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Abstract—Distributed space-time coding (DSTC) exploits the
concept of cooperative diversity and space-time coding to offer
a powerful bandwidth efficient solution with improved diversity.
In this paper, we evaluate the performance of DSTC with slotted
amplify-and-forward protocol (SAF). Relay nodes between the
source and the destination nodes are grouped into two relay
clusters based on their respective locations and these relay
clusters cooperate to transmit the space-time coded signal to the
destination node in different time frames. We further extend
the proposed Slotted-DSTC to Slotted DSTC with redundant
code (Slotted-DSTC-R) protocol where the relay nodes in both
relay clusters forward the same space-time coded signal to the
destination node to achieve a higher diversity order.

I. INTRODUCTION

In cooperative communication systems, different nodes col-
laborate to form a virtual multiple antennas array system and
exploit the spatial diversity to achieve a better performance.
In [1], the authors considered a class of amplify-and-forward
protocol (AF) known as Slotted AF (SAF) and demonstrated
that it has the best performance among all the AF protocols for
the case of two relay nodes. Under the assumption of relay
isolation, the diversity-multiplexing trade-off (DMT) upper-
bound of SAF asymptotically achieves the multiple-input-
single-output (MISO) bound when the number of transmission
slots, M goes to infinity. The authors subsequently extended
SAF to sequential SAF (SSAF), where only one relay is
permitted to forward an amplified signal to the destination
node during each transmission slot. By doing this, the SSAF
achieved the DMT upper-bound of SAF with arbitrary number
of transmission slots, M.

Distributed space-time coding (DSTC) combines the con-
cepts of cooperative communications and space-time coding
(STC) to improve the bandwidth efficiency and the diversity
[2], [3]. Particularly, in a traditional relay network, relay
nodes simply amplify or decode the received signal before
forwarding to the destination node. DSTC on the other hand,
allows relay nodes to cooperate with each other to achieve a
better performance. It has been well studied and analysed to
demonstrate the potential benefits of this promising approach
[21H7].

In [4], the authors introduced a DSTC protocols in which
the relay nodes perform linear transformation of the received
signal according to the orthogonal space-time block code
(OSTBC) design matrices. The DSTC protocol shows a lower
error rate and achieves higher diversity order than the random
codes DSTC [3]. However for a large number of relay nodes,
the ML decoding complexity of the DSTC protocol becomes
overly prohibitive at the destination node. Recently in [5]-[7],

the single symbol and multigroup ML decodable DSTC were
introduced to address the decoding complexity problem. How-
ever, the abovementioned DSTC protocols do not take into
account certain practical issues in designing DSTC, such as
increasing the achievable diversity order without significantly
affecting the symbol rate and the minimum coherence interval
required by the STC. Thus we propose a DSTC protocol to
address these issues.

In this paper, we present a SAF based two-hop DSTC
protocol and evaluate its performance in terms of pair-wise
error probability (PEP) and bit-error rate (BER). For sim-
plicity, we have limited our analysis to OSTBC based DSTC
protocols which requires a simple ML detection to decode the
received signal at the destination node. However, the proposed
Slotted-DSTC protocol can be easily extended to other types
of STC and pre-coding techniques. We first propose a Slotted-
DSTC protocol where the relay nodes in the cooperative
wireless network are grouped into two different relay clusters
to forward the signals to the destination nodes alternately to
achieve a higher symbol rate. We have subsequently propose
a Slotted-DSTC with redundant codes (Slotted-DSTC-R) pro-
tocol, where the relay clusters will forward the same signals
alternately and achieve a higher diversity order, without trading
off the symbol rate and the ML decoding complexity at the
destination node significantly.

The rest of the paper is organized as follows: The proposed
Slotted-DSTC and Slotted-DSTC-R are presented in Section
IT and Section III. The discussion and simulation results are
presented in Section IV and V, respectively, whereas Section
VI concludes this paper.

