
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Sorensen, Andrew C. & Gardner, Henry (2010) Programming with time
: cyber-physical programming with Impromptu. In Proceedings of OOP-
SLA10 : ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ACM, New York, NY, USA, pp. 822-
834.

This file was downloaded from: http://eprints.qut.edu.au/55712/

c© Copyright 2010 please consult the author

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1145/1869459.1869526

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10914882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Sorensen,_Andrew.html
http://eprints.qut.edu.au/55712/
http://dx.doi.org/10.1145/1869459.1869526

Programming With Time
Cyber-physical programming with Impromptu

Andrew Sorensen

Australian National University

andrew@moso.com.au

Henry Gardner

Australian National University

Henry.Gardner@anu.edu.au

Abstract
The act of computer programming is generally considered
to be temporally removed from a computer program’s exe-
cution. In this paper we discuss the idea of programming as
an activity that takes place within the temporal bounds of
a real-time computational process and its interactions with
the physical world. We ground these ideas within the con-
text of livecoding– a live audiovisual performance practice.
We then describe how the development of the programming
environment “Impromptu” has addressed our ideas of pro-
grammingwith timeand the notion of the programmer as an
agent in a cyber-physical system.

1. Introduction
An act of programmingis usually considered to sit firmly
within the context of “software development”, with the latter
being the active process behind the production of “software
products”. In this view, causal actions made by the program-
mer target the design and notation of a formal specification
for futureaction by a computing system.

One significant ramification of this traditional view is to
promote a strong separation between theprogram, process
andtaskdomains [43]; a program being a static specification
of intention (i.e. code), a process being the reification of the
program on a given computing machine, and the task domain
being a target for real-world affect. This view is so pervasive
as to have dominated the historical practice of computer
programming.

In this paper we discuss an alternative view, where pro-
gramming is a causal and ephemeral practice whose action
directly targets a physical task domain. This view gives priv-
ilege to causal action by projecting the programmer’s human
agency into the world. The traditional, temporal separation

[Copyright notice will appear here once ’preprint’ option is removed.]

betweenprogram, processand task domains, is elided as
programmer action is made directly affective in the task do-
main. The programmer becomes an active agent operating
within a cyber-physical feedback system, orchestrating the
real-time evolution of computational processes which affect
the physical environment. In turn the environmental, task do-
main provides the programmer with real-time feedback to
inform her future actions.

This realignment of programming, from a static to a dy-
namic activity, requires a suitable realignment to the sub-
strate of programming infrastructure. In particular when
shifting programming from an “act of specification” to an
“act of action” it is not only the runtime system that is sub-
ject to the temporal bounds of the task domain but the pro-
gramming tools themselves. By placing the programmer as
an active agent in a cyber-physical feedback system we are
opening the programming task up to a broad range of time
and concurrency demands.

Compilers, linkers, analysers and the like are all tradi-
tionally considered to be “out of time” processes. However,
when integrated into a dynamic, real-time, causal develop-
ment process, such tools must be reactive, complying to
task-domain time and concurrency constraints as well as be-
ing amenable to reactive updates from the environment.

In this paper we explore the idea of programming as an
act of human agency bounded in temporal alignment with
a real-world task domain. We consider the implications of
this model for programming language systems and provide
concrete illustrations using the programming environment
“Impromptu”. In the next section we start by considering
a reference scenario from a digital-arts practice known as
“livecoding” [10] and we show that the key concerns which
emerge are those of temporality, scheduling, concurrency
and the human computer interface. In Section 3, we then
introduce a paradigm which we call “With Time Program-
ming” (WTP). The main technical section of this paper, Sec-
tion 4, describes the Impromptu WTP environment which
has been used for livecoding and live audiovisual perfor-
mances around the world over the past five years. Finally,
Section 5 makes a connection between WTP and program-
ming support for human agency in cyber-physical systems.

