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Abstract—In this paper, we propose a novel relay ordering
and scheduling strategy for the sequential slotted amplify-and-
forward (SAF) protocol and evaluate its performance in terms of
diversity-multiplexing trade-off (DMT). The relays between the
source and destination are grouped into two relay clusters based
on their respective locations. The proposed strategy achieves
partial relay isolation and decreases the decoding complexity
at the destination. We show that the DMT upper bound of
sequential-SAF with the proposed strategy outperforms other
amplify and forward protocols and is more practical compared
to the relay isolation assumption made in the original paper [1].
Simulation result shows that the sequential-SAF protocol with
the proposed strategy has better outage performance compared
to the existing AF and non-cooperative protocols in high SNR
regime.

I. INTRODUCTION

In cooperative communication systems, different terminals
collaborate to form a virtual-multiple antenna array system
and exploit the spatial diversity to achieve a better perfor-
mance [2]–[4]. Cooperative communication protocols can be
generally categorized into amplify-and-forward (AF) protocol
and decode-and-forward (DF) protocol and are often compared
using the trade-off measurement between the error probability
and the data rate of a multiple-input multiple-output (MIMO)
network known as diversity-multiplexing trade-off (DMT) [5].

In [1], the authors pointed out the fact that both nonorthog-
onal amplify-and-forward (NAF) [3], [4] and dynamic decode-
and-forward (DDF) [4] protocols fail to achieve high diversity
gain (d(r) > 1) in the high multiplexing gain regime (r > 0.5),
due to the fact that half of the source signal is not forwarded
by the relays. To mitigate this problem, the authors proposed a
new AF protocol called the slotted amplify-and-forward (SAF)
protocol and showed that it achieves the multiple-input single-
output (MISO) bound when the number of transmission slots
goes to infinity. The authors subsequently proposed a new
AF protocol called the sequential slotted amplify-and-forward
(SAF) protocol and showed that it achieves the multiple-input
single-output (MISO) bound when the number of transmission
slots goes to infinity, with the assumption of isolated relays.
Recently in [6], the authors proposed opportunistic DF (ODF)
protocol to achieve the DMT upper bound of N -relay (N+1)-
slot sequential-SAF without relay isolation model. However
the protocol requires the n-th relay to listen for n slots to
decode the n-th signal, for n ∈ {1, · · · , N}.

On the other hand, the authors in [1] proposed the two-
relay three-slots sequential-SAF protocol and demonstrated

that it has the best performance among all the cooperative
communication protocols for the case of two relays, without
the assumption of relay isolation. The two-relay M -slot pro-
tocol, also known as two-path relaying protocol or diamond
relay channel, was first introduced in [7] and extended from
two-relay to N -relay with relay selection and limited-feedback
[8]. It has been well studied and analysed to demonstrate
the potential benefits of this promising approach. In [9], the
successive decoding with partial or full inter-relay interference
cancellation at the destination was proposed with the assump-
tion of weak inter-relay interference. While in [10], assume
strong inter-relay interference (IRI), the relay decode the
source signal using the decoded interference signal. However
the above-mentioned protocols are restricted to decode-and-
forward protocol. Recently in [11], the authors showed that
without the condition of relay isolation, the two-path relaying
achieves the DMT upper-bound of the two-relay sequential-
SAF with IRI cancellation.

The two-path relaying protocol in [11] demonstrated a
superior performance for the case of two relays. However, the
protocol cannot extend from two-relay to N -relay protocol,
due to the fact that the protocol requires self-transmitted
information to perform inter-relay interference cancellation. In
this paper, we propose a novel relay ordering and scheduling
strategy for the sequential-SAF and analyse it in term of DMT.
With the proposed relay ordering and scheduling strategy, the
sequential-SAF achieves partial relay isolation model which
is more practical compared to the isolated relay model. We
consider perfect partial relay isolation model, where the three
hop signals is ignored and compute the DMT upper bound,
which can be expressed as

dUB(r) = (N + 1)

(
1− M + 1

M
r

)+

. (1)

We show that the DMT upper bound of sequential-SAF with
the proposed relay ordering and scheduling strategy has the
best DMT performance compare to the other AF protocol
without the assumption of isolated relays.