II. PROPOSED SLOTTED-DSTC

Consider a cooperative relaying network consisting of a
source node, a destination node and 2 sets of relay clusters,
represented by S, D and Ci, k € {1,2}, respectively. Each
relay cluster is formed by N number of relay nodes and the
relay node in Cy, is defined as Ry 4, @ € {1,2,--- ,N}. For
the case of exposition and practical relevance, we assume
that each node is installed with half duplex single antenna
that can either transmit or receive signals at any given time.
However, the result presented in this paper can be easily
extended to the case where nodes have multiple and/or full
duplex antennas. All the nodes have the same power constraint
and operate synchronously. Throughout the paper, we assume
that there is no direct communication link between S and
D and between C; and C,. The channel link between the
nodes are quasi-static flat Rayleigh-fading, i.e., the channel
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Fig. 1. System Model for Slotted-DSTC, with the assumption of no direct
communication link between the source node, S and the destination node,
D, and between the relay clusters, C1 and C2. Solid arrows denote odd time
frame transmission and dashed arrows denote even time frame transmission.

gains remain constant during the coherence interval, 7,, and
change independently from one coherence interval to another.
Furthermore, we restrict our attention on the network 1 in
[4], where no channel knowledge at S and Ry, ;, perfect state
channel information at D and no feedback to the transmitting
node is permitted.

The goal is to send information from S to D. The source
transmission bits are modulated and divided into L frames,
each frame containing 77 number of symbols. The [-th frame
is denoted as x(!) = [z(1) #(2) --- x(T1)]" with the normal-
ization E { [x®] Tx(l)} = I7,. T} denotes the total number of
symbols transmit in a 75 x N OSTBC matrix. For the sake
of simplicity, we assume that the OSTBC matrix deployed in
the DSTC satisfies all the properties in [5, Lemma 1]. Fig. 1
shows the transmission protocol of the Slotted-DSTC, where
solid arrows denote odd time frame transmissions and dashed
arrows denote even time frame transmissions.

A. Transmission Sequence

At the first time frame, t = 1, S sends x) to all the relay
nodes in C;. The received signal at the relay node R4 ; is:

= VPIT frxW v, (1)

where f1; ~ CN(0,1) denotes the channel coefficient from
S to the relay node R4 ;. v1 ~ CN(0,1) is the AWGN at
the relay node R ;. Py denote the average power at S.
After receiving the signal from S, R;; performs a linear
transformation on the received signal y( ) and waits until next
time frame to transmit the space-time coded signal to D. The
transmitted space-time coded signal of R ;, can be written as

@ _ Py {A- W, B, ( (1)) } )
1,4 (Pl ¥ I)Tl zyl,l + Yi,i : 2
where A; and B; are 77 x T, design matrices for 75 x N
OSTBC matrix. P, denotes the average transmit power of the
relay nodes.

At the second time frame, ¢t = 2, the received signal at D

can be expressed as

e 2917x§22>+v<2>

= /pC%h; + w?, 3)
%. g1,; ~ CN(0,1) denotes the channel
coefficient between R, ; and D. ng) denotes the T x N
OSTBC matrix from N number of relay nodes in the relay
cluster C;, generated using the design matrices A; and B;,

at time frame, ¢t = 2. hy = [g1,1 /1.1 91,2f1,2A o gunfin]”
denotes the equivalent channel vector, where f, ; can be define
if A; =0

as
~ *
L i
Ji {fi, B, =0
and O denotes the zero matrix. At the same time frame, S

sends x(?) to all the relay nodes in Cy, and the received signal
at the relay node R ; can be expressed as