1 2010/9/22

2. A Reference Scenario
As discussed above, the realignment of programming as a
dynamic activity transforms it from a static specification of
intention into a vehicle for direct causal affect. This tran-
sition elevates the human programmer’s role in the compu-
tational process to one of active agency. In this section, a
traditional example and a modern scenario from music and
multimedia practice are introduced to provide an orientation
for the rest of this paper.

Consider the analogy of a traditional musical score. The
score provides a static specification of intention – a static
program domain. Musicians, representing the process do-
main, perform the actions required to realise or reify the
score. Finally, the actions in the process domain result in
sound waves which are perceived by a human audience as
music. This final stage is our real-world task domain. Now
consider a dynamic program domain in which a composer
conceives of and describes a musical score in real-time. We
commonly call this type of compositionimprovisation. In it,
the improvising musician is involved in a feedback loop in-
volving forethought, moving to causal action and finally to
reaction, refinement and reflection.

Livecoding [10, 51] is a computational arts practice
that involves the real-time creation of generative audiovi-
sual software for interactive multimedia performance. Com-
monly the programmers’ actions are exposed to the audience
by projection of the editing environment. Livecoding perfor-
mances often involve more than one participant, and are
often commenced from a conceptual blank slate [49]. Be-
cause of the highly temporal nature of linear media, sound
and visual animation, livecoding provides a strong example
of what we call “with-time programming”. We now present
a short story describing a possible livecoding performance:

Two performers are present on stage. One, a violinist,
stands paused, bow at the ready. Another sits behind the
glow of a laptop screen. A projection of the laptop screen
is cast above the stage showing a blank page with a single
blinking cursor. The laptop musician begins to type ...

(play−sound (now) s yn th c3 s o f t minu te)

... the expression is evaluated and blinks on the overhead
projection to display the performer’s action. An ethereal syn-
thetic sound immediately enters the space and the violinist
begins to improvise in sympathy with the newly evolving syn-
thetic texture. The laptop performer, listens to the thematic
material provided by the violinist and begins to outline a
generative Markov process to accompany the violin ...

Figure 1. Livecoding Duet (Bencina & Sorensen 2009)

(d e f i n e c ho rds
(lambda (b e a t chord d u r a t i o n)

(for−each (lambda (p i t c h)
(p l a y s yn th p i t c h s o f t d u r a t i o n))

chord)
(s c he du le (* metro* (+ b e a t d u r a t i o n)) c ho rds

(+ b e a t d u r a t i o n)
(random (a s s oc chord ’ ((Cmin7 Dmin7)

(Dmin7 Cmin7))))
d u r a t i o n)))

(c ho rds (* metro* ’ ge t−beat 4) Cmin7 4)

... the “chords” function is called on the first beat of a
new common time bar and a simple recursive chord pro-
gression begins supporting the melodic performance of the
violin. The chord function loops through time, creating an
endless generative sequence of four beat chords. After a few
moments of reflection the laptop performer begins to modify
the “chords” function to support a more varied chord pro-
gression with a randomised rate of temporal recursion ...

(d e f i n e c ho rds
(lambda (b e a t chord d u r a t i o n)

(for−each (lambda (p i t c h)
(p l a y d l s (+ 60 p i t c h) s o f t d u r a t i o n))

chord)
(s c he du le (* metro* (+ b e a t d u r a t i o n)) c ho rds

(+ b e a t d u r a t i o n)
(random (a s s oc chord ’ ((Cmin7 Dmin7 Bbmaj)

(Bbmaj Cmin7)
(Dmin7 Cmin7))))

(random ’(3 6)))))

2 2010/9/22

http://vimeo.com/impromptu/videos/sort:plays

... the laptop performer finishes editing the desired changes
and pauses to listen to the violinist, waiting for a musically
sensitive moment to introduce the new code changes. The
code is evaluated and hot-swapped on-the-fly. The chord
progression continues on without any noticeable interrup-
tion. The violinist responds in kind by improvising over the
new progression inspiring the laptop performer to introduce
a basso profundo voice ...

