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Abstract—In this paper, we propose a novel slotted hybrid co-
operative protocol named the sequential slotted amplify-decode-
and-forward (SADF) protocol and evaluate its performance in
terms of diversity-multiplexing trade-off (DMT). The relays
between the source and destination are divided into two different
groups and each relay either amplifies or decodes the received
signal. We first compute the optimal DMT of the proposed
protocol with the assumption of perfect decoding at the DF
relays. We then derive the DMT closed-form expression of
the proposed sequential-SADF and obtain the proximity gain
bound for achieving the optimal DMT. With the proximity gain
bound, we then found the distance ratio to achieve the optimal
DMT performance. Simulation result shows that the proposed
protocol with high proximity gain outperforms other cooperative
communication protocols in high SNR regime.

I. INTRODUCTION

In cooperative communication systems, different terminals
collaborate to form a virtual-multiple antenna array system
and exploit the spatial diversity to achieve a better perfor-
mance [1], [2]. Cooperative communication protocols can be
generally categorized into amplify-and-forward (AF) protocol
and decode-and-forward (DF) protocol and are often compared
using the trade-off measurement between the error probability
and the data rate of a multiple-input multiple-output (MIMO)
network known as diversity-multiplexing trade-off (DMT) [3].

In [4], the authors pointed out the fact that both nonorthog-
onal amplify-and-forward (NAF) [1], [2] and dynamic decode-
and-forward (DDF) [2] protocols fail to achieve high diversity
gain (d(r) > 1) in the high multiplexing gain regime (r > 0.5),
due to the fact that half of the source signal is not forwarded by
the relays. The authors subsequently proposed a new AF proto-
col known as the sequential slotted amplify-and-forward (SAF)
protocol and demonstrated that it achieves the multiple-input
single-output (MISO) bound when the number of transmission
slots, M goes to infinity, with the assumption of isolated
relays. Recently in [5], the authors proposed opportunistic DF
(ODF) protocol to achieve the DMT upper bound of N -relay
(N + 1)-slot SAF without relay isolation model. However the
protocol requires the nth relay to listen for n slots to decode
the nth signal, for n ∈ {1, · · · , N}.

In this paper, we propose a slotted hybrid cooperative proto-
col named the sequential slotted amplify-decode-and-forward
(SADF) protocol for half duplex single antenna multiple relay
channels. The source information is modulated and divided
into M symbols and transmitted from the source to the
destination with the assistance of N relays. The relays between
the source and the destination are divided into DF relays and
AF relays. A DF relay decodes the received signal if it is not

an outage event and a AF relay performs linear processing
on the received signal and forwards it to the destination in a
round robin manner. We first derive the optimal DMT of the
proposed sequential-SADF, on the assumption that all the DF
relays are able to decode the received signal perfectly. The
optimal DMT of the sequential-SADF can be expressed as

d∗(r) = (N + 1)

(
1− M + 1

M
r

)+

. (1)

where (x)+ denotes max{x, 0}. We then derive the closed-
form DMT expression of the proposed sequential-SADF by
considering the effect of inter relay interference (IRI) and the
outage event using the proximity gain η. We found that the
optimal DMT of the sequential-SADF is achievable if η >
1 + NAM

2ND(M+1) , where ND and NA denote the number of DF
and AF relays respectively. With the aid of the proximity gain
bound, the optimal DMT of the sequential-SADF is achievable
using the relay ordering and scheduling strategy proposed in
[6].

II. THE SEQUENTIAL-SADF PROTOCOL

A. System Model

Consider a cooperative relaying network where the source
information bits are modulated and divided into M symbols
which are to be transmitted from the source s to the destination
d with the assistance of the N relays ri. Without loss of
generality, we presume that one symbol is transmitted during
each transmission slot, xm, for m = 1, · · · ,M , and M is even.
One additional slot is added at the end of the transmission
sequence for the relay to protect the last symbol and thus a
multiplexing gain of M

M+1 is achieved. The power allocation
of s and r for mth slot are denoted by πm and π̄m and satisfy∑M+1
m=1 (πm + π̄m) = M .
Let us assume that there are N = NA + ND relays, where

NA and ND denote the the number of AF and DF relays,
respectively. Denote S a set of positive even integer with the
limits of S = {2, 4, · · · ,M} and L = M

2NA
, the AF relay

rm, m ∈ S amplifies and forward xm to the destination in
round robin manner, rm = r2lNA+m, where l ∈ [1, L − 1].
Denote S ′ a set of positive odd integer with the limits of
S ′ = {1, 3, · · · ,M − 1} and L′ = M

2ND
, the DF relay rm′ ,

m′ ∈ S decodes and forward xm′ to the destination in round
robin manner, rm′ = r2l′ND+m′ , where l′ ∈ [1, L′ − 1]. Note
that the values of M , NA and ND are chosen carefully to
ensure that both L and L′ are integer numbers.