= \/ P1T1f277;X(2) —|— Vé?i)’ (4)
where f2; ~ CN(0,1) denotes the channel coefficient from S
to the relay node Ro ;. V;21) ~ CN(0,1) is the AWGN at the
relay node R, ;. Here we assume that the distance between
two relay clusters are far apart and thus the received signal
at the relay nodes in the second relay cluster, yg?) ,in (4) is
not interfered by the transmitted signal from the relay nodes
in first relay cluster and vice versa.
Similarly, relay nodes in Cy performs a linear transformation
on the received signal and wait for the next time frame. The
transmitted space-time coded signal of Ry ; is

where p =

(3) PT5 (2) )
X, = W[AJyQT—’_B(yQL)}’ &)
At the time frame, ¢ = 3, the space-time coded signal,
x§32 is transmitted from R, ;, the received signal of D can
be written as

y® = Z g2.x) 4 v

= /pCPhy + w®), (6)

g2,; ~ CN(0,1) denotes the channel coefficient between R ;
and D. Cé‘g) denotes the 75 x N OSTBC matrix from relay
cluster Co generated using the design matrices A; and B; at
the time frame, t=3. h2 = [g2,1f271 gg,gfgg ce gg7Nf27N]T
denotes the equivalent channel vector. At the same time frame,
S transmits x®) to all the relay nodes in C;. w(*) denotes the
received noise at D which can be expressed as

wit) = plpﬂg Zgzl [AvST) 4B ()]
+viy. @)

These transmission steps are then continuously repeated
until LT3 symbols have been transmitted from S.



B. ML Decoding and Achievable Diversity Order

In this subsection, we discuss the ML decoding and the
achievable diversity order of the proposed Slotted-DSTC pro-
tocol. Assuming D has perfect channel state information for all
links, the ML decoding of the proposed Slotted-DSTC protocol
can be expressed as

2
, for t =2,4,6,---
F

e V5 - 5
cl

2 ®)
. fort =3,5,7,---

arg m(ir)l Hyg) — \/ﬁCg’)hg‘
cy

Since the relay nodes in both of the relay clusters used
the same OSTBC design matrices, A; and B;, the received
signal at the destination node D in different time frame can
be decoded based on one codebook. Using the ML decoding
expression in (8), we can derive the PEP of the proposed
Slotted-DSTC protocol, given the equivalent channel vector,
hg, of choosing Ck when Cy, is transmitted, can be expressed
as

P (Ck — ék‘ hk) =Q (\/ﬂf&kw) ||ACkhk12:) :

where ACy, denotes (Ck - Ck). Ci and Cy (Ci, # Cp)
are the two possible codeword of the 75 x N OSTBC matrix
for relay cluster Cy, k € {1,2}. X% denotes the covariance
of the noise vector w at the destination node, when receiving
the space-time coded signal from the relay nodes of k-th relay
cluster.

From (8), it can be seen that the following expression is

needed to decode the symbols from Cy, at even time frames,
t=1{2,4,6,--- }:

i llv® — se®p|I° 9
argmin ||lyy —+/pCi hy|| , 9)
clv F

where the minimization is performed over all possible code-
word matrices Cgt). Using the inequality, (AiAZT + BiBZT) <
Ir,, we have

p12 X
Tr(SL) < Ty 4+ —2-2 e
( w)— 2 (PlJrl)TlZlgL'

i=1

(10)

where ¥, denotes the covariance matrix of the noise com-
ponent from C;. We omitted the superscript (¢), since the
decoding scheme is the same for all the ¢-th time frames.
The PEP of the proposed Slotted-DSTC protocol, given the
equivalent channel vector, hy, of mistaking C; by él, can be
expressed as

~ _ 4 2
P(ci— cl‘ hl) —Q (\/m(zgv) |AClh1||F)
_1 | _phiACIAC:h,
=5 ATr (S1)

where Q(z) < %e’wQ/ 2 is the Chernoff bound of Q-function.
We can further rewrite h; as hy = F,g;, where