(d e f i n e ba s s o
(lambda (b e a t p i t c h d u r a t i o n)

(p l a y ba s s p i t c h s o f t d u r a t i o n)
(s c he du le (* metro* (+ b e a t d u r a t i o n)) ’ ba s s o

(+ b e a t d u r a t i o n)
(i f (< p i t c h 37)

48
(pc : r e l a t i v e p i t c h −1

(pc : s c a l e 10 ’ i o n i a n)))
d u r a t i o n)))

(ba s s o (* metro* ’ ge t−beat 4) 48 8)

... the basso profundo voice enters on the first beat of
the next bar, perfectly synchronising to the ongoing chord
progression with a slowly falling Ionian scale. In this way a
performance unfolds over time, with both performers acting
in the world – executing and modifying plans in response to
reactive feedback from the environment.

This story illustrates a number of key concerns. The lap-
top performer is affecting change in-the-world in real-time
which is only possible when the program, the process and
the task domains are temporally aligned. The livecoding per-
former must be able to realise updates to the process domain,
through the program domain within the temporal bounds of
the task domain. In practical terms this means that the sys-
tem needs to support direct manipulation by the programmer
within the bounds of human audio perception – fractions of
milliseconds for some audio tasks. The system also needs
to support the temporal alignment and scheduling of con-
current processes: both the chords and the basso profundo
voices needed to be synchronised temporally and the basso
profundo was scheduled for introduction at a time which
made sense musically. Finally, the system needs to support
multiple human cognitive cycles of attention, planning and
action. In particular, there were times when the programmer
was planning future action, by building processes that infer
future temporal agency. These planning phases occur at the
same time that a programmer is also attending to the on-
going performance and they may need to be interrupted to
adjust other aspects of the music or visual display. Although
planning phases involve limited temporal association be-
tween the program and process domains, there is a need for
temporal reasoning that is tied to the task domain through
real-world, clock-time semantics.

Although this scenario is artificial, the first author of this
paper is an active composer and livecoding performer. His
work has been performed around the world and is viewable
online as recorded video screen-casts [47].

3. With-Time Programming
With-Time programming (WTP) extends ideas of “just in
time programming” [37], “experimental programming”[42]
and “live programming” [1, 15, 31, 44], to include timing
constraints based on real-world clock-time. We claim that a
focus on time driven semantics provides programmers with
a strong causal connection to the real-time world. Aligning
time in the program, process and task domains helps to sup-
port human action cycles including planning, execution and
feedback. In this section we position With-Time program-
ming with respect to its comparitors.

3.1 Just In Time and Experimental Programming

Just in Time (JIT) programming prescribes that algorithmic
description and evaluation occur within a temporal quantum
that is appropriate to a given task domain. Richard Potter
offers the following description:

... the goal of just in time programming is to
allow users to profit from their task-time algorith-
mic insights by programming. Instead of automating
with software what was carefully designed and imple-
mented much earlier, the user recognises an algorithm
and then creates the software to take advantage of it
just before it is needed, hence implementing it just in
time.[37]

Potter’s emphasis that the “user” as aspontaneousalgo-
rithm creator is fundamental to JIT programming and this
distinguishes it from other design-centred, engineering prac-
tices.

JIT programming aligns with an iterative and incremen-
tal development cycle common to Agile software develop-
ment methodologies. Like Agile methods, JIT programming
advocates a style of negotiated development between pro-
grammers and their work. Agile methods acknowledge the
limitations of formal specification in the development of
real-world commercial projects and attempt to systematise
the development cycle to accommodate unknown, or poorly
known, requirements [4]. Where JIT programming diverges
from Agile thinking is that it is fundamentally more transient
in nature. Not only is development a negotiation, it is also
ephemeral. Indeed, during the course of a JIT session, source
code which was valid at the start may be re-appropriated for
a different purpose at the end. In other words, source code
will expand, contract and morph during a given session and,
significantly, the source code at any point in time will only
provide a partial view of the active runtime system. Today
there are many, widely-used JIT programming environments
– we mention the R statistical environment as one successful
example[39].