The rest of the paper is organized as follows: The problem
definition and background are presented in Section II. In
Section III we propose a novel relay ordering and scheduling
strategy for the sequential-SAF protocol and compute the
DMT in Section IV. The numerical result is presented in
Section V, whereas Section VI concludes this paper.



II. PROBLEM DEFINITION AND BACKGROUND

A. System Model

Consider a cooperative relaying network where the source
information bits are modulated, pre-coded, divided into M
symbols and are to be transmitted from the source s to the des-
tination d with the assistance of the N relays ri. Without loss
of generality, we presume one pre-coded symbol is transmitted
during each transmission slot, xm, for m = 1, · · · ,M , and M
is even. The total number of transmission slot is M+1, where
one additional slot is added at the end of the transmission
sequence for the relay to forward the last pre-coded symbol
and thus a multiplexing gain of M

M+1 is achieved. The power
allocation of s and r for mth slot are denoted by πm and π̄m
and satisfies

∑M+1
m=1 (πm + π̄m) = M .

The physical links between terminals are assumed to be
slowly faded and are modelled as independent quasi-static
fading channels, i.e., the channel gains do not change during
the transmission of a cooperative frame. The channel gain
between s and d is denoted by hs,d. Similarly, hs,n and
hn,d, respectively denote the channel gain between s and rn
and the ones between rn and d, for n ∈ {1, · · · , N}. γi,j
denotes the channel gain between ri and rj . The channel
gains between all the terminals are modelled as i.i.d complex
Gaussian random variable with zero mean and variance σ2

i,j ,
for i, j ∈ {s, d, 1, · · · , N}, i 6= j. The variance of the channel
gain is parameterized by the distance between terminals and
can be expressed as

σ2
i,j =

(
D0

Di,j

)α
,

where Di,j is the normalized distance between terminals.
D0 > 0 denotes the reference distance, where we restrict
the distance between terminals, Di,j ≥ D0 to ensure that the
received power is always bounded. α denotes the path loss
exponent.

For the case of exposition and practical relevance, we
assume that each terminal is installed with half duplex single
antenna that can either transmit or receive signals at any given
time. However, the result presented in this paper can be easily
extended to the case where terminals have multiple and/or full
duplex antennas. Throughout the paper, we assume perfect
synchronization between all the transmitting terminals during
each transmission slot.

B. Problems Definition

The NAF protocol was first proposed in [3] and extended
from single relay protocol to N relay protocol in [4]. The
DMT upper-bound of the NAF protocol can be written as

d∗NAF(r) = (1− r) +N (1− 2r)
+
, (2)

where d∗(r) denotes the optimal DMT curve and x+ ,
max{x, 0}. It achieves maximum diversity gain at multiplex-
ing gain of r = 0 and has the best DMT performance for
single half duplex relay scenario. However the protocol fails to
achieve high diversity gain (d(r) > 1) in the high multiplexing

gain regime (r > 0.5) for multiple relays scenario, due to the
fact that only half of the source signal is protected by the
relays.

The sequential-SAF protocol proposed in [1] demonstrated
a superior diversity gain performance for the multiplexing-
gain limits of 0.5 ≤ r ≤ 1 compared to the NAF protocol.
The DMT upper bound of the sequential-SAF protocol can be
expressed as

d∗SAF(r) = (1− r) +N

(
1− M

M − 1
r

)+

. (3)

It achieves the MISO transmit diversity upper bound, with
large number of transmission slots. However the perfect relay
isolation model assumption is made in [1] for achieving the
DMT upper bound of the sequential-SAF is impractical. On
the other hand, the authors in [11] showed that the DMT
upper bound of the sequential-SAF is achievable without the
assumption of isolated relays, since the main and first sub-
diagonal elements in the channel matrix remain the same
as the case with the isolated relays. However the decoding
complexity at d is too prohibitive and thus it is impractical.