The channel gains between terminals are modelled as inde-
pendent quasi-static fading channels, i.e., the channel gains do



not change during the transmission of a cooperative frame. The
quality of the channel gain is parameterized by the distance
between terminals Di,j , for i, j ∈ {s, d, 1, · · · ,M}, i 6= j. Let
hi,j be the i.i.d complex Gaussian random variable with zero
mean and unit variance. The channel gain between s and d is
modelled as g0 ,

√
D−αs,d hs,d. Similarly, fi ,

√
D−αs,i hs,i and

gi ,
√
D−αi,d hi,d, respectively denote the channel gain between

s and ri and the ones between ri and d. γi,j ,
√
D−αi,j hi,j is

used to denote the channel gain between ri and rj . α denotes
the path loss exponent.

For the case of exposition and practical relevance, we
assume that each terminal is installed with a half duplex single
antenna that can either transmit or receive signals at any given
time. However, the result presented in this paper can be easily
extended to the case where terminals have multiple and/or full
duplex antennas. Throughout the paper, we assume perfect
synchronization between all the transmitting terminals during
each transmission slot.

B. Equivalent Channel Model

At the first time slot, s transmits the first symbol, x1 to r1
and d. The received signals can be expressed as

yr,1 =
√
π1 SNRf1x1 + nr,1,

yd,1 =
√
π1 SNRg0x1 + nd,1,

where yr,1 and yd,1 denote the received signals at r1 and d
during the first time slot, respectively. nr,1 and nd,1 denote
independent additive white Gaussian noise (AWGN), with zero
mean and unit variance. SNR denotes the signal to noise ratio.

After receiving the signal from s, r1 attempts to decode
the received signal only if it is not an outage event, i.e.
log(1+SNRπ1|f1|2) > r, where log(·) denotes logarithm base
2 and r denotes the data rate in bits per channel use (BPCU).
For non-outage scenario, r1 encodes the decoded signal and
transmit during the second time slot. At the same time slot, s
transmits the second symbol, x2 to both r2 and d. The received
signals can be expressed as

yr,2 =
√
π2 SNRf2x2 +

√
π̄2 SNRγ1,2x1 + nr,2,

yd,2 =
√
π2 SNRg0x2 +

√
π̄2 SNRg1x1 + nd,2.

At the third time slot, r2 performs linear processing on
the received signal and transmits to r3 and d. Both r3 and
d receive a linear combination of the transmitted symbol and
the linearly processed signal from s and r2 respectively, and
can be expressed as

yr,3 =
√
π3 SNRf3x3 +

√
π̄3 SNRγ2,3b2yr,2 + nr,3,

yd,3 =
√
π3 SNRg0x3 +

√
π̄3 SNRg2b2yr,2 + nd,3,

where b2 is the processing gain at r2 subject to the power
constraint E{b2yr,2} ≤ 1 and E{·} denotes the statistical
expectation operator. During the fourth time slot, r3 decodes

the received signal only if it is not an outage, i.e.

log

[
1 +

π3 SNR |f3|2

1 + π̄3 SNR |γ2,3|2

]
> r,

and transmits the encoded signal to r4 and d. Source node on
the other hand, transmit the fourth symbol x4 and the received
signal of r4 and d can be expressed as

yr,4 =
√
π4 SNRf4x4 +

√
π̄4 SNRγ3,4x3 + nr,4,

yd,4 =
√
π4 SNRg0x4 +

√
π̄4 SNRg3x3 + nd,4.

These transmission steps are continuously repeated until M
symbols have been transmitted from s.

III. DIVERSITY MULTIPLEXING TRADE-OFF

The DMT introduced in [3] is a trade-off measurement
between the reliability and the throughput of a multiple-input
multiple-output (MIMO) network for quasi-static Rayleigh
fading channels in the high SNR regime. A family of a codes
{C(SNR)} is said to achieve the multiplexing gain, r and the
diversity gain, d if

lim
SNR→∞

R(SNR)

log SNR
= r, lim

SNR→∞

logPe(SNR)

log SNR
= −d,

where R(SNR) is the data rate measured by BPCU and
is increased with SNR, R(SNR) = r log(SNR). Pe(SNR)
denotes the average error probability using the maximum-
likelihood (ML) detector which can be derived based on the
outage probability, Pe ≈ Pout, in high SNR regime with an
arbitrarily long code length.

