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The aim of this paper is to provide a comparison of various algorithms and parameters

to build reduced semantic spaces. The effect of dimension reduction, the stability of
the representation and the effect of word order are examined in the context of the five

algorithms bearing on semantic vectors: Random projection (RP), singular value decom-

position (SVD), non-negative matrix factorization (NMF), permutations and holographic
reduced representations (HRR). The quality of semantic representation was tested by

means of synonym finding task using the TOEFL test on the TASA corpus. Dimension

reduction was found to improve the quality of semantic representation but it is hard to
find the optimal parameter settings. Even though dimension reduction by RP was found
to be more generally applicable than SVD, the semantic vectors produced by RP are

somewhat unstable. The effect of encoding word order into the semantic vector repre-
sentation via HRR did not lead to any increase in scores over vectors constructed from

word co-occurrence in context information. In this regard, very small context windows

resulted in better semantic vectors for the TOEFL test.

Keywords: Semantic spaces; Wordspace models; SVD; Random Indexing; Non-negative

matrix factorization; Holographic Reduced Representation; permutations

1. Introduction

In computational linguistics, information retrieval and applied cognition, words are

often represented as vectors in a high dimensional space computed from a cor-

pus of text. A recent survey of existing approaches to such representations r31s

presents a wide range of applications of them, such as word sense disambiguation,

context-sensitive spelling correction or query expansion. In a variety of studies from

cognitive science there have been encouraging results using such representations to
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replicate human word association norms, for example, semantic association (See,

for example, r19s, r14s, r18s, r32s). Such models are often referred to as “seman-

tic space” models. These studies provide evidence that the vector representations

within semantic space models do capture the semantics of words in a way which ac-

cords with those we carry around “in our heads”. This opens the door to exploiting

such models for developing information processing technologies which are at least

partially sensitive to cognitive semantics.

One of the key features of producing effective semantic representations is di-

mension reduction. The initial input is a matrix, the precise details of which differ

depending on which type of semantic space model is being constructed. For ex-

ample, a prominent semantic space model called Latent Semantic Analysis (LSA)

Simulations reported in r15s showed the original matrix resulting in a 15.8% pre-

cision on a given semantic task, whereas the dimensionally reduced matrix yielded

“near maximum performance of 45-53% [...]Thus choosing the dimensionality of the

reconstructed representation well approximately tripled the number of words the

model learned as compared to using the dimensionality of the raw data”. A crucial

point here is how to chose the reduced dimensionality “well” - an issue we will

return to later.

Other semantic space models, such as Hyperspace Analogue to Language (HAL)

do not employ dimension reduction r6s. However, what is significant about studies

with HAL is the matrix has been primed with a large amount of data - a corpus

of 160 million words drawn from all Usenet news in 1995r20s. This position is

echoed in a machine learning study whereby a point-wise mutual information model

was more effective than a reduced semantic space model (LSA) on an automatic

synonym detection task. In this case there were large amounts of data to prime the

maximum likelihood estimates underpinning the probabilistic model r29s However,

Turney concluded, “Perhaps the strength of LSA is that it can achieve relatively

good performance with relatively little text”.

What can be concluded from the above? Although, the literature does not show

that dimension reduction is necessary to realize effective semantic vector represen-

tations, it does show in various studies that dimension reduction does benefit the

expressivity of the semantic vectors, particularly when the semantic space is derived

from relatively small amounts of text. Dimension reduction can capture higher or-

der associations, and studies using LSA suggest that such associations play a role

in simulating semantic tasks. Higher order associations between terms are induced

because the upper space is being squeezed into a space of much lower dimension-

ality and individual semantic vector representations begin to blur. On this point

Landauer states, “That is, if a particular stimulus, X, (e.g., a word) has been asso-

ciated with some other stimulus, Y, by being frequently found in joint context (i.e.,

contiguity), and Y is associated with Z, then the condensation can cause X and Z

to have similar representations”. In other words, as a by-product of the dimension

reduction, a higher-order association is being formed between X and Z. The abil-
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ity of LSA to systematically capture such higher-order associations was verified in

empirical studies r14s.

The aim of this article is to compare a number of algorithms to compute reduced

vector based word representations with respect to their ability to capture “seman-

tics”. Such representations will henceforth be termed “semantic vectors”. Different

weighting schemes to prime semantic vectors as well as various distance measures to

compute semantic distance between vectors have been previously been extensively

studied r4s.

This article goes beyond this study by conducting a systematic analysis of the

effect of dimension reduction on semantic representation across a number of promi-

nent semantic space models, whilst keeping the semantic task for evaluation con-

stant. This task, called TOEFL is a synonym determination task first employed

by Landauer and Dumais r15s and subsequently employed quite extensively in a

number of studies in applied cognition and computational linguistics. By explain-

ing the various dimension reduction algorithms and subjecting them to empirical

evaluation on the TOEFL task, we also aim to provide pragmatic guidelines for the

choice of one or the other algorithm in practical settings.