F, = diag (f1,1,f1,2, . 7f1,N) )
T

g1 =[911912 - g1n] -

Consequently, the average PEP is given by

P (Cl — Cl) < Ep, {;exp

< Ep, {detl [IN +
N 2\ 7!
PAL |f11|
SSRGS

where \; ; is the i-th eigenvalue of ACIACL
Similar approach can be done to the odd time frames and
the PEP of both relay cluster can be generalized into

P(C C,) <E ¥ Pkl fiil” 7
LA ’“)— ey (1T ATr (2F)

i=1

_ phiACIAC:hy
4Tr (2L)

}

pFIACIAC,F,
ATr (31)

}

Note that the STC matrix of the proposed Slotted-DSTC
protocol, C;, remain the properties of orthogonality due to
the assumption of no direct communication link between the
relay clusters, Ci,. For any OSTBC matrix degloyed in Slotted-
DSTC protocol, Cy, the eigenvalue of AC,ACy, Ay; > 0,
i €{1,2,---,N}. Thus the relay cluster with N relay nodes
of the proposed Slotted-DSTC protocol achieves a diversity
order of D = N at any time frame, when the SNR is high.

III. PROPOSED SLOTTED-DSTC WITH REDUNDANT CODE

The proposed Slotted-DSTC protocol discussed in Section
I achieves full diversity in each relay cluster for any time
frame, due to the fact that the STC of the proposed protocol
has non-zero eigenvalue of ACLACk. Howeyver, the overall
system achieves a diversity order of N using a total of 2NV
number of relay nodes, with the assumption of each relay
cluster is formed by /N number of relay nodes. This is because
each of the relay clusters of the proposed protocol performs
linear transformation on the symbol from different frame, and
forwards the space-time coded signal to the destination node
during different time frame to achieve a higher symbol rate.

In this section, we consider the same cooperative relaying
network and transmission sequence shown in Section II, while
S is now transmitting the same signal over 2 consecutive time
frames to both of the relay clusters, Cy, k € {1,2}. The
transmission frames of S of the proposed Slotted DSTC with
redundant code (Slotted-DSTC-R) protocol can be expressed
as x® = x(t+tD for ¢t = 1,3,5,---,2L — 1. Since both of
the relay clusters perform linear transformation on the same
frame symbol, the proposed Slotted-DSTC protocol is able to
achieve a diversity order of 2N, with the assumption that each
relay cluster consists of N number of relay nodes.



A. ML Decoding and Achievable Diversity Order

Since the relays from both of the relay clusters performs
the linear transformation on the same frame symbol, the ML
decoding can be done by combining the two consecutive time
frames. Let us assume the following equivalent channel model:

y™ = Cc{Mh 420" (11)

where
(t) (t)
m — (YD m = (W) n= (M) 12
y <yg )) , Z <W(t )) y hy ) (12)

y(m) is the received signal vector with size 275 at D, with
m € {1,2,---,L}. 2™ denotes the size 2T, combined
received noise vector at D. ¢ denotes the odd time frames,
te{1,3,5,--- 2L — 1} and ¢’ denotes the even time frames,
t' €{2,4,6,--- 2L}. Using the combined vectors in equation
(12), to decode the m-th frame symbol, the ML decoding can
be written as

\/ﬁcg’”)hHi (13)

arg min Hy(m) —
cim
where C%") is the 275 x 2N combined STC matrix with the

assumption of no direct link between two relay clusters and
can be expressed as

o _ (G 0
R o c®

Using the ML decoding expression in (13), the PEP of
the proposed Slotted-DSTC-R protocol, given the equivalent
channel vector, h, of mistaking Cr by Cg, can be expressed

as
(\/ sy 1ACknIz).

where Cg and C r(Cgr # C r) are the two possible codeword
of the 275 x 2N combined STC matrix for the proposed
Slotted-DSTC-R protocol. 3, denotes the covariance of the
combined noise vector z at the destination node.