For the JIT programmer, there is often no intention to cre-
ate a final software product and JIT programming is about
experiment rather than manufacturing. The term “Experi-
mental Programming” has sometimes been used in the same

3 2010/9/22

sense as JIT programming and it has also been used to de-
note some specific JIT programming projects. It has a long
history in the Lisp community as reflected in the following
quote by Erik Sandewall:

The average Lisp user writes a program as a pro-
gramming experiment, i.e.., in order to develop the
understanding of some task, rather than in expectation
of production use of the program.[42].

Seymour Papert attempted to start an education revolu-
tion around the idea of experimental programming which
resonates to this day in the work of the Lifelong Kinder-
garten Project at MIT including projects such as Logo [36],
Flogo I & II [19] and Scratch [28]. These projects all share
an interactive and experiential view of programming, which
sees the programmer as an active learner engaged in a com-
putational experiment.

3.2 Live Programming

Live Programming (LP) is a term which has been used to
denote systems which support the direct intervention of the
programmer in a program’s runtime state. It can be thought
of as an extreme version of JIT programming where there is
a direct correlation between a program’s representation and
its execution. For example:

In [SubText] the representation of a program is
the same thing as its execution. Aligning syntax and
semantics narrows the conceptual gulfs of program-
ming. The experience of programming becomes more
akin to using a spreadsheet than a keypunch [15].

Live Programming often shares an interest in real-world
experiential and experimental programming practice and of-
ten seeks to provide the programmer with a direct connection
to the physical world:

In our vision, the Self programmer lives and acts
in a consistent and malleable world, from the concrete
motor-sensory, to the abstract, intellectual levels. At
the lowest, motor-sensory level of experience, objects
provide the foundation for natural interaction. Conse-
quently, every visual element in Self, from the largest
window to the smallest triangle is a directly manipu-
lable object. [44]

Examples of LP interfaces maybe text-driven systems
where each character that is inserted by a programmer is im-
mediately interpreted and acted upon – even before a com-
mand termination character has been received. Some visual-
patching environments also support a notion of live program-
ming where on-the-fly changes to a data-flow graph are im-
mediately interpreted. For example, environments such as
Max/MSP and PureData, support immediate updates to a
signal processing graph in response to changes in the visual
programming interface[38].

3.3 Features of WTP

WTP is an extension of JIT programming which emphasises
clock-time and interaction with real-world artefacts. WTPis
an experimental and experiential practice that focuses on the
dynamic negotiation of artefacts that exist in-the-world.It at-
tempts to be incremental and interactive and it supports hot
updates to the runtime system. It is reactive to the environ-
ment, providing feedback to the programmer both through
the user interface and also through the programming lan-
guage infrastructure. WTP’s emphasis on real-world interac-
tion mandates that time and concurrency be first-class con-
cerns of, not only the runtime system, but of the whole pro-
gramming infrastructure.

As shown in the reference scenario, WTP can support
direct and immediate updates to the environment. However,
WTP code is a transient interface for intervention rather than
being either a static specification, or a live representation.
Ultimately, WTP attempts to provide the programmer with a
strong causal connection to the world by correlating time and
concurrency across the program, process and task domains.

There is at least one reference in the literature where the
term Just In Time programming has been used to apply to our
conception of WTP: Rohrhuber et al. describe theirJITlib
extension to the SuperCollider environment, which is also
in the domain of livecoding of audiovisual media. We will
consider this system in Section 4.5 (Related Work).

4. Impromptu
In this section we describe Impromptu, a WTP system which
has been progressively developed and applied in the livecod-
ing context over the past five years [45].

As discussed above, a WTP system must address a num-
ber of key concerns: It needs to support “first-class” tempo-
ral semantics and a natural style of concurrent programming;
it needs to provide an integrated, reactive, development envi-
ronment; and it needs to include adequate real-time systems
support for the particular task domain. In the following sec-
tions we outline how Impromptu addresses these issues.