In the literature, there are a number of facets which have been shown to have

an effect on the quality of semantic vectors. In this paper, two are analyzed: (1) the

effect of dimension reduction, and (2) the effect of word order.

Models such as Latent Semantic Analysis r15s and Random Indexing r24s rely

on vector spaces to produce semantic vectors. In the former case, a sparse space

can be dimensionally reduced by Singular Value Decomposition (SVD) and in the

latter Random Projection (RP) offers a computationally inexpensive alternative to

generate compact spaces from the beginning r33s. On the other hand, the semantic

vectors produced by SVD are stable whereas those computed by RP are not due to

the resulting semantic vector representations depending on initial random seeds. Lee

and Seung r16s introduced a factorization method of non-negative matrices called

NMF (non-negative matrix factorization). As is the case in SVD, the k chosen in

NMF is usually much smaller than the dimensionality of the source matrix A. NMF

has been shown to be effective and straightforward to use in text mining tasks

r34s. In the light of foregoing background, the first question to be addressed is

which dimension reduction technique produces semantic vectors of better quality?

Secondly, what is the stability of the semantic vectors computed by RP?

Most semantic vector representations are based on “bags of words”. The basis

of the claim of such representations being able to capture meaning is as follows:

The vector ~w corresponding to word w encodes co-occurence information of words

co-occuring with w in context and therefore the vector can be viewed as a com-

putational manifestation of Firth’s famous quote, “You shall know a word by the

company it keeps” r7s. Recently, the BEAGLE model has redressed this by using

holographic reduced representations to encode word order as well as co-occurrence

(context) information into the semantic vector r12s. More recently r25s have intro-

duced a derived model for encoding word order based on random permutations.
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This raises the question as to how much word order information contributes to the

quality of the semantic representation of words.

The structure of this article is as follows. In the next section five semantic vector

models will be described. Thereafter the models will be compared using the TOEFL

test as a means for comparing the respective semantic vector representations in

relation to the questions just raised.

2. Semantic space models

The models chosen for analysis are practically oriented models in the sense they

use few bells and whistles, such a lemmatization etc. These are models which are

more or less “off the shelf” and can be pointed at an arbitrary corpus of text with a

minimum of fuss. All models have a pedigree in the literature and they differ in the

details how they produce semantic vectors.To the best of the authors’ knowledge,

these models have not been systematically compared.

The basis of the semantic space is an n�m matrix denoted by S. The value of

the cell Sri, js reflects the strength of occurrence of word i in context j. A context

could be another word, a fragment of text, or even a whole document. Various

weighting schemes can be applied to the values in S, the most basic one consisting

in the the number of times a particular word appears in the context of another word

(square context window). Algorithm 1 explains the process for a text Text and a

context window of size window size where the matrix S is initialized with zeros.

Let’s consider a small corpus comprising the following two sentences to prime

the model S:

s1 : After school, the kid left his book on the table

s2 : Coming back from school, the child left his book on his desk

For the purposes of this example, the nouns are assumed information bearing result-

ing in six words (n � 6). A window size of 10 is assumed. The resulting semantic

space S is depicted in Figure 1. Even with this straightforward semantic space

model, such strengths can be viewed as quantifying Firth’s intuition mentioned

above. In addition, those words more often appearing in the context windows around

“book” contribute more to its semantics.

2.0.1. Pointwise Mutual Information weighting

The frequency based approach for modelling collocations between words just pre-

sented includes an inherent bias. Because frequent terms have more chance of co-

occurring together than rare terms, one can consider that the frequency of co-

occurrence of two terms should be relative to the individual frequencies of the

words in the corpus. The point-wise mutual information (PMI) measure, described

in r21s, provides a formula to weight co-occurrences this way. Given two terms a

and b, Eq. (1) provides the weight of the co-occurrence a, b.



June 26, 2012 12:39 WSPC/INSTRUCTION FILE semvect

Dimension reduction and word order for semantic vectors 5

school kid book table child desk

school 1 2 1 1 1

kid 1 1 1 0 0

book 2 1 1 1 1

table 1 1 1 0 0

child 1 0 1 0 1

desk 1 0 1 0 1

Table 1.

Algorithm 1

for all position in Text do

term1 = Text(position)

for i = 1 to context size do

term2 = Text(position-i)

S(term1, term2) += 1

term3 = Text(position+i)

S(term1,term3) += 1

end for

end for

PMIpa, bq � log
ppa, bq

ppaqppbq
� log

ppa|bq

ppaq
(1)

A simplification of the PMI by removing the log has shown consistently good

performance across both the TOEFL synonym task and semantic categorization

r4s, hence we will use this simplification as a baseline.

In addition, the semantic space is used only to compute distances between terms.