A. Optimal DMT of the sequential-SADF

We first assume a genie-aided model, where all the DF
relays are able to decode the received signal perfectly. Using
the received signals at d and ri from above, the received signal
model at the destination can be expressed as

y =
√
SNRHx + B′n. (2)

Here y ∈ CM+1 is the received signal vector at d, where
CL denotes a set of complex L-tuples. x ∈ CM denotes
the transmitted signal vector. H ∈ C(M+1)×M denotes the
equivalent channel matrix. B′n ∈ CM+1 denotes the received
noise matrix at d, where B′ = [B IM+1] and n =

[
nT
r nT

d

]T
.

nr ∈ CM and nd ∈ CM+1 denote the additive white Gaussian
noise vectors at r and d, respectively. Using the received signal
model in (2), we obtain the mutual information

I(x;y) = log det

[
IM + SNRH†ΣxH

(
B′
†
ΣnB

′
)−1]

= log det
[
IM+1 + SNRHH†

(
BB† + IM+1

)−1]
(3)

where Σx = E{xx†} = IM and Σn = E{nn†} = I2M+1.
Note that the noise matrix, B′n is not white in general and
does not affect the DMT computation [4].



The optimal DMT of the proposed sequential-SADF proto-
col can be obtained using equation (3). From the transmission
sequence, we have the channel matrix:

H =



g0 0 0 · · · 0
g1 g0 0

γ1,2g2 f2g2 g0 0
. . .

...

0 0 g3 g0
. . .

. . . . . . . . . 0
... 0 gM−1 g0
0 . . . 0 γM−1,MgM fMgM


.

(4)

Note that the linear processing and the power allocation
terms have been ignored since they do not impact the DMT
computation [4, Lemma 1]. Using channel matrix (4), the
outage probability of the proposed sequential-SADF with the
assumption of perfect decoding at the DF relays can be
expressed as

Pout(R(SNR))

= Pr [I(x;y) ≤ (M + 1)R(SNR)]

=̇ Pr
[
log det

(
IM+1 + SNRHH†

)
≤ (M + 1)R(SNR)

]
The term (BB†+ IM+1)−1 has been eliminated since we are
only interested in the exponential function of Pout(R(SNR)).
The factor M + 1 is to account for the fact that the proposed
strategy takes M+1 transmission slots to transmit M symbols.
=̇ denotes asymptotic equality in the high SNR regime.

We consider the following lemma to compute the optimal
DMT of the proposed sequential-SADF protocol.

Lemma 1: Given a positive semidefinite (M+1)×(M+1)
penta-diagonal matrix HH†, we have

det
(
IM+1 + SNRHH†

)
≤
(
1 + SNR |g0|2

)M
+
∏
i∈S

[(
1 + SNR |figi|2

) (
1 + SNR |αi−1|2

)]
, (5)

where αi =
√
|gi|2 + |γi,i+1gi+1|2 and S being a set of

positive even integers with the limits of S ∈ [2,M ]. Equation
(5) is expended into (6) for DMT computation.

Please refer to the appendix for the proof of Lemma 1.
Let vgi = limSNR→∞

log |gi|2
log SNR be the exponential order of

1/|gi|2, and vfi , vγi,j are similarly defined. Since the channel
gains are independent Gaussian variables, the optimal DMT
of the sequential-SADF can be obtained using

d∗(r) = inf
O+

{
vg0 +

∑
i∈S

(vgi + vgi−1 + vfi + vγi−1,i)

}
, (7)

where the outage events O+ are dominated by (8) for large
SNR.
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Fig. 1. Diversity-multiplexing trade-off comparison between the optimal
sequential-SADF and the existing cooperative communication protocol with
four relay (N = 4). Here, the total transmission slots are M = 10.

Since solving the optimization problem with different values
of exponential order being prohibitive in general, let us assume

v̄g = min{vgi}Mi=1,

v̄f = min{vfi}Mi=1,

v̄γ = min{vγi,j}Mi,j=1.

