 5th tuple in Table
1. After the 1st iteration (Figure 3(c)), we fill the two missing missing values (Email
and University missing values) with two imputed values, which are similar to those
provided by the one-pass algorithm. In the 2nd iteration, however, two more queries
(=q8 and q9) that target the University missing value become available as they can utilize
the Email value imputed in the 1st iteration. Similarly, queries q6 and q7 targeting the
Email missing value become available as they can utilize the University value imputed



in the 1st iteration. According to our query rankings, we apply q7 and q9 in this iteration,
and we get “amaj@caltech.edu” with 0.75 confidence for the Email missing value; and
“UCLA” with 0.65 confidence for the University missing value. Since the confidence of
the new value “amaj@caltech.edu” is higher than the value “ajones@ucla.edu” obtained
in the 1st iteration, we replace the imputed value of Email with the new one. However,
note that our schedule prevents cycles, that is, the value of missing value y1 that is
imputed by utilizing the value of missing value y2 cannot be utilized in imputing values
for missing value y2. Thus, we could stop the iterative algorithm at this moment. Now
we have more consistent imputed values for the two missing values.

3. Greedy Iterative Scheduling Algorithm In the above example, four data impu-
tation queries (q3, q5, q7, q9) were applied, while only two (q3 and q7) provided the
highest-confidence values for the two missing values. Motivated by this observation,
we present a greedy shceduling algorithm, which identified “effective” data imputa-
tion queries that provide the highest-confidence values for missing values apriori, and
in turn, minimizes the number of issued queries. For an incomplete tuple, all identi-
fied data imputation queries are processed in a particular order so they form a greedy
schedule for each incomplete tuple.

The optimal schedule is acyclic and associates all missing values with the minimum
number of data imputation queries, as shown in the highlighted path in Figure 3(c).

To generate that optimal schedule, in each iteration we only select one data im-
putation query that is estimated to provide the highest-confidence attribute value for a
not imputed missing value. As long as the data imputation query could provide a value
for that missing data, we impute the missing data with the already imputed values.
However, if no value is provided, WebPut drops that query and re-selects a new data
imputation query from the remaining unused imputing queries based on the same rule.
Finally, when all missing values are imputed or there are no more unprocessed data
imputation queries, the algorithm stops. The optimal schedule for the 5th tuple in Table
1 is highlighted (shaded boxes) in Figure 3(c).

The greedy version of the iterative algorithm always provides the same imputed val-
ues as the pure iterative algorithm described earlier. However, in the best case scenario,
the greedy algorithm requires only one data imputation query to apply per missing
value, which is more efficient than the iterative algorithm.

4 Experimental Evaluation

We have implemented a WebPut prototype in Java which uses Google API to answer
data imputation queries. We have experimented with three real-world data sets:

– Multilingual Disney Cartoon Table (Disney): This table contains names of 51 clas-
sical disney cartoons in 8 different languages collected from Wikipedia.

– Personal Information Table (PersonInfo): This is a 2.5k-tuples, 5-attributes table,
which contains contact information for academics including name, email, title, uni-
versity and country. This information is collected from 20 different universities in
the USA, UK and Australia.



– DBLP Publication Table (DBLP): This is a 10k-tuples, 5-attributes table. Each tu-
ple contains information about a published paper, including its title, first author,
conference name, year and venue. All papers are randomly selected from DBLP.

The three data sets above are complete relational tables. To generate incomplete
tables for our experiments, we remove attribute values at random positions from the
complete table, while making sure that at least one key attribute value will be kept in
each tuple. (For the Disney dataset, all attributes are key attributes. For the PersonInfo
dataset, the name and email are key attributes. For the DBLP dataset, the paper title
is the only key attribute.) Each reported result is the average of 5 evaluations, that is,
for each missing value percentage (1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%), 5 in-
complete tables will be generated with 5 random seeds, and the experimental results
we present are the average results based on the 5 generated incomplete tables. We then
impute these generated incomplete tables using WebPut and evaluate the performance
of our solutions by using the original complete table as the ground truth.

4.1 WebPut v.s. related approaches

We compare the accuracy of WebPut against two state-of-the-art data imputation ap-
proaches: (1) Close-fit: a substitute-based approach which finds a “close-fit” value from
a similar context using association rules [20]; (2) Mixing: a model-based approach
where a mixture-kernel based iterative estimator is advocated to impute mixed-attribute
datasets [23]. The accuracy of an algorithm is the percentage of missing values filled
with correct values among all missing values in the table.