The common fraction terms (including the total number of terms in the corpus) can

be removed from the weighting, resulting in the weighting of Eq. (2) where freq is

the number of occurrences of a term or a couple of terms.

wpa, bq �
ppa|bq

ppaq
�

freqpa,bq
freqpbq

freqpaq
|corpus|

�
freqpa, bq

freqpaqfreqpbq
(2)

2.0.2. HAL representation

Hyperspace Analogue to Language (HAL) r19s adopts a different approach to

weighting term co-occurrences. Also referred to as triangular window weighting,

HAL takes into account the distances between the words into the context window.
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When two words w1 and w2 co-occur within a certain context window, their cur-

rent score is incremented with the inverse of their distance in the sliding window as

detailed in Algorithm 2.

Algorithm 2

for all position in Text do

term1 = Text(position)

for i = 1 to context size do

term2 = Text(position-i)

S(term1, term2) += 1/i

term3 = Text(position+i)

S(term1,term3) += 1/i

end for

end for

2.1. Dimension reduction of Semantic Space

2.1.1. Singular Value Decomposition

SVD is a powerful result from linear algebra r8s which has been widely applied

in areas such as text mining, image analysis, information retrieval and cognitive

science to name but a few. The SVD theorem states that any n�m matrix S with

rank r can be decomposed into three matrices: S � UDV T where U and V are

unitary n � r and m � r matrices respectively. The matrix D is an r � r diagonal

matrix whose values are monotonically decreasing singular values of S. The columns

of U and V are the eigenvectors of SST and STS respectively.

Dimension reduction is performed by taking only the first k eigenvectors pk   mq

and singular values to approximate S by Sk � UkDkV
T
k , where Uk and Vk are n�k

and m� k matrices composed of the first k columns of U and V respectively. The

Eckart-Young theorem states that Sk is the closest rank-k approximation to S in

the sense of the matrix 2-norm. Stated formally, Sk � minrankpBq�k||S �B||2.

An intuition which can be ascribed to the Eckhart-Young theorem is that SVD

tries to capture as much of the variation in the data in S within the reduced number

of dimensions specified by k. One of the assumptions behind semantic space models

is that words with similar meanings will tend to cluster together in the space.

In the widely employed Latent Semantic Analysis (LSA) model r15s (also known

as Latent Semantic Indexing in the field of information retrieval), the initial matrix,

the semantic space S is approximated by a matrix Sk, with a value of k � 300. This

value was determined by running simulations of human synonym detection using

the TOEFL test. In the experiments to follow, we will provide a much finer grain

of analysis of the value k than is reported in r15s, where k was manipulated in

increments of 50. Because we are interested in reducing the initial representations,
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the re-multiplication of the reduced matrices doesn’t make sense since it leads to a

matrix with the initial dimensions. At the same time, the matrix Uk represent the

initial terms according to a reduced number of dimensions. Because σ contains the

eigenvalues of the decomposition, we believe this matrix can as well carry important

semantic values in regards to comparison between terms.

2.1.2. Non-negative Matrix factorization

The non-negative matrix factorization algorithms propose a way to approximately

decompose an initial matrix V into a product of two matrices W and H that contain

no negative values as in Eq. (3). These two matrices can have one dimension of the

initial matrix and one reduced dimension. Then to each term the corresponding

values into the reduced number of dimension can be interpreted as the degree of

belonging to different semantic classes. This approach was initially developed for

the semantic decomposition of images r16s.

V �WH (3)

The algorithm for non-negative matrix factorisation that we have experimented

here is a Euclidean iterative approach. The matrix W is randomly initialized, the

matrix H is arbitrarily initialized to non-zero positive values (e.g. 0.001) and at each

iteration these two matrices are updated with multiplication rules in order to have

their product converge towards V.

H � H.
WTV

WTWH
W �W.

V HT

WHHT
(4)

The multiplicative update rules applied at each iteration are those of Eq. (4).

The convergence is evaluated with the Euclidean distance between V and WH

developed in Eq. (5) for the Euclidean distance between two matrices A and B of

similar dimensions. The algorithm has been proven to converge to a local optimum

r17s.

||A�B||2 �
¸
ij

pAij �Bijq
2 (5)

2.1.3. Random Projection

Random Projection (RP) is based on the fact that a term-document matrix com-

puted from a corpus is sparse, allowing the vector representations to be projected

onto a basis comprising a smaller number of randomly allocated vectors. Due to

sparseness condition, the basis of random vectors has, in general, a high probability

of being orthonormal r2s. The algorithm proceeds in 3 steps after the creation of a

term-term matrix according to figure 1 :
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 Create an empty matrix where rows represent terms and columns the new

random vectors of dimension t,


 Randomly insert in each term vector t/6 of positive seeds and t/6 of negative

seeds,


 Generate a matrix where rows are terms and columns new dimensions by

adding the corresponding random vector to a term each time it appears in

a context window,

t1  0 0 0 1 0 0 -1 
t2  1 0 0 0 0 -1 0
t3  0 1 -1 0 0 0 0
t4  0 0 -1 0 0 0 1
t5  0 -1 0 1 0 0 0
...