Figure 2. The Impromptu IDE

4 2010/9/22

http://impromptu.moso.com.au

4.1 Dynamic and reactive infrastructure

The programming language infrastructure of a WTP system
must support dynamic updates to the underlying runtime
system in atimely manner – in other words, the program
domain must be able to dynamically influence the process
domain. A WTP system must also be reactive in nature, in
that it provides suitable real-time feedback to the program-
mer and, ideally, supports various automated mechanisms
for reactively updating the underlying runtime system. Be-
cause programming and execution are temporally aligned,
these observations imply that WTP development tools must,
themselves, be dynamic and reactive: they must comply with
time and concurrency constraints from the task domain and
need to be amenable to reactive updates from the environ-
ment.

Impromptu provides an Integrated Development Environ-
ment (IDE) based around a Scheme language implementa-
tion and an audiovisual runtime system. The environment
includes, a source code editor, a Scheme interpreter1, an
experimental Scheme-to-x86 compiler (via LLVM), a con-
current (incremental) garbage collector, a debugger, an au-
dio DSP architecture and a substantial graphics subsystem.
Additionally, Impromptu supports a number of options for
extension, including a foreign-function interface, a bidirec-
tional Objective-C bridge and audio and visual plug-in ar-
chitectures.

Impromptu supports multi-core and distributed process-
ing – possibly from multiple, collaborating programmers.
Its user-interface (UI) allows programmers to select an ac-
tive process and then its editing window is used to plan and
enter functions for scheduling and evaluation. By automated
selection and highlighting, the editor allows programmers
to send arbitrary expressions to an Impromptu process for
evaluation – either via interpretation or JIT compilation.Im-
promptu strives to make this process as timely as possible.
In the context of multimedia performance this means being
able to, for example, “perform” through the interface, evalu-
ating expressionsin time to the rhythms of a live ensemble.
This is a task that requires co-ordination between the editor,
evaluation engine and underlying runtime system.

The Impromptu IDE provides an array of standard text-
editing tools such as keyword-completion, syntax highlight-
ing, keyboard shortcuts, expression matching, error high-
lighting, text macros, undo/redo, search-and-replace, and so
on. The editor is also programmable, providing both pro-
grammers and the Impromptu system itself with the ability
to modify text procedurally. This provides for programmer
feedback directly through the text interface.

An example of this textual feedback in action is the case
of autonomous debugging. Autonomous debugging is an im-
portant consideration for WTP as the programmer is often
involved in other real-time activities when an error occurs

1 Impromptu’s original interpreter was forked from the TinyScheme project
[50]. It has been substantially modified since the original fork.

– a debugging task interrupts human activities such as lis-
tening, musical planning and orchestration and too much
time spent attending to debugging can seriously detract from
an overall performance. Ideally we would like the debug-
ger to intercede to automatically solve simple problems and
to provide notification and to update the source code to re-
flect the actions taken. One example where this occurs is
in the case of unbound variables in situations where Im-
promptu’s analyser can discern that the unbound variable
can be “safely” represented with a suitable type and value
(“safely” in a program/process-domain sense rather than a
task-domain sense). The debugger can then automatically
substitute the value into the abstract syntax tree and update
the source code to reflect the change.

There is no doubt that this style of autonomous debugging
has a number of task domain ramifications but it is arguably
less invasive than automatically interrupting the programmer
from her current task to engage in a debugging activity.
Maintaining execution of the concurrent process until the
programmer finds time to address the error can be a useful
tool. By updating the code, and highlighting the change, the
programmer is made aware of the modification and can take
action when time permits.

Impromptu’s programmable editing environment also al-
lows programmers to build autonomous agents that can gen-
erate and/or modify the source code at runtime. This style
of autonomous editing was a feature of Alex McLean’s Perl
environment [32] and has recently become a central feature
of Thor Magnusons ixi language [27].

The Impromptu UI is responsible for displaying informa-
tion about the state of the runtime system. Sometimes this
information is presented discretely, as with the debugging
example above, but there are many situations where it is con-
tinuous. This is the case for load information such as mem-
ory usage, CPU performance, and, more specifically, the sys-
tem’s ability to meet real-time deadlines. The Impromptu
UI provides real-time feedback about the system’s ability to
meet timing constraints using a graphical, heads-up-display
that floats above the source code. Timing of temporal recur-
sions and other system resource information is graphically
displayed to the programmer over the text interface.