The authors in [11] on the other hand, proposed a two-
path relaying protocol, where the first relay performs IRI
cancellation on every received signal before forward it to the
destination. The first relay is able to perform IRI cancellation
since it has the perfect knowledge of the self-transmitted
signal, under the assumption that the relay has the knowledge
of the inter-relay channel gain, γ2,1, as well as the scaling
factor of the second relay. It achieves the DMT upper bound
of the 2-relays (M + 2)-slots sequential-SAF without isolated
relay assumption. However the two-path relaying protocol
cannot be extended to multiple relay case, since the IRI
cancellation process requires the perfect knowledge of the self-
transmitted signals. On the other hand, the two-path relaying
protocol requires accurate channel estimation to perform IRI
cancellation which is too prohibitive at the relay. The DMT
of the two path relaying protocol can be expressed as

d2-PATH(r) = 3

(
1− M + 2

M
r

)+

. (4)

III. PROPOSED STRATEGY FOR SEQUENTIAL-SAF

A. Relay Ordering and Scheduling Strategy

Without loss of generality, we assume that there is a global
scheduler that has the knowledge of the channel-state infor-
mations between all terminals. Instead of having relays with
random location between s and d, the global scheduler groups
the relays into two relay clusters according to their respective
locations1. The relays that are closed to s are grouped into the
“odd cluster” and are ordered to forward the odd-slot symbols,
xm, for m = 1, 3, · · · ,M −1, while the relays that are closed
to d are grouped into the “even cluster” and are ordered to
forward the even-slot symbols, xm′ , for m′ = 2, 4, · · · ,M in

1The relay grouping process can be easily done with the aid of the Global
Positioning System (GPS) or any other location tracking system which are
widely used in wireless networks.



Fig. 1. System model for sequential-SAF with 6 partial isolated relays
after the process of relay ordering. The orders of the relays are indicated
by numbers.

round-robin manner. On top of that, we assume that both of the
relay clusters contain dN/2e number of relays. Fig. 1 shows
an example of the proposed cooperative relaying network after
the relay grouping process.

With the basic ideas, we have developed a general algorithm
for scheduling strategy. For i, j ∈ {1, · · · , N}, i 6= j, denote
Ci and Ci,j , respectively, the cost function of two hop signal
and three hop signal [1], are defined by:

Ci ,
SNR2|hs,ihi,d|2

1 + SNR|hi,d|2
,

Ci,j ,
SNR3|hs,iγi,jhj,d|2

1 + SNR2|γi,jhj,d|2
.

Then, the scheduler applies the scheduling strategy as follows:
1) r1 is selected from “odd cluster” to forward the sym-

bol x1 based on the cost function C1, where C1 ≥
max{C3, · · · , CN−1}.

2) r2 is selected from “even cluster” to forward the symbol
x2 based on the cost function C1,2 and C2, where C1,2+
C2 ≥ max{C1,4 + C4, · · · , C1,N + CN}

3) r3 is selected from “odd cluster” to forward the symbol
x3 based on the cost function C2,3, where C2,3 ≤
min{C2,5, · · · , C2,N−1}.

4) Repeat step 2 and 3 for the rest of the relays.
Note that starting from step 3, we choose rm, for m =

3, · · · ,M − 1, based on the weakest inter-relay interference
compared to step 1, since the main focus of the proposed
relay ordering and scheduling strategy is to achieve partial
relay isolation condition.

B. Equivalent Channel Models

With the above-mentioned relay ordering and scheduling
strategy, we can now conveniently characterize the baseband-
received signal models using a time-division notation.

At the first time slot, s transmits the first pre-coded symbol,
x1 to r1 and d. The received signals can be expressed as

yr,1 =
√
π1 SNRhs,1x1 + nr,1,

yd,1 =
√
π1 SNRhs,dx1 + nd,1,

where yr,1 and yd,1 denote the received signal at r1 and d at the
first time slot, respectively. nr,1 and nd,1 denote independent
additive white Gaussian noise (AWGN), respectively, with
zero mean and unit variance. SNR denotes the signal to noise
ratio.

After receiving the signal from s, r1 performs linear process-
ing at the received signal and transmits it during the second
time slot. On the other hand, s transmits the second pre-coded
symbol, x2 to both r2 and d. The received signals can be
expressed as

yr,2 =
√
π2 SNRhs,2x2 +

√
π̄2 SNRγ1,2b1yr,1 + nr,2,

yd,2 =
√
π2 SNRhs,dx2 +

√
π̄2 SNRh1,db1yr,1 + nd,2,

where b1 denotes the scaling factor at r1 with the power
constraint of E{|b1yr,1|2} ≤ 1, and E{·} denotes the statistical
expectation operator.