T1  0 0 0 0 0 0 0 
T2  1 0 0 0 0 -1 0
T3  0 0 0 0 0 0 0 
T4  0 0 0 0 0 0 0 
T5  0 0 0 0 0 0 0
...

... t5T2

Fig. 1. Random projection of high dimensional vectors.

This can be seen mathematically as the new representation Mrandom of an

initial term-term matrix M representing n terms reduced to k dimensions through

a random matrix as in Eq. (6).

Mrandom
k�n � Randomk�nMn�n (6)

The number of positive and negative random seeds initially followed a Gaussian

distribution but it has been shown r1s that a probabilistic distribution with 1/6 is

equivalent.

2.2. Taking word order into account

The preceding approaches to computing semantic vectors only deal with bags of

words -no notion of the ordering of the words is taken into account. However since

we deal here with natural language one might think that word order is important

to take into account (since a red wine is quite different than a wine red ...).

Two methods are introduced for encoding word order that both rely on high-

dimensional random projection. The second one uses a permutation of vectors and

has been inspired by the first one that uses a convolution of vectors to encode

n-grams.

2.2.1. BEAGLE

BEAGLE, or Bound Encoding of the Aggregate Language Environment r12s is one

of the more recent examples of a computational model of word meaning. The major
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advance offered by BEAGLE is the word representations include both a considera-

tion of order information (i.e., structure) in addition to word context information

(i.e., meaning).

The basis for encoding structure is an outer product of two vectors resulting in

a matrix which is then compressed into a vector representation via an operation

known as convolution. By way of illustration, assume the word s is represented by

the three dimensional vector b � p1, 0, 2q, and the word w to be represented by the

vector d � p3, 1, 2q. The association between these words can be represented as the

outer product of these two vectors. More specifically, the transpose of the vector d

is a column vector of three rows and when multiplied by row vector b gives rise to

a 3 � 3 matrix:
�
�

1

0

2

�

� p3, 1, 2q �

�
�

3 1 2

0 0 0

6 2 4

�



The resulting matrix represents an ordered association between d and b denoted

db b. Such matrices have been used to model ordered word associations in human

memory, e.g., r10s and more recently in BEAGLE.

The above scheme using outer products can be generalized into representing

arbitrarily long sequences of words by using the Kronecker (tensor) product (note

that the “outer” or “dyadic” is a special case of the tensor product between two

vectors of the same dimension), but the tensor representations explode rapidly in

dimensionality. One approach is to constrain the dimensionality by compressing the

outer product into a vector representation of the same dimensionality as constituent

vectors in the outer product. This is the approach adopted in the holographic re-

duced representations used to encode word order information in BEAGLE r22s. An

operation known as circular convolution is used to achieve the desired compression.

This operation cycles through the outer product. For example, given two vectors

x � px0, . . . , xnq and y � py0, . . . , ynq, the circular convolution y f x results in

an n-dimensional vector z � pz0, . . . , znq whereby each component zi of the vector

representation is computed according to Eq. (7).

zi �
ņ

j�0

xj modn�1
.ypi�jqmodn�1

(7)

The above equation can be visualized as depicted in figure 2.

BEAGLE uses two different vectors for each word w in the model: a) an en-

vironmental vector, and b) a memory vector. The environmental vector is a word

signature vector with elements of the vector sampled from a normal distribution

with mean 0.0 and variance 1{n, where n is the dimensionality of the vector. The

information in the memory vector can also be stored in two separate vectors, one

for context and one for structure.

The context vector is a standard co-occurrence vector for w the components of

which give a weighted representation of how words are co-occurring with word w
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Fig. 2. Circular convolution

using a sentence as the unit of context.

The structure vector ow is used to accumulate word order information formed by

the superposition of vectors representing n�grams involving word w. For example,

consider the sentence “A dog bit the mailman”. The structure vector odog is built up

as a sum of so-called “bindings”, each of which is defined in terms of a convolution.

For example, for bi-grams (n � 2),

binddog,1 � ea f Φ

binddog,2 � Φ f ebit

The position of the word being coded is represented by a constant random place-

holder vector, Φ (sampled from the same element distribution from which the en-

vironment vectors e were constructed).

All n-gram vectors 2 ¤ n ¤ 7 are thus formed are then superposed into a single

vector, normalised, and then added to the structure vector for the target word. For

example,

odog �
7̧

j�1

binddog,j

Once again, when all words in the corpus have been processed, the structure vector

for each word is normalised, and this normalised vector represents the structure

signal for that word in the context of the corpus.

The context vector and structure vectors can then be mixed in some way so as to

produce a single vector representation for each word. The advantage of this is that
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the model becomes more flexible and different mixtures of context and structure

information can be examined. This aspect will be manipulated in the experiments

to follow in order to determine the optimum mixture between structure and context

for semantic vectors.