Additionally, the Impromptu UI provides canvas and
plug-in support to the underlying audio and graphics sub-
systems. Plug-in UIs such as those in Apple’s AudioUnit
specification, provide real-time gestural control over plug-in
parameters and supplement Impromptu’s procedural access
to these same parameters. (This combination of direct ma-
nipulation and procedural control is another example of the
coupling ofprogramandprocessdomains.) The Impromptu
graphics canvas provides any number of either OpenGL or
Quartz graphics contexts for display on any connected dis-
plays, at any given resolution. Impromptu’s canvases pro-
vide a number of useful abilities such as the ability to cap-
ture as an image (PDF or bitmap) or as a quicktime movie,

5 2010/9/22

to write or read directly to or from another canvas (be that
OpenGL or Quartz), to capture images directly from the un-
derlying window system, and so on. Finally, the Impromptu
Objective-C bridge allows for custom OSX Cocoa UIs to
be built on-the-fly and manipulated either procedurally or
directly. Impromptu can, and has been, used to develop stan-
dalone OSX desktop applications [46].

4.2 Concurrency

In order to support the high degree of parallelism inherent
in many real-world task domains, a WTP system should
have a concurrency model which islightweight[2]. It should
attempt to be syntactically and semanticallysimple. It should
be sufficientlyefficientto support the domain activity and it
should beflexible to allow for easy integration with third-
party libraries and remote systems.

Impromptu responds to the first three requirements by
adopting a concurrency design pattern which we have dubbed
“temporal recursion” (linguistically rather than mathemat-
ically recursive). Temporal recursion is a style of time-
driven, discrete-event concurrency [6, 24] similar toEngines
[20, 21] with real-time interrupt scheduling.

By scheduling future events in a self referential manner,
a temporal loop is formed. Temporal recursion provides an
asynchronous, deterministic concurrency framework with a
simple semantics for both time and concurrency. It is the
primary concurrency paradigm in Impromptu and in the
simplest case, of non-distributed, single-core operation, it is
the only model which programmers need to reason about.
The fourth requirement, of flexibility, is implemented using
a multi-layer concurrency model as described below.

The temporal recursion model is an extension of Im-
promptu’s support for the real-time execution of arbitrary
code blocks such as procedures, closures and continuations.
A real-time scheduler is responsible for scheduling the exe-
cution of code blocks with chronological ordering. This en-
gine is based on a priority queue containing a dynamic num-
ber ofevent structures– tuples containing an execution start-
time, a maximum execution run-time, a process identifier, a
function (procedure, continuation or closure), and a vector of
one or more argument values as required by the given func-
tion. Events can then be applied using standard procedure-
call semantics by applying the supplied arguments to the
given function. (The scheduler protects message tuples from
garbage collection). More details on temporal recursion are
given in the next subsection.

Impromptu’s temporal recursion model and Scheme’s
top-level interaction work together to support a natural and
flexible style of hot-swappable code. The Scheme language
makes code updates “natural” in that modifications to the
source code are reflected in the next function call – so that
dynamic updates from the program domain are reflected in
the process domain.

Impromptu supports multi-core and distributed compu-
tation by supporting a notion ofprocesses. Processes are

pre-emptive and each provides an isolated execution stack,
heap memory and real-time garbage collector2. Interac-
tion with other Impromptu processes is strictly via message
passing through Impromptu’s inter-process communication
(IPC) mechanism.

Impromptu’s temporal recursion events specify a pro-
cess ID and may be directed to execute on any available
Impromptu process. The temporal-recursion discrete-event
model mandates the sequential execution of functions and
each Impromptu process is responsible for executing these
functions as fast as possible. Impromptu supports standard
Scheme semantics particularly with regard to state seman-
tics. As in standard Scheme, it is possible to program in
both functional and imperative styles using the temporal re-
cursion model and this provides a straight-forward progres-
sion from standard Scheme programming to Impromptu pro-
gramming.