The optimization problem is now reduced to

d∗(r) = inf
O+

{
vg0 +NA(v̄f + v̄g) +ND(v̄γ + v̄g)

}
, (9)

with

O+ =


max



M(1− vg0)+,
M
2 (1− v̄g)+,

M
2 (1− v̄f − v̄g)+,
M
2 (1− v̄g − v̄γ)+,
M
2 (2− v̄f − 2v̄g)

+,
M
2 (2− v̄f − 2v̄g − v̄γ)+

 ≤ (M + 1)r


By solving the optimization problem, we can obtain the

optimal DMT of the proposed sequential-SADF protocol:

d∗(r) = (NA +ND + 1)

(
1− M + 1

M
r

)+

, (10)

Note that for N = NA + ND, the sequential-SADF achieves
the (N + 1) × 1 MISO transmit bound, for sufficiently large
M .

Fig. 1 compares the optimal DMT of the sequential-SADF
with other cooperative communication protocols for a four
relays scenario (N = 4) and transmission slot, M = 10. It
can be seen that the DMT of the sequential-SADF dominates
both NAF [2] and ODF [5] protocols. On the other hand, the
DMT of the sequential-SADF dominates the DDF protocol in
most of the multiplexing gain region without the assumption
of an infinite block length. Note that SAF protocol has better
a slightly better DMT performance due to the fact that the
proposed protocol requires an extra time slot for the relay to
forward the last symbol to the destination.



det
(
IM+1 + SNRHH†

)
≤
(
1 + SNR |g0|2

)M
+
∏
i∈S

[(
1 + SNR |figi|2

) (
1 + SNR(|gi−1|2 + |γi−1,igi|2)

)]
≤
(
1 + SNR |g0|2

)M
+
∏
i∈S

[
1 + SNR

(
|figi|2 + |gi−1|2 + |γi−1,igi|2

)
+ SNR2|figi|2

(
|gi−1|2 + |γi−1,igi|2

)]
(6)

O+ =


max


M(1− vg0)+,∑
i∈S(1− vgi−1

)+,∑
i∈S(1− vfi − vgi)+,∑

i∈S(1− vgi − vγi−1,i)
+,∑

i∈S(2− vfi − vgi − vgi−1)+,∑
i∈S(2− vfi − 2vgi − vγi−1,i

)+

 ≤ (M + 1)r


(8)

B. Closed-form DMT of the sequential-SADF

In practice, relays may not always decode the received
signal perfectly. In this subsection, we analyse the closed-form
DMT of the sequential-SADF with the effect of the inter-relay
interference (IRI) on each DF relays, where we define the term
η as the average SNR of the source to relay links with IRI in
dB scale.

The outage probability of the sequential-SADF protocol
without the assumption of perfect decode at the DF relays
can be defined as

Pout =

ND∑
K=0

Pr(EK)Pout |EK
,

where EK denote the event that K number of DF relays
are able to decode the source signal perfectly. Pout |EK

and
Pr(EK) denote the outage probability and the probability of
the event that K number of DF relays are able to decode the
source signal perfectly, respectively.

The DF relay ri decodes the received signal according to
the mutual information I(xi; yr,i) and the outage probability
of each individual DF relay can be defined as

Pout |ri = Pr [I(xi; yr,i) < R(SNR)]

= Pr

[
log

(
1 +

πi SNR |fi|2

1 + π̄i SNR |γi−1,i|2

)
< R(SNR)

]
=̇ Pr

[
log

(
SNRηi |hs,i|2

|hi−1,i|2

)
< r log(SNR)

]
=̇ Pr

[
|hs,i|2

|hi−1,i|2
< SNR−(ηi−r)

+

]
,

where

SNRηi ,
πi
π̄i

(
Di−1,i

Ds,i

)α
. (11)

The proximity gain, ηi is the scaling factor on the average SNR
between the s to ri link and ri−1 to ri link in dB. Consider X
and Y are i.i.d exponential distributed random variables with
unit means, applying [7, Lemma 3.2], we have the cumulative

distribution function of Z = X
Y is given by

FZ(z) = 1− 1

1 + z

and the outage probability of each individual DF relay can be
rewritten as

Pout |ri =̇ Pr

[
|hs,i|2

|hi−1,i|2
< SNR−(ηi−r)

+

]
=̇ 1− 1

1 + SNR−(ηi−r)
+

=̇ SNR−(ηi−r)
+

(12)

If we assume that all the DF relays have the proximity gains
with the order of η ≤ η1 ≤ · · · ≤ ηM−1, Pr(EK) can be
expressed as

Pr(EK) =
(
Pout |r

)(ND−K) ×
(
1− Pout |r

)K
=̇
(
SNR−(η−r)

+
)(ND−K)

×
(

1− SNR−(η−r)
+
)K

=̇ SNR−(ND−K)(η−r)+ ,

since SNR−a − SNR−(a+b) =̇ SNR−a, for a, b > 0.
The outage probability of the sequential-SADF protocol

with K non-outage DF relays, Pout |EK
can be expressed as

Pout |EK
= Pr

[
log det

(
IM+1 + SNRHKH†K

)
≤ (M + 1)R(SNR)

]
=̇ SNR−dK(r),

where HK and dK(r) denote the channel matrix and the
DMT of the sequential-SADF with K non-outage DF relays,
respectively.