2.2.2. Permutations

The permutation model proposed by r25s also attempts to represent order infor-

mation in the context of the random projection model described above. For each

word, a random permutation that shuffles the coordinates is generated, and applied

as many times as necessary. The random permutation allows to generate a nearly

orthogonal representation.

To encode the fact that some word w is in nth position in an n-gram, the initial

vector of w will be permuted n times and then added to the other vectors in the

n-gram. Let π be a permutation function for a the random vector of a word, then a

structure vector of a word wi is the sum of the permuted vectors of its neighbours

wi�n to wi�1 and wi�1 to wi�n with a context window of size 2n� 1.

wi � π�nwi�n � ...� π�1wi�1 � 0 � πwi�1 � ...� πnwi�n (8)

These representations can be reversed in order to retrieve some words occurring

in a specific context, or they can be used to retrieve words occurring in similar

contexts given a word.

3. Experiments

3.1. Experimental setup

As a means to compare the semantic vector models above, the TOEFL synonym

task on the TASA corpus was used. The basic hypothesis is the higher the TOEFL

score, the better the quality of the underlying semantic vector. This choice follows

many similar evaluations in the literature and allows our results to be placed in the

perspective of other published results.

The TOEFL synonym test comprises 80 questions. Each question is multiple

choices, made of a question word and four potential answers. A question is “in-

complete” if the question term is unknown to the model in question, for example,

because the question words were not present in the model. In the main experiment

both the number of correct answers and the number of answerable questions will

be reported. In the best results section the scores will be calculated according to

the measure introduced in r15s where non-answerable questions will be scored 0.25

each thereby simulating guessing.

The TASA contains 44,486 documents of ”General Reading up to 1st year col-

lege”. It is assumed American students can learn relevant vocabulary and language

usage from these readings. These documents contain 148,221 different non-stop

terms for a total of 8,605,497 words.
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Some pilot studies let us determine for each method if stemming was enhancing

the results. The answer varies across the methods, the best solution being used for

each method.

3.2. Baseline

As a baseline we have implemented what seemed one of the best approaches without

dimension reduction r4s. The approach is the ratios inspired from PMI as described

in Eq. (2). The approach has been experimented on the non-stemmed TASA corpus

and the graph on Figure 3 reports the number of correct answers to the TOEFL test

when the model uses various frequency limits (resulting in various number of terms).

Since it was not clear which window size had been used in their main experiments,

we experimented here with context windows of 3 and 5 words (e.g., 1 and 2 words

on each side).

Fig. 3. Accuracy of PMI models with context window of 3 and 5 words and different number of
terms used (including the terms from the TOEFL experiment).

The number of terms has been set according to various minimal term frequency

thresholds. The results show that the stability of the results is not as good as it

appears in the experiments reported in r4s. The number of correct answers on the

TOEFL test is lower than their findings although we didn’t process with as many

words. The context window of size 5 seem to provide overall better results. This

size will therefore be used in the following experiments on dimension reduction.

3.3. The effect of dimension reduction

3.3.1. Random Projection

We employed an implementation of Random Projection provided by the se-

mantic vectors package (http://code.google.com/p/semanticvectors/)r33s. Both



June 26, 2012 12:39 WSPC/INSTRUCTION FILE semvect

Dimension reduction and word order for semantic vectors 13

corpus and questions were stemmed with a Porter Stemmer implementation

(http://tartarus.org/ martin/PorterStemmer/) and the corpus is indexed with

Lucene (http://apache.lucene.org) to generate the initial matrix. Term-context ma-

trices were investigated with a window size of 5 words (2 on each side). The min-

imum frequency of terms in the initial representation is set to 2 leading to 41,845

terms. The values of the initial seeds are either -1 or +1. Over the 80 questions of

the TOEFL test, two are incomplete within all models constructed using Random

Projection with stemming.

3.3.2. Dimensionally reduced HAL

For NMF and SVD experiments, the initial semantic space could not contain all

terms in the corpus due to computational limitations. The term frequency has been

used for the selection of the terms for the initial HAL matrix. In order to ensure

the presence of target terms with a restrained number of terms all the terms of the

TOEFL experiments (400) have been added to the terms over the frequency limit

imposed.

The algorithm used for SVD reduction is based on the INFOMAP

(http://infomap-nlp.sourceforge.net/) implementation which, in turn, is based on

a Word Sense Discrimination model r26s. In this approach, dimension reduction by

SVD is central to producing semantic vectors. The HAL matrix used for this exper-

iment was 1,000 contexts � 15,000 terms and has been processed on non-stemmed

terms. Rows and columns have been sorted by term frequency and 50 most frequent

terms have been dropped from columns as stop words.