For simplicity, we will omit the superscript, (m), since
the analysis is the same for any m-th frame. We can check
the orthogonality of the combined STC using the following

equation:
cl o C, O
ChCr 1 !
< 0 C§> ( 0 C2>

:<c{c1 0)
0 Clc,

Note that both C; and Cs, are generalized OSTBC. Using
equation (15), the coding gain of the combined STC can be
expressed as

(14)

P(CR%CR‘h):Q

15)

ACLACK — (*1 °N> (16)

Oy )\2

where A, = diag(Ap1,---
ACHLACR, for k € {1,2}.

Next, we need to prove that the diversity performance
of the Slotted-DSTC-R protocol is evaluated based on the
eigenvalue of AC! RACR. Let £ = [f; £5]T, where f, =
[fk 1 fkg . fk N] for k € {1,2}. Using the DOSTBC
properties in [5 Lemma 1], we have

f1CLY,Crf = £/ CIXL, Cif, + £1CIX2 Cofy.

Ak,N), denote the eigenvalue of

a7)

and we can conclude that the combined STC of the Slotted-
DSTC-R protocol satisfy the DOSTBC properties if the STC
deployed in both of the relay clusters satisfy the DOSTBC
properties.

The PEP of the proposed Slotted-DSTC-R protocol, given
the equivalent channel vector, h, of mistaking Cg by C R, Can
be expressed as

P (€ Cal ) = 0 (|t 1acanl?)

1 phtACLACRh
< = =R RT
< 5 exp l T (3,) (18)
Let h = Fg, where F = diag(fy, f) and g = [g; go]", the

average PEP can be expressed as

- 1 phf ACLACRR
P <Ep{ = PRI
(CR - CR) = Fh {2 P l ATr (3,)
FIACLACRF
<E Ly 4 P22 ROVRY
=5 {det [ N ATr ()

< Er

)

where Ay ; is the i-th eigenvalue of ACEACR. From (16),
the eigenvalue of ACg, Ag; > 0,0 € {1,2,--- ,N}, k €
{1,2} and the proposed Slotted-DSTC-R protocol achieves a
diversity order of D = 2N.

HH<1+p>\kz|ka)

k=11i=1

IV. DISCUSSION

In this section, we compare the performance of the proposed
Slotted-DSTC and Slotted-DSTC-R protocols with the perfor-
mance of standard DSTC protocols in terms of the symbol
rate, the minimum coherence time interval requirement and
the decoding complexity.

A. Symbol Rate

The OSTBC based DSTC protocol presented in [4] trans-
mits 77 number of symbols in 77 time slots, during the
listening phase and N number of relay nodes perform linear
transformation of the received signal to a OSTBC with the
dimension of 75 x N to forward the 7} number of symbols
to D. It achieves diversity order of N with the symbol rate of
R= W For example, the symbol rate of a DSTC protocol
using the rate-1 2 x 2 Alamouti code [8] is R = 1/2.

Proposed OSTBC based Slotted-DSTC protocol presented
in Section II, S transmits 7} symbols in 73 time slots during



the listening phase of C;. Simultaneously, relay nodes in Co
cooperate to transmit orthogonal space-time coded 7} data
signal to the destination D during the transmit phase of Cs.
In this case the dimension of the distributed OSTBC matrix is
T5 x N. Thus the proposed Slotted-DSTC protocol transmits
LT; number of symbols to D in LT + T3 time slots. It
achieves a diversity order of N with the symbol rate of
R = Lé:ilTl. The symbol rate, R of the proposed Slotted-
DSTC is upper-bounded by R < %
data frame is large i.e. L — oo.