Using Lemma 1, we have the DMT of the sequential-SADF
protocol with K number of DF relays perfectly decoding the
source signal can be written as

dK(r) =

(
1− M + 1

M
r

)+

+ (NA +K)

(
1− M + 1

M/2 + 2LK
r

)+

.
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Fig. 2. DMT comparison of the proposed sequential-SADF for different
proximity gain, η. Here, the number of DF and AF relays are NA = 1 and
ND = 3, respectively. The total transmitted symbols are M = 20.

Let us assume two events, where all the DF relays are either
in outage (E0) and non-outage (END

), which is the worst or
optimal scenarios of the proposed sequential-SADF protocol
respectively. The outage probability of the sequential-SADF
protocol can be written as

Pout = Pr(E0)Pout |E0
+ Pr(END

)Pout |END

=̇ SNR−(1−M+1
M r)

+−NA(1−M+1
M 2r)

+

SNR−ND(η−r)+

+ SNR−(NA+ND+1)(1−M+1
M r)

+

=̇ SNR−d(r), (13)

where d(r) is given by the absolute value of the largest expo-
nent term. The closed-form DMT of the proposed sequential-
SADF protocol can be obtained by using equation (13), which
is shown in (14), where dmin(r) can be expressed as

dmin(r) = min

{
(NA +ND)

(
1− M+1

M r
)+
,

NA

(
1− M+1

M 2r
)+

+ND (η − r)+

}
.

From the closed-form DMT of the sequential-SADF pro-
tocol in (14), the optimal DMT (10) is achievable if the
proximity gain, η > 1 + NAM

2ND(M+1) . Note that from equation
(11), the proximity gain is characterized according to the
distance ratio between the Di−1,i and Ds,i. Thus the optimal
DMT of the sequential-SADF is achievable if we choose
the DF relay, ri that has a low Ds,i and high Di−1,i. Such
distance ratio is achievable by applying the relay ordering and
scheduling strategy proposed in [6] for achieving partial relay
isolation condition. On the other hand, proximity gain bound
for achieving optimal DMT of the proposed sequential SADF
can be lowered if the number of DF relays, ND is increased.

Fig. 2 shows the DMT curve of the proposed sequential-
SADF protocol for different proximity gains. It can be seen
that, for the proximity gain range of M

M+1 < η ≤ 1 +
NAM

2ND(M+1) , the proposed sequential-SADF protocol achieves
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Fig. 3. Outage probabilities of the non-cooperative, NAF, DDF, sequential-
SAF and the proposed sequential-SADF with proximity gain η = 0.5, 1.5 in a
four relay network (N = 4) and data rates of 2 BPCU. The total transmission
slots for both sequential-SAF and sequential-SADF protocols are M = 20.

full diversity order of d = N+1, for multiplexing gain r = 0.
In the interesting case of η → 0, for sufficiently large number
of transmission slots, the DMT performance of the proposed
sequential-SADF would be equivalent to the NAF protocol
with NA number of relays. Thus we can conclude that NAF
protocol with NA relays is the worst case DMT of the proposed
sequential-SADF protocol.

IV. NUMERICAL RESULTS

Fig. 3 shows the numerical result of the proposed sequential-
SADF with different proximity gain with quasi-static Rayleigh
fading channels. The power allocations for all the cooperative
protocols are πi = π̄i = 0.5, with the data rate of 2
BPCU. The proposed protocol is labelled as “SADF protocol”.
The proposed protocol and different cooperative protocols
were simulated in a four relay network (N = 4). The total
transmission slots for both of the proposed protocol and the
sequential-SAF is M = 20. It can be seen that the sequential-
SADF protocol with η = 1.5 outperforms other cooperative
communication protocols at high SNR regime. The proposed
protocol achieves 2 dB gain compared with the sequential-
SAF protocols and about 4 dB and 8 dB gains, respectively,
compared with the DDF and NAF protocols at the outage
probability of 10−4. For the case of the sequential-SADF
protocol with η = 0.5, the proposed protocol achieves 4 dB
gain compared with the NAF protocol at the outage probability
of 10−4.