As shown in Figure 4, WebPut (using the greedy iterative scheduling algorithm)
reaches a much higher accuracy than both of the other two algorithms for the 3 data sets
at all the missing ratios. For the 1st data set both Close-fit and Mixing can not impute
any missing values at all, since all values in this dataset are unique and thus missing
values are unlikely to be imputed either from a similar context within the dataset or
through a established model built on the dataset. For the same reason, the two methods
impute no more than 50% of missing values on the other two datasets.

The performance of WebPut is determined by whether the missing values could be
retrieved from the web based on existing values. For the 1st data set, since only the
English name of a Disney movie is usually mentioned together with names in other
languages, once the English name is missing, it is pretty hard to retrieve missing names
in other languages through existing names in other languages. With the iterative algo-
rithm, we may impute the missing English name first, and then identify other names
through the imputed English name. But once the English name is incorrect, all the other
names that imputed based on the English names are also incorrect. Therefore, the accu-
racy on the 1st data set is not high. For the other two data sets, as long as a key value of
a tuple exists, such as the name in PersonInfo, or the paper title in DBLP, it is not diffi-
cult to impute the missing values based on the key values. As a result, WebPut retrieves
approximately 70-80% of missing values for the two data sets.
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Fig. 4. Comparing the Accuracy of WebPut against Previous Approaches

4.2 P-DI v.s. C-DI

We measure the effectiveness of WebPut when the data imputation queries are formu-
lated based on: 1) only P-DI; 2) only C-DI; and 3) a suite of P-DI and C-DI formulated
queries (as described in Section 3.1). In this experiment, for a query to be valid it must
be supported by at least 3 complete tuples and its confidence must be more than 0.3. For
P-DI, the length of Prefix and Suffix in each pattern must be at least 5 characters long.
Finally, when applying a pattern to extract the value of an entity, that candidate value
must be within 300 characters. For C-DI, we adopt all the settings from [12] to get the
best expansion terms for each query.

As shown in Figure 5, the accuracy of using both P-DI and C-DI queries in WebPut
is always higher than that of using either one alone. For instance, P-DI can only fill up
to 20% of the missing values due to the strictness of pattern matching. While C-DI can
fill much more missing values than P-DI due to its flexibility, the combination of both
still achieves the highest accuracy.
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Fig. 5. Comparing the Accuracy of the different Query Formulation Methods

4.3 Evaluation of the Scheduling Algorithms

In this experiment, we first evaluate the accuracy of three WebPut algorithms proposed
in Section 3. As shown in Figure 6(a)(b)(c), when the missing ratio is low (<5%), the



accuracy of the three algorithms is almost the same. As the missing ratio increases from
5% to around 50%, the accuracy of One-Pass drops faster than Iterative for all the three
data sets. When the missing ratio becomes more than 50%, the accuracy of Iterative
is about 20% higher than that of One-Pass. The figure also shows that the accuracy
of Greedy Iterative (GreedyIter) is always the same as that of Iterative as discussed in
Section 3.3.

In Figure 6(d)(e)(f) we compare the costs of the 3 algorithms measured in terms
of the number of data imputation queries issued by WebPut. The figure shows that the
imputation costs of both GreedyIter and One-Pass is approximately proportional to the
missing ratio, since both of them need only one query to impute each missing value.
The cost of Iterative, however, increases much faster than GreedyIter and One-Pass.
For instance, when the missing ratio is larger than 50%, the cost of Iterative is about
2 times that of GreedyIter. From the two figures, it is clear that GreedyIter reaches the
best accuracy at the minimum cost as intended.
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Fig. 6. Comparing the Accuracy and Cost of the Scheduling Algorithms

5 Related Work

Data imputation aims at providing estimations for missing attribute values by reasoning
from observed data on a data set [3]. Existing data imputation approaches can be di-
vided into three categories: (1) substitute-based data imputation; (2) model-based data
imputation; (3) external resource based data imputation.



The substitute-data imputation approaches arbitrarily find a substitute value for the
missing one from the same data set. Nine approaches have been introduced and com-
pared in [8], such as selecting the “most common attribute value” as the missing value,
or “assigning all possible values of the attribute restricted to the given concept”, or
“treating missing attribute values as special values” and so on. Later, k-Nearest Neigh-
bor [7] and association rules [20] were also used to find a “close-fit” value from a
similar context. The substitute-based data imputation approaches attempt to smooth the
influence of missing values on statistical data analysis results by replacing them with
suitable substitutes, but are unlikely to find the right missing attribute values for missing
values, especially when the missing value is a unique one within the data set.