In the case of Slotted-DSTC-R protocol, the relay nodes
in both relay clusters {Cy};=1,2 use the same OSTBC matrix
with the dimension of 75 x N to forward 73 symbols to D in
two different time frames. It transmits L7} number of symbols
to D in 2L7T5 4 T} time slots. The proposed Slotted-DSTC-
R achieves a diversity order of 2N with the symbol rate of
R = % Assuming that the size of the data frame, L
is large, upper-bound of the symbol rate in this case can be

T
express as R < 575

when the size of the

B. Minimum Coherence Interval Requirement

Most of the existing cooperative relaying schemes assume
the channels between nodes are slow fading channels, where
the channels are static over the transmission sequence. How-
ever, this assumption is not realistic since the positions of all
the nodes are not stationary and the channel between the nodes
may not be static.

Generally, a T, x N OSTBC transmits 77 number of sym-
bols, and requires the minimum coherence interval 7, > 15T}
to achieve a diversity order of [N, where T is the symbol in-
terval. High minimum coherence interval OSTBC, such as the
systematic design complex OSTBC proposed in [9], achieves
a diversity order of six and seven with the minimum coherence
interval of 307 and 5675, which could be impossible to
realise in high mobility cooperative communication systems,
if T, is large. For example, the period of the OFDM symbol
is assumed to be high enough to mitigate the effect of the
multipath fading channel.

Slotted-DSTC-R protocol is proposed to present a DSTC
protocol that is practical to be deployed in high mobility
wireless relaying network. It increases the achievable diversity
order from N to 2N, but keeps the minimum coherence
interval to T5T;. For example, to achieve a diversity order of
four, one can use a 4 x 4 OSTBC matrix [10] with a minimum
coherence interval of 47. Slotted-DSTC-R protocol on the
other hand, uses the 2 x 2 Alamouti code [8] in each relay
cluster, {Ck } k=12, and achieves a diversity order of four with
a minimum coherence interval of 275.

C. Decoding Complexity

OSTBC is able to achieve full diversity order and has a very
simple ML decoding algorithm based only on linear processing
at the receiver [8]. Thus OSTBC has been adopted in many
DSTC protocols. However, the ML decoding complexity at
the destination node increases significantly when the number
of relay nodes increases. In [11], the authors proposed a

TABLE I
COMPARISON BETWEEN THE PROPOSED SLOTTED-DSTC AND THE DSTC
USING OSTBC IN [4]

Diversity Protocol Symbol Min Decoding
Order Rate Coherence ~ Complexity
N Slotted-DSTC 1 2T (15, 28)
DSTC [4] 1/2 2T (15, 28)
Slotted-DSTC-R 1/2 2T (35,48)
4 Slotted-DSTC 3/4 4T, (49, 66)
DSTC [4] 3/7 4T (49, 66)

measurement of computational complexity of the optimum de-
coding of an OSTBC that does not depend on the constellation
size of the transmitted signal. The computational complexity,
(Ca,C)hy) is measured by the number of real additions, C 4,
and real multiplications, Cjs. Thus the decoding complexity
of a T5 x N OSTBC can be expressed as

Ca=4T1T, +2N =217 -1

O = AT\ Ty + 2N + 2T + 4, (19)

assuming that only one receive antenna at D. It can be seen
that the computational complexity increases significantly when
size of the OSTBC matrix increases.

Slotted-DSTC-R protocol is proposed to address the issue
of significant increase in the ML decoding complexity while
achieving a higher diversity order. Using the computational
complexity measurement presented in (19), the (C4, Cs) for
decoding 4 x 4 and 8 x 8 OSTBCs are (49, 66) and (135, 156)
respectively. The proposed Slotted-DSTC-R protocol achieves
diversity order of 2N by repeating the 75 x N OSTBC matrix
in two different time frames. Thus, it achieves a diversity
order of four and eight with the computational complexity
of (35,48) and (105, 122) respectively. It can be seen that the
proposed Slotted-DSTC-R protocol can reduce the computa-
tional complexity by 30% and 20% while keeping the diversity
order unchanged. On the other hand, the decoding complexity
can be further reduced by applying the pre-coding techniques
proposed in [7].