The NMF algorithm has been implemented using the semantic vectors pack-

age. The HAL matrix is computed directly from a Lucene index and NMF classes

from TCT software (http://mlg.ucd.ie/nmf) are computing the reduction. The co-

sine measure implemented in the package has then been used for comparisons. The

semantic space is generated according to a term frequency threshold of 500 occur-

rences leading to 2,522 terms in the initial HAL matrix (including the 400 TOEFL

experiment terms).

3.3.3. Results

This first series of experiments intends to examine the quality and stability of the

semantic vectors under dimension reduction. For evaluating the stability of semantic

representation, the RP model involved 5 distinct runs since each run involves a

different random basis.

The average results of testing RP with various dimensions are reported on Fig-

ure 4. These are results for non-stemmed data. Lower dimensions and stemmed data

are not represented here since they scored far lower results. Some other experiments

have been conducted with different ratios between the number of dimensions and

the number of seeds (1/2, 1/4) and the results were very similar. The five individual



June 26, 2012 12:39 WSPC/INSTRUCTION FILE semvect

14 L. Sitbon, P. Bruza and C. Prokopp

results for each run exhibit consistently quite a large variation suggesting the un-

derlying semantic vector representation is not very stable. The average performance

Fig. 4. Accuracy of Random Projection with a context window 5 for various numbers of dimensions.

does seem to increase with the dimensionality with 46.2 correct answers on average

for 1,400 dimensions, and thereafter decreases. However, the lack of stability doesn’t

allow for any firm conclusions since the best result of 50 correct answers is obtained

with 300 dimensions which also leads to the lowest average accuracy.

For evaluating the stability of semantic representation, the SVD model has been

tested with all consecutive dimensions k between 0 and 1,000. SVD has been ex-

perimented with the use of the first matrix in the decomposition (see Section 2.1.1)

for all dimensions from 0 to 1,000. Pilot experiments showed that the use of the

singular values was consistently followed by a lower accuracy. Figure 5 provides the

number of correct answers for each dimension reduction. Best results are obtained

with a number of dimensions around 200 and decrease to less than 20 correct an-

swers past 800 dimensions. The graph shows variations of 5 correct answers from

one dimension to the immediately preceding and following ones. The stabilizing of

the results while increasing k was to be expected as the singular values are sorted in

decreasing order (with a growing k the added information is of decreasing impact).

For evaluating the stability of semantic representation, the NMF model involved

5 distinct runs since each run involves a different random initialisation of the matrix

W (see Eq. (4)). Figure 6 displays the results of the NMF approach between 300

and 2,100 dimensions. Apart from the reduction to 300 dimensions that scores a

very low average number of correct answers (41), the number of dimensions between

500 and 2,100 does not really drive the quality of the results. The best results in
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Fig. 5. Accuracy of singular value decomposition with a context window 5 for various numbers of

dimensions.

Fig. 6. Accuracy non-negative matrix factorization with a context window 5 for various numbers

of dimensions.

average are obtained with 1,400 dimensions for 49 correct answers. The best model

is built with 1,400 as well and scores 52 correct answers. The stability of results was

good for low dimensions between 300 and 500 and suddenly very low with a more

than 10 correct answer variation for 800 dimensions.
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3.4. The effect of word order

3.4.1. The size of the context window

Random Projection was used for this investigation as it allows large numbers of

systematic experiments to be rapidly conducted.

Figure 7 shows the average results for various context window sizes with random

vectors. The random vectors have been computed with 1,800 dimensions since a pilot

study not involving context windows with random projection shown this dimension

leading to best results. The window sizes refer to the total number of words taken

into account including the target word. The results show that the smallest context

Fig. 7. Accuracy of Random Projection using a positional index (a word-word matrix) with different
context window sizes.

window (3 words) provides the most accurate results on the TOEFL test with

45 correct answers out of 78 in average. This implies that the model constructed

based on the co-occurrences of the words only with the previous and the next

word (these not being stop words) performs the best for the synonym test. With

a context window size of up to 9, the results are higher (40 correct answers out

of 78) than when using whole documents as contexts. It is also important to note

that context based models are more computationally expensive since they involve

positional information about words in the documents.

The optimal window size varies between 3 and 5 words depending on the model.

These rather small context windows are always better than larger context win-

dows as accuracy decreases rapidly when the context window is enlarged. This is

consistent with experiments reported by others using the TOEFL test.
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3.4.2. BEAGLE

The BEAGLE model used was implemented in Java using the open source nu-

merical libraries OpenNLP (http://opennlp.sourceforge.net/) and Parallel Colt

(http://piotr.wendykier.googlepages.com/parallelcolt). Since the BEAGLE archi-

tecture doesn’t allow us to force some terms into the model, the maximum number

of possible correct answers was 73. The remaining 7 have been credited 0.25 points

each according to Landauer’s proposed “guessing” scheme.