At the third time slot, both r3 and d receive a linear com-
bination of the pre-coded symbol and the linearly processed
signal from s and r2, respectively, and the received signals can
be expressed as

yr,3 =
√
π3 SNRhs,3x3 +

√
π̄3 SNRγ2,3b2yr,2 + nr,3,

yd,3 =
√
π3 SNRhs,dx3 +

√
π̄3 SNRh2,db2yr,2 + nd,3,

These transmission steps are continuously repeated until M
pre-coded symbols have been transmitted from s.

Lemma 1: The partial relay isolation model is achievable
with the proposed relay ordering and scheduling strategy
shown above.

Proof: Since s is closed to the relays from “odd cluster”
and the relays from “even cluster” are closed to d, let us
assume that the power allocation at s and rm−1 fulfil the
condition below:

πm ≥ π̄m, for m = 3, 5, · · · ,M − 1.

Note that during the relay scheduling, we choose the rm to
forward the symbol xm based on the cost function of three
hop signal, Cm,m+1, which has the weakest IRI among all
the other relays from “odd cluster”. With the consideration of
the channel quality s, rm−1 and rm, which is parameterized
by the distance between terminals, it is easy to find that

E
{
πm|hs,d|2

}
� E

{
π̄m|γm−1,m|2

}
.

Since the received power from s is much larger compared
to the received power from rm−1, the IRI can be treated as
noise and the partial relay isolation model is achieved. This
complete the proof of Lemma 1.

From Lemma 1, we consider the following perfect partial
relay isolation model, where the three hop signal from “even
cluster” to the “odd cluster” is ignored. The received signal
at rm, with the assumption of perfect partial relay isolation
model, can be rewritten as

yr,m =
√
πm SNRhs,mxi + nr,m, for m = 3, 5, · · · ,M − 1.

Fig. 2 shows the transmission sequence of the sequential-
SAF protocol with perfect partial relay isolation model. Solid
box denotes transmitted symbols and dashed box denotes
received symbols.



Fig. 2. Transmission sequence of the sequential-SAF protocol with perfect partial relay isolation model. Solid box denotes transmitted symbols and dashed
box denotes received symbols.

IV. DIVERSITY MULTIPLEXING TRADE-OFF

The DMT introduced in [5] is a performance measure-
ment between the error probability and the data rate of a
multiple-input multiple-output (MIMO) network for quasi-
static Rayleigh fading channels in high SNR regime. A family
of a codes {C(SNR)} is said to achieve the multiplexing gain,
r and the diversity gain, d if

lim
SNR→∞

R(SNR)

log SNR
= r, lim

SNR→∞

logPe(SNR)

log SNR
= −d,

where R(SNR) is the data rate measured by bits per chan-
nel use (BPCU) and is increased with SNR, R(SNR) =
r log(SNR). Pe(SNR) denotes the average error probability
using the maximum-likelihood (ML) detector which can be
derived based on the outage probability, Pe ≈ Pout, in high
SNR regime with an arbitrary long code length.

Using the received signals at d and ri from Section III, the
equivalent received signal model can be expressed as

y =
√
SNRHx + B′n. (5)

where y ∈ CM+1 is the received signal vector at d. CM×N
denotes a M × N complex matrix, while CN denotes a size
N complex row matrix. x ∈ CM denotes the transmitted
signal vector. H ∈ C(M+1)×M denotes the equivalent channel
matrix. B′n ∈ CM+1 denote the received noise matrix at
d, where B′ = [B IM+1] and n =

[
nT
r nT

d

]T
. nr ∈ CM

and nd ∈ CM+1 denote the additive white Gaussian noise
vectors at r and d, respectively. B ∈ C(M+1)×M denotes
the forwarded noise matrix. Using the equivalent received
signal model in (5), we obtain the mutual information of the
sequential-SAF with perfect partial relay isolation model:

I(x; y) = log det

[
IM + SNRH†ΣxH

(
B′
†
ΣnB′

)−1]
= log det

[
IM+1 + SNRHH†

(
BB† + IM+1

)−1]
(6)

where Σx = E{x†x} = IM and Σn = E{n†n} = I2M+1.
log(·) denotes the logarithm based 2. Note that the noise
matrix, B′n is not white in general and does not affect the
DMT computation [1].

The DMT of the partial isolated relay model can be obtained
using equation (5) and (6). Let

H =



h0 0 0 · · · 0 0

h1 h0 0
. . . 0 0

h1,2 h2 h0
. . . . . .