A multi-layered approach to concurrency such as this
places additional cognitive load on the programmer because
he must be able to reason about programs with suitable re-
gard to all layers. However, a multi-layered approach is the
most practical solution for any system attempting to provide
a deterministic concurrency model while supporting non-
deterministic distributed computation and external library
integration. Impromptu attempts to balance these needs
with a desire to provide a simple, deterministic concurrency
model and makes this model explicit. Keeping concurrency
and time as explicit concerns is, as we have previously men-
tioned, an issue that we think is of intrinsic importance to
WTP.

4.2.1 Temporal-recursion

In this subsection, we provide concrete examples of Im-
promptu’s temporal-recursion model and describe how the
programmer needs to reason about this model. Impromptu
supports temporal recursion through a single function - the
schedule call. Schedule is an asynchronous call that is
responsible for registering anevent tuplewith the schedul-
ing engine. In its simplest formschedule takes a deadline
time and a closure as its only two arguments. If the closure
requires arguments then this variable number of arguments
must also be supplied to theschedule call.

; ; pe r od i c c y c l e c a l l e d e v e r y 1000 t i c k s
; ; w i t h i n c r e m e n t i n g i n t e g e r c oun te r
(d e f i n e p e r i o d i c

(lambda (t ime c oun t)
(p r i n t ’ c oun t:> c oun t)
(s c he du le (+ t ime 1000) p e r i o d i c

(+ t ime 1000) (+ c oun t 1))))

; ; s t a r t c y c l e
(p e r i o d i c (now) 0)

Listing 1. Temporal Recursion

2 Actually the garbage collector, which is a concurrent variant of Baker’s
treadmill [3], runs on its own kernel thread. Therefore eachImpromptu
process actually requires two kernel threads.

6 2010/9/22

Listing 1 shows the definition of a temporal recursion.
It is worth noting that the temporal recursion semantics are
structured around the notion of scheduled function execu-
tion as opposed to the more abstract concept of a sched-
uledevent. We believe that this provides a very minimal ex-
tension to existing Lisp programming practice (in particu-
lar, the tail-recursive programming style familiar to Scheme
programmers). In listing 1 a single temporal recursion is
started when(periodic (now) 0) is called. As its final
action theperodic function schedules its own execution in
1000 clock-ticks fromtime and increments bothtime and
count. Thecount andtime arguments are the only observ-
able state and are isolated to this particular temporal recur-
sion. A second, or third etc., concurrent temporal recursion
can be started at any time by re-evaluatingperiodic. Note
that any state (i.e.count) is isolated, being discrete for each
temporal recursion.

Temporal recursion can also support shared-state. By
scheduling a function closed overcount, it is possible
to share this state between multiple temporal recursions.
Listing 2 demonstrates the combination of shared state
(count) and isolated state (name) between each temporal
recursion. The log output of listing 2 will look like this
“A0,B1,C2,A3,B4,C5,A6...”.

; ; shared memory ” c oun t ”
(d e f i n e shared−count

(l e t r e c ((c oun t 0)
(proc (lambda (t ime name)

(p r i n t name c oun t)
(s e t! c oun t (+ c oun t 1))
(s c he du le (+ t ime * second*) proc

(+ t ime * second*) name))))
p roc))

; ; s t a r t t h r e e te mpor a l r e c u r s i o n s which s ha r e ” c oun t ”
(l e t ((t ime (now)))

(shared−count t ime ”A”)
(shared−count t ime ”B”)
(shared−count t ime ”C”))

Listing 2. Temporal Recursions sharing memory

Impromptu’s temporal recursion is a co-operative con-
currency model and the programmer is responsible for en-
suring that temporal recursions meet their real-time dead-
lines. Functions must either run to completion or explicitly
yield control. In the simplest case of a single temporal re-
cursion this requirement forces the programmer to ensure
that a queued function is capable of completing its execu-
tion before the time of its future invocation. This situation
becomes more complex once a second temporal recursion is
introduced and the programmer must ensure that each of two
temporal recursions must not only meet their own deadlines,
but ensure that they do not interfere with each others dead-
lines. This potentially presents a very difficult problem for
programmers to reason about but, in practice, the problem is
less problematic as the common pattern of use for temporal
recursion is to create functions with extremely short execu-
tion times. We argue that this convention would not only be
characteristic of real-time multimedia, but would be the case

with any type of successful, real-time, reactive programming
– but it is an issue that the programmer needs to be aware
of and a consequence of making Impromptu’s concurrency
model explicit.