The model-based data imputation approaches build a prediction model based on the
data set, and then estimate a value for a missing value based on the model. Among
the proposed approaches, some [2, 18] were developed for continuous attributes only,
while others [15, 22] were designed to deal with discrete attributes. There are also some
approaches [21, 23] targeting imputing mixed attributes, which either take the discrete
attributes as continuous ones, or smooth the mixed regressors. The model-based data
imputation approaches have advantage on estimating a vey close value for the missing
one, which could greatly smooth the influence brought by incomplete data. However,
close estimations can not replace the missed original values, especially the values of
discrete attributes.

The third type of data imputation approaches aim at finding missing attribute values
from external resources. The WebPut belongs to this category. This type of data imputa-
tion approach do not find substitutes or estimations for the missing ones, but the missing
values themselves from external resources. There were some effects on augmenting a
table with very few example rows by constructing new rows from unstructured lists on
the web [9]. Although table augmentation does not have the same purpose with data
imputation, it is also extracting data from external sources and put them into local table.

6 Conclusions and Future Work

In this paper, we present WebPut - an approach to impute missing data from external
data sources on the world wide web. In that sense, WebPut could be perceived as a novel
Information Extraction (IE) approach, which formulates the extraction tasks around
the missing attribute values in a database. Our experimental results based on several
real-world data collections demonstrate that WebPut can effectively retrieve a large
percentage (approximately 70-80%) of correct missing values in an incomplete table,
outperforming previous approaches.

An underlying assumption of the work presented in this paper is that all existing
attribute values are faultless (i.e., clean data), meanwhile we leave the problem of data
imputation in the presence of incorrect and dirty data as part of our future work. We
are also working on a hybrid approach that combines and integrates our web-based
approach with previous model-based data imputation methods.

Acknowledgments: The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions. This work was supported in part by Australian
Research Council grant DP110102777.



References

[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text collec-
tions. In ACM DL, 2000.

[2] J. Barnard and D. Rubin. Small-sample degrees of freedom with multiple imputation.
Biometrika, 86(4):948–955, 1999.

[3] G. Batista and M. Monard. An analysis of four missing data treatment methods for super-
vised learning. Applied Artificial Intelligence, 17(5-6):519–533, 2003.

[4] S. Brin. Extracting patterns and relations from the world wide web. The World Wide Web
and Databases, pages 172–183, 1999.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages
1–38, 1977.

[6] J. Grzymala-Busse. Three approaches to missing attribute values: A rough set perspective.
Data Mining: Foundations and Practice, pages 139–152, 2008.

[7] J. Grzymala-Busse, W. Grzymala-Busse, and L. Goodwin. Coping with missing attribute
values based on closest fit in preterm birth data: A rough set approach. Computational
Intelligence, 17(3):425–434, 2001.

[8] J. Grzymala-Busse and M. Hu. A comparison of several approaches to missing attribute
values in data mining. In RSCTC, 2001.

[9] R. Gupta and S. Sarawagi. Answering table augmentation queries from unstructured lists
on the web. PVLDB, 2(1):289–300, 2009.

[10] M. Hearst. Automatic acquisition of hyponyms from large text corpora. In COLING, 1992.
[11] J. Li and N. Cercone. Assigning missing attribute values based on rough sets theory. IEEE

Granular Computing, pages 607–610, 2006.
[12] Z. Li, L. Sitbon, and X. Zhou. Learning-based Relevance Feedback for Web-based Relation

Completion. In CIKM, 2011.
[13] D. Loshin. The Data Quality Business Case: Projecting Return on Investment. Informatica,

2006.
[14] A. Mikheev, M. Moens, and C. Grover. Named entity recognition without gazetteers. In

EACL, 1999.
[15] J. Quinlan. C4. 5: programs for machine learning. Morgan kaufmann, 1993.
[16] M. Ramoni and P. Sebastiani. Robust learning with missing data. Machine Learning,

45(2):147–170, 2001.
[17] S. Shi, H. Zhang, X. Yuan, and J. Wen. Corpus-based semantic class mining: distributional

vs. pattern-based approaches. In COLING, 2010.
[18] Q. Wang and J. Rao. Empirical likelihood-based inference under imputation for missing

response data. The Annals of Statistics, 30(3):896–924, 2002.
[19] R. Wang and W. Cohen. Automatic set instance extraction using the web. In ACL/AFNLP,

2009.
[20] C. Wu, C. Wun, and H. Chou. Using association rules for completing missing data. In HIS,

2004.
[21] S. Zhang. Parimputation: From imputation and null-imputation to partially imputation.

IEEE Intelligent Informatics Bulletin, 9(1):32–38, 2008.
[22] S. Zhang. Shell-neighbor method and its application in missing data imputation. Applied

Intelligence, 35(1):123–133, 2011.
[23] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu. Missing value estimation for mixed-attribute

data sets. IEEE TKDE, 23(1):110–121, 2011.