Table I compares the achievable diversity order, the sym-
bol rate, the minimum coherence interval of the STC and
the decoding computational complexity between the OSTBC
based DSTC protocol [4] and the proposed Slotted-DSTC and
Slotted-DSTC-R protocols.

V. SIMULATION RESULTS

In this section, we present the simulated bit-error rate of
the proposed Slotted-DSTC protocols and compare it with
the OSTBC based DSTC protocol presented in [4]. The total
power consumed in the whole network for transmission of LT}
symbols is set to be PLTj.

Fig. 2 compares the BER between the OSTBC based DSTC
protocl presented in [4] and the proposed Slotted-DSTC in
Section II with BPSK modulation. The OSTBC based DSTC
protocol is simulated with two and four relay nodes (/N = 2
and N = 4), while the Slotted-DSTC protocol is simulated
with two relay clusters and each relay cluster contains two
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Fig. 2. Bit Error Rate comparison between the DSTC protocol [4] and
Slotted-DSTC protocol using OSTBC with BPSK Modulation. Solid and
dashed lines denote the DSTC protocol with 2 and 4 relays, respectively,
and R denotes symbol rate.

and four relay nodes. Both two and four relay OSTBC based
DSTC protocls are simulated in [4] and the author showed that
they achieve a diversity order of two and four at high SNR
regime. It can be seen that both Slotted-DSTC protocol with
two and four relay nodes in each relay cluster, has exactly
the same BER performance and can achieve a diversity order
of two and four at high SNR regime. However, the proposed
Slotted-DSTC protocol achieves higher symbol rate compared
to the OSTBC based DSTC protocol.

Fig. 3 shows the BER performance between the OSTBC
based DSTC and the proposed Slotted-DSTC-R protocol in
Section III with BPSK modulation. The OSTBC based DSTC
protocol is simulated with four and eight relay nodes (N =4
and N = 8), while the Slotted-DSTC-R protocol is simulated
with two relay clusters and each relay cluster contains two
and four relay nodes (N = 2 and N = 4). Note that the BER
performance of the proposed Slotted-DSTC-R protocol is 1
dB and 2 dB less than the corresponding OSTBC based DSTC
protocol for the case of achievable diversity order of four (D =
4) and eight (D = 8), respectively. However, the proposed
Slotted-DSTC-R protocol has a lower decoding complexity
and achieves a diversity order of 2/V at high SNR regime.

VI. CONCLUSION

In this paper, we present a SAF based two-hop DSTC
protocol and evaluate its performance. Here, the relay nodes
between the source and the destination nodes are grouped into
two relay clusters according to their respective location and
used to forward the space-time coded signal to the destination
node for two consecutive time frames. We further extend
the proposed Slotted-DSTC to Slotted-DSTC with redundant
code (Slotted-DSTC-R) protocol, where the relay nodes in
both of the relay clusters perform linear transformation on
the same signal and forward the space-time coded signal to
the destination node to achieve higher diversity order and a

—— OSTBC-DSTC [4] (R = 3/7)
—A—Slotted-DSTC-R (R = 1/2)

-------- OSTBC-DSTC [4] (R = 1/3)};
- Slotted-DSTC-R (R = 3/8)

Bit Error Rate
=

10 15 . 20 25
Signal to Noise Ratio (dB)

Fig. 3. Bit Error Rate comparison between the DSTC protocol [4] and
Slotted-DSTC-R protocol using OSTBC with BPSK Modulation. Solid and
dashed lines denote the DSTC protocol with 4 and 8 relays, respectively, and
R denotes symbol rate.

lower decoding complexity while maintaining the minimum
coherence interval required by the space-time codes. The
simulation results show that with the same BER performance,
the proposed Slotted-DSTC protocol achieves a higher symbol
rate compare to the OSTBC based DSTC protocol. Finally,
we emphasize that the proposed Slotted-DSTC and Slotted-
DSTC-R protocols are able to work with any STC or precoding
techniques and achieve better performance.
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