The TOEFL test was first run on the implemented BEAGLE model using a

range of mixtures of context and structure vectors. The structure vectors for words

were computed with 5-grams. Recall in the BEAGLE model, the representation

of words can be manipulated as mixtures of structure (word order) and context

(co-occurrence). Results for various percentages of vector representation being con-

tributed by the context vector are displayed on the graph on Figure 8. This first
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Fig. 8. Average accuracy of BEAGLE models by percent of context vector

experiment shows that best average accuracy is obtained with 90% of the vector

representation for the word coming from the context vector and 10% from word

order (structure). The figure also shows that between the 30% and 100% levels the

increase in accuracy performance is not linear. It is not clear why this is the case.

For the second series of experiments on variation of dimension we used 90%
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contribution from the context vector as this provided best average results. The

detailed and average results are displayed on the graph on Figure 9. Average results

for the same series of models computed using a 70% contribution from the context

vector are also displayed on the same graph as the percentage is the best of the

immediately inferior threshold on Figure 8. The results show that the stability is

Fig. 9. Accuracy of BEAGLE models with 90% context vector and average accuracy of BEAGLE

models with 90% and 70% context vector by number of dimensions.

even lower than for previous models with variations up to 12 correct answers for

one set of parameters. The average performance increase against the number of

dimensions is not linear. The consistency between the two curves suggests that

the random initialisation of the environment vectors may be responsible for the

variations and that the proportion of context has not much impact on the accuracy.

3.4.3. Permutations

The permutation model is available in the semantic vectors package. Although the

main incentive for using permutations is to compute the most likely neighbouring

words, we have used the permuted representation to search for most similar words.

Different sizes of context window have been experimented between 3 and 9 words.

The results are shown on figure 10. The smaller context window the more accurate

the results, as was the case above. The permutation model performs at best 48

correct answers for 2,100 dimensions with a context window of 3.
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Fig. 10. Average number of correct answers of permutation models with window sizes from 3 to 9
and different number of dimensions used, without stemming.

3.5. Best results

Under what circumstances is each model performing best, whereby the measure is

normalized by adding 0.25 for each question that could not be answered by a given

model? Table 2 reports the best scores achieved by each model previously presented.

Only the SVD model outperforms the best PMI model. All of the models can achieve

more than 60% of correct answers provided best conditions are met.

The optimal number of dimensions for reduction varies between models from

300 for one RP model to 1,500 for NMF models.

Model Correct PCorrect minN

PMIw3 50 62.5% 8,250

PMIw5 53 66.25% 4,500

RPsingle 50 62.5% 300

RPaverage 46.2 57.75% 1,400

SV D 57 71.25% 154

NMFsingle 52 65% 1,500

NMFaverage 49 61.25% 1,500

Permw3 48 60% 2,100

Bsingle 48.75 60.9% 600

Baverage 43.15 53.9% 900

Table 2. Best Performance of various models measured by the number of correct answers (Correct),

the percentage of correct answers (PCorrect) and the minimal number of dimensions achieving

these performances (minN).

Percentages of correct answers are provided in order to allow a comparison with
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former results available in the literature.

4. Discussion

4.1. comparison with previous results

Comparison with previous published work should be viewed in light of doubt re-

garding the size of the underlying corpus. In this paper, the TASA corpus used

to build the semantic spaces comprises 44,486 documents whereas in other stud-

ies reported for the same task and corpus in the literature and cited below, the

size is either 37,600 or 30,473 articles. We are unable to explain this discrepancy.

Several results have been reported on the use of LSA: r15s reported 64.5% correct

answers, r12s report results of 55.31% correctly answered questions for LSA and

r9s found 63.6% of correct responses using the cosine similarity and 61.5% using an

inner product instead. Random Indexing r13s using word contexts gave 35-44% with

unnormalised 1800 dimensional vectors and 48-51% with normalised vectors. r12s

report results of 55.6% for BEAGLE without context information and 57.81% for

BEAGLE with both context and order information. An other approach has been ex-

perimented in literature consisting of probabilistic generative model based on LDA

r3s and applied to semantic correlation by r9s in Topics. They experimented both

forward (the probability of the answer knowing the question) and backward (the

probability of the question knowing the answer) probabilities for modelling. Their

best results over 44 computable questions is 63.6% for the former and 70.5% for the

latter. In short, the best runs of the models reported in this article are competitive

in relation to previously published TOEFL scores on a similar corpus.

It should be noted that much higher scores have been reported in the literature

using either external resources such as lexicons in combination with semantic spaces

r30s or simply more balanced and bigger corpora r23s. A result of 100% was recently

achieved using a larger corpus and model based on SVD r5s.

4.2. Dimension reduction

The results above do indicate that dimension reduction does have a positive impact

on the quality of semantic vector representation. This is in-line with previous re-

search using SVD r26s, however, our study seems to show the quality of semantic

representation produced by SVD to be superior to that of Random Projection. In

both cases, however, it is hard to find the optimal reduced dimensionality, so in

practical application, there may be little to choose between them. SVD reduction

seems better suited to a fixed application in relatively static and closed domains

with predictable needs. Random Projection would be better for dynamic applica-

tions where new data have to be dynamically taken into account in the model and

where needs are evolving and unpredictable.