...

0 0
. . . . . . 0 0

...
. . . . . . hM−2 h0 0

0 . . . 0 0 hM−1 h0
0 . . . 0 0 hM−1,M hM


, (7)

where h0 , hs,d and

hi , hs,ihi,d, for i = 1, · · · ,M,

hi,j , hs,iγi,jhj,d, for i = 1, 3, · · · ,M − 1, j = i+ 1.

Note that the terms bi, πi and π̄i have been ignored since they
do not impact the DMT computation [1, Lemma 1]. Using
channel matrix (7), the outage probability of the perfect partial
relay isolation model can be expressed as

Pout(R(SNR))

= Pr [I(x; y) ≤ (M + 1)R(SNR)]

= Pr
[
log det

(
IM+1 + SNRHH†

(
BB† + IM+1

)−1)
≤ (M + 1)R(SNR)

]
=̇ Pr

[
log det

(
IM+1 + SNRHH†

)
≤ (M + 1)R(SNR)

]
=̇ Pr

[
log det

(
SNRHH†

)
≤ (M + 1)R(SNR)

]
.

The term (BB†+ IM+1)−1 has been eliminated since we are
only interested in the exponential function of Pout(R(SNR)).
The factor M + 1 is to account for the fact that the proposed
strategy takes M+1 transmission slots to transmit M symbols.
=̇ denotes asymptotic equality in the high SNR regime, i.e,
p1 =̇ p2 denotes

lim
SNR→∞

log p1(SNR)

log SNR
= lim

SNR→∞

log p2(SNR)

log SNR
.



Lemma 2: Given a positive semidefinite matrix HH†, we
have

det
(
SNRHH†

)
≤

SNRM

(
M |h0|2 +

M∑
m=1

|hm|2 +
∑
m∈S
|hm,m+1|2

)M
where S being a set of positive odd integer with the limits of
1 ≤ S ≤M .

Proof: Using eigenvalue decomposite, the semidefinite
matrix HH† can be factored as

det
(
SNRHH†

)
= det(QΛQT )

=

M∏
m=1

λm,

where Q and Λ is the M × M matrix with each column
is the eigenvector and the diagonal matrix with the diagonal
elements are the corresponding eigenvalues, λm of the matrix
HH†, respectively. (·)T denotes the transpose of a matrix.
Using the inequality of arithmetic and geometric means, we
have

M∏
m=1

λi ≤

(∑M
m=1 λm
M

)M
,

which lead us to the following expression

det
(
SNRHH†

)
≤

(∑M
m=1 λm
M

)M
≤̇Tr

(
SNRHH†

)M
,

since H†H is a square M×M matrix. From the equation (7),
it is not hard to show that

Tr
(
SNRHH†

)M
=

SNRM

(
M |h0|2 +

M∑
m=1

|hm|2 +
∑
m∈S
|hm,m+1|2

)M
.

This complete the proof of the lemma.
Let vhi = limSNR→∞

log |hi|2
log SNR being the exponential order of

1/|hi|2. Since hi’s are independent Gaussian variables, with
the aid of Lemma 2, the DMT of the sequential-SAF with
perfect partial relay isolation model can be obtained using

dUB(r) = inf
O+

{
vhs,d

+

N∑
n=1

(
vhs,n + vhn,d

)
+
∑
n∈S

vγn,n+1

}
.

where dUB(r) is the DMT upper bound of the sequential-SAF
with perfect partial relay isolation model.

Since solving the optimization problem with different value
of exponential order being prohibitive in general, let us assume

v1 , vhs,1 = vhs,2 = · · · = vhs,N

v2 , vh1,d
= vh2,d

= · · · = vhN,d

v3 , vγ1,2 = vγ3,4 = · · · = vγM−1,M
,

Fig. 3. Diversity-multiplexing trade-off comparison between the sequential-
SAF with proposed strategy and the existing AF protocol with two relays.
Here, the total transmitted symbols are M = 10

and the optimization problem is now reduced to

dUB(r) = inf
O+

{
vhs,d

+N(v1 + v2) +
N

2
v3

}
.

Let v , [vhs,d
, v1, v2, v3], for large SNR, the outage events is

dominated by

O+ =

v

∣∣∣∣∣∣max

 (1− vhs,d
)+

(1− v1 − v2)+

(1− v1 − v2 − v3)+

 ≤ M + 1

M
r

 .