V. CONCLUSION

We proposed a novel slotted hybrid cooperative network
named sequential slotted amplify-decode-and-forward (SADF)
protocol for half duplex single antenna multiple relay channels.
The relays between the source and destination perform either
decode or linear processing on the received signal and forward
it to the destination in a round robin manner. We first derived
the optimal DMT of the proposed sequential-SADF with the



d(r) =


(
1− M+1

M r
)+

+NA

(
1− M+1

M 2r
)+

+ND (η − r)+ , if 0 < η ≤ M
M+1(

1− M+1
M r

)+
+ dmin(r), if M

M+1 < η ≤ 1 + NAM
2ND(M+1)

(NA +ND + 1)
(
1− M+1

M r
)+
, if η > 1 + NAM

2ND(M+1)

(14)

assumption that all the DF relays are able to decode the
received signal perfectly. We showed that the optimal DMT
of the sequential-SADF can achieve the multiple-input single-
output (MISO) DMT bound. We then derived the closed-
form DMT expression of the proposed sequential-SADF by
considering the effect of IRI and the outage event with the
proximity gain. Using the proximity gain bound, we propose a
distance bound for the sequential-SADF to achieve the optimal
DMT bound. Simulation result shows that the sequential-
SADF protocol with the high proximity gain strategy has
the best outage performance compared to other cooperative
protocols in high SNR regime.

VI. APPENDIX

A. Proof of Lemma 1

Let G be the class of hermitian matrices such that A =
HH† ∈ G where H is the channel matrix in (4). It is easy
to verify that i.e. the probability P (A)dA that the matrix G
is orthogonal invariant where the automorphism A→ UAU†

and belongs to

dA =
∏
k≤j

dRe (Ak,j)
∏
k≤j

dIm (Ak,j)

where Re(Ak,j) and Im(Ak,j) are the real and imaginary
part of Ak,j . k and j denote the row and column of the
matrix A and U is a unitary matrix. Here we can use the
householder transformation without changing the spectrum
of A. Let P(i) and Q(i) be the householder matrices for
H(i), where the subscript (i) denotes the ith householder
transformation, for i = 1, · · · ,M −2. Then P†(i) and Q†(i) are
a pair of householder matrices for H†(i). We see that according
to the structure of householder matrices, the spectrum of A(i)

does not change under the transformation

H(i−1)H
†
(i−1) → P(i)H(i)Q(i)Q

†
(i)H

†
(i)P

†
(i). (15)

At the same time, let us select P(i) and Q(i) such that
H(M−2) is bi-diagonalised. Using the householder procedure,
we derive

P(1) =



1 0 . . . 0

0 g1
a1

f2g2
a1

0 . . . 0

0 f2g2
a1

1− |f2g2|
2

2a21b
2
1

0 . . . 0

...
...

...
...

0 0 0 . . . 1


where ai =

√
|gi|2 + |γi,i+1gi+1|2 and bi =

√
1
2

(
1− gi

ai

)
,

and Q(1) = IM is an identity matrix.

We see that H(0) is transformed into

H(1) =


g0 0 . . . 0
a1
... B(2)

0


where B(2) is obtained by operating P(2) on H(1). Similarly
H†(0) can be bi-diagonalised in the first two column by using
P†(1) and giving a sub-matrix B†(2) as a result.

Since A(1) = H(1)H
†
(1) is invariant under the trans-

formation in (15), B(2)B
†
(2) belongs to the same class of

matrices as G. Hence we may proceed inductively with the
householder transformation and end up with the tridiagonal
matrix, H(M−2)H

†
(M−2)

|g0|2 g0a
∗
1 · · · 0

g∗0a1 |g0|2 + |a1|2
. . .

...
...

. . . . . . g0f
∗
Mg
∗
M

0 · · · g∗0fMgM |fMgM |2


Using [4, Lemma 4] and [7, Lemma 3.1], we have

det
(
IM+1 + SNRH(M−2)H(M−2)†

)
≥
(

1 + SNR |g0|2
)M

+
∏
i∈S

(
1 + SNR |figi|2

)(
1 + SNR |ai−1|2

)
,

where S denotes a set of positive even integers with the limits
of S ∈ [2,M ]. This completes the proof of the Lemma 1.
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