SVD uses a unique and ordered decomposition of the initial matrix, and it is

generally understood that the eigenvectors corresponding to the highest eigenvalues
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represent the diversity of the corpus, the following ones are most likely to be the

core components of its semantics, and the last ones are bearing the noise. It is im-

portant to keep in mind that adding more dimensions does not change the previous

ones. Such an interpretation would explain the general behaviour when varying the

number of dimensions. It is also based on these premises that the highest perfor-

mance could be reached (altough also building on larger corpora) by emphasizing

the mid-range eigenvectors r5s. Non negative matrix factorization, unlike SVD, does

not value some dimensions more than the others. Also, adding more dimensions re-

organise all the previous ones. All the dimensions can thus be interpreted as a given

semantic cluster of information present in the corpus. In other words, the dimen-

sions encode level of commonness rather than levels of variation. This most likely

factors for good performances reached for higher number of dimensions.

4.3. Stability of semantic representation

The use of random vectors in RP raises the issue of the stability of semantic rep-

resentations produced by these models. The quite wide range of scores obtained

with the different runs of Random Projection models as detailed on Figures 4 and

7 suggests a degree of variability between the respective representations.

In r28s we report an experiment for improving the stability of results with RP.

The approach consists in repetitively retraining the models by repeating the last

two steps of the process introduced in section 2.1.3. The results showed that this

method doesn’t impact the stability of the results across several runs. SVD does

not rely on any random initialisation but there can be variations up to 5 correct

answers between 2 consecutive dimensions.

The lack of stability of performance is probably one of the main factors for

the variation of best results from one experiment to another as reported so far in

the literature. This also implies that any model must be refined to the best set of

parameters according to the task it is built for.

4.4. The effect of word order

The best result of BEAGLE with a component of word order (10%) performs closely

to other models only using co-occurrence. Thus word order doesn’t seem to play

much of a role in the semantics needed for the synonym-finding task. The results

with the permutation model are similar in this respect.

The encoding of word order provides some integration of syntactic information

and is most thought for the encoding of multi-word expression. In the TOEFL task,

words of similar syntactic function are compared and it is their behaviour as a single

word that is of interest. As such it is likely that either they will tend to occur in

similar types of construction (ie. in the same order) or, on the case of syntactic

re-ordering (question form, passive voice) word order is not indicative of semantics.

The experiments tended to show that very small context windows produced

the best results. This statement is a cautious one as context window size was not
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systematically manipulated within the models. Intuitively, however, the statement

does seem reasonable, as synonyms tend to appear in similar contexts. This, then,

raises the question of the suitability of the TOEFL test as a means of investigat-

ing semantic vectors. We conclude TOEFL to be incomplete in this regard, but

nevertheless it does provide a useful backdrop for comparison.

5. Conclusion and future work

The TOEFL test has been used as tentative for objectively measure the performance

of each approach and compare them. The experiments have confirmed that small

context windows tend to provide the best results. The best results on TOEFL test

have been performed by the Singular Value Decomposition (SVD) model using

only the row representation of its singular value decomposition where 71.25% of the

questions were correctly answered. The results showed that the differences are not

great and their significance is lowered by the low stability of results across slight

changes (for SVD) or across different random initialisation (for Random Projection

(RP) or Non-negative Matrix Factorization (NMF)). Hence someone who would

face the choice of one of these methods should consider a) the specific advantages of

each method and b) benchmark parameters to find the most efficient representation

for a particular task.

The advantage of using random projection is that it is computationally cheap

and the model can be dynamically updated while new data are appearing. This

would be especially useful for applications that require updated knowledge as in

broadcast news processing, trends analysis and blogs processing. Random Projec-

tion gave its highest results of 62.5%. The advantage of NMF is that the model

can provide a description of the inherent dimensions and be used to extract themes

across the corpus as shown by r34s. This can be useful when an interface is required

as it is self-explaining. The best accuracy achieved by NMF in our experiments

is 65%. The advantage of SVD is that it works well with small amounts of data.

Moreover, due to the associated computational cost they can best be applied in

closed domains. The experiments reported in this paper demonstrate that dimen-

sion reduction with SVD is likely to produce semantic vectors of better quality. The

advantage of permutation and BEAGLE models is its ability to cater for structure

(word order) and co-occurrence information (meaning) within the single representa-

tion. However, the experiments also highlighted that the integration of word order

within semantic vectors does not improve scores in the TOEFL test over semantic

vectors built from straight co-occurrence in context.

In the future, it will also be worth systematically investigating how stable se-

mantic vectors are with slight corpus changes, or on larger corpora. Potential other

tasks for examining semantic vectors are replications of free association norms r27s,

word priming r11s and semantic categorization r5s.
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