By solving the optimization problem, we have the DMT
upper bound of the sequential-SAF with perfect partial relay
isolation model:

dUB(r) = (N + 1)

(
1− M + 1

M
r

)+

. (8)

Note that from the DMT expressions in (8), the sequential-
SAF with the proposed relay ordering and scheduling strategy
achieves the (N + 1) × 1 MISO transmit bound, with suffi-
ciently large number of transmission slots. On the other hand,
the proposed strategy achieves partial relay isolation which
is more practical and is easier to realise compared to the
sequential-SAF with relay isolation model shown in [1].

The authors in [11] proved that the DMT upper bound of
the SAF is achievable without the assumption of the isolated
relay. However, the decoding complexity is prohibitive since
it required the destination to decode a full M ×M non-zero
matrix. The proposed strategy on the other hand, eliminate
the third hop signals with the relay ordering and scheduling
strategy and the destination is required to decode a M ×M
penta-diagonal matrix which has lower decoding complexity.

Fig. 3 compares the DMT of the sequential-SAF with the
proposed strategy with other AF cooperative protocols for two
relays scenario. It can be seen that the DMT of the sequential-
SAF with the proposed strategy dominates both NAF and the
two-path relaying protocols. On the other hand, DMT upper



Fig. 4. Outage probabilities of the non-cooperative, NAF, sequential-SAF
with isolated relays and sequential-SAF with partial isolated relays in a two
relays network (N = 2) and information rates of 2 BPCU and 6 BPCU. The
total transmitted symbols for both sequential-SAF protocols are M = 10.

bound of the sequential-SAF with isolated relays has slightly
better performance compared to the proposed strategy, due
to the fact that the proposed strategy require one additional
slot to forward the last pre-coded symbol to d for achieving
maximum diversity order.

V. NUMERICAL RESULTS

In this section, we present the numerical result of the
sequential-SAF with proposed strategy and compare with dif-
ferent cooperative and non-cooperative protocols with quasi-
static Rayleigh fading channels. The power allocation for all
the cooperative protocols are πm = π̄m = 0.5, while the
information rate is measured in BPCU. The sequential-SAF
with isolated relays proposed in [1] is labelled as “S-SAF
(Ori)” while the one with the proposed relay ordering and
scheduling strategy is labelled as “S-SAF (Prop)”.

Fig. 4 compares the sequential-SAF with proposed strategy
with the non-cooperative protocol and different cooperative
protocols in a two relays network. The total transmitted
symbols for both of the sequential-SAF protocols are M = 10.
It can be seen that with both low information rate (2 BPCU)
and high information rate (6 BPCU), the sequential-SAF with
proposed strategy has slightly better outage performance com-
pared to the sequential-SAF with isolated relays assumption.
On the other hand, the sequential-SAF protocols have better
outage probabilities at high SNR regime compared to the NAF
and the non-cooperative protocols, i.e., both of the protocols
are achieving about 6 dB gain when compared with the NAF
protocols at outage probability of 10−4 for high spectral
efficiency case.

VI. CONCLUSION

We propose a novel relay ordering and scheduling strategy
for the sequential slotted amplify-and-forward protocol (SAF)
for the cooperative communication network with half duplex,
single antenna relays and evaluate its performance in terms of
diversity-multiplexing trade-off (DMT). The relays between
the source and the destination are grouped into two relay
clusters based on their respective locations. The relays from
“odd cluster”, which are closed to the source forward the odd
number symbols while the relays from “even cluster” which
are closed to the destination forward the even number symbols.
With the proposed relay ordering and scheduling strategy, the
sequential-SAF protocol achieves partial relay isolation and
decreases the decoding complexity at the destination. We then
consider perfect partial relay isolation model, where the three
hop signals from the “even cluster” to the “odd cluster” is
ignored and compute the DMT upper bound. We show that
the DMT upper bound of sequential-SAF with the proposed
relay ordering and scheduling strategy has the best DMT
performance compared to the other AF protocol without the
assumption of isolated relays. Simulation result demonstrates
that the sequential-SAF protocol with the proposed strategy
has the same outage performance compared to the sequential-
SAF with isolated relays and outperforms the NAF and non-
cooperative protocols in high SNR regime.
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