4.3 Time

Impromptu has been designed to provide a reactive system
with timing accuracy and precision based on the constraints
of human perception. Human auditory perception has a sig-
nificantly higher precision than visual perception and re-
quires accuracy in the microsecond range[40]. Although this
is significantly longer than the nanosecond clock of most
current operating systems, the accuracy required to maintain
a suitable quality-of-service for audiovisual tasks remains a
challenge[25]. WTP makes this challenge even more diffi-
cult by demanding that the real-time system be dynamic. It is
not only the dynamic number and type of reactive events that
can effect real-time performance but also dynamic changes
to the execution of the reactive system itself.

The real-time demands of WTP systems are relaxed by
recognising that, firstly, human agency combines perception
with cycles of cognition and action with combined timings
measured in fractions of seconds and, secondly, that timing
constraints in the task domain may also be greater than mere
perception. For example, in the multimedia performance
domain an audience would forgive, or not even perceive, the
loss of a single musical note, however the loss of every fifth
note might cause some consternation. Thus the quality-of-
service demands on the system are “firm” rather than being
“hard” real time.

Impromptu includes a firm real-time scheduling engine
based on an earliest-deadline-first (EDF) approach[8]. The
scheduler supports two clock types, an audio-rate clock,
measured in audio samples (or “ticks”) since Impromptu was
initialised, and a real-world “wall clock”, represented asan
NTP timestamp[33]3.

Earlier, we claimed that a WTP programming environ-
ment should support a “first class” semantics for time in
order to help programmers reason about the temporal state
of a program. Lee et al.[26] proposed six features that should
be present in order to provide a programming environment
with a “first class” semantics for time:

3 Why does Impromptu have two clocks? An audio-rate clock makes sense
for two reasons. Firstly as one of Impromptu’s primary task domains is
temporally bound to human audio perception a clock referencing the audio-
rate is useful and appropriate. Secondly, professional audio devices are
usually built with higher quality quartz crystals than commodity computing
hardware. However, there are two primary problems with an audio-rate
clock. Firstly, an audio-rate clock has no notion of real-world time, making
it unsuitable for distributed timing tasks. Secondly, it isoften convenient
for users to operate in terms of wall-clock time - “please start this video at
3:00pm”. The scheduling engine does not discriminate between these two
time references and programmers are free to use either and toconvert freely
between the two.

7 2010/9/22

• The ability to express timing constraints

• Timed communication

• Enforcement of timing constraints

• Tolerance to violations and constraints

• Maintaining consistency in distributed real-time systems

• Static timing verification

We present these six features in the following sub-
sections and outline how Impromptu performs in meeting
each requirement.

4.3.1 Ability to express timing constraints

Impromptu provides the ability to express both start-time
and execution-time constraints in either clock-time or sample-
time. Start-time provides the earliest deadline by which a
function must begin executing. Execution-time expresses
the maximum time available for the execution of the given
function.

; ; v i de o p l a y e r te mpor a l r e c u r s i o n loop ing
; ; a t a r a t e o f 1 /24 th o f one second .
; ; maximum−execution t ime o f 1 /32 nd o f one second
(d e f i n e v ideo−p layer

(lambda (t ime mov p o s i t i o n)
(l e t ((f rame (g fx : get−movie−frame mov p o s i t i o n)))

(g fx : draw− image t ime * canvas* frame 1)
(s c he du le (cons (+ (now) (/ * second* 2 4))

(/ * second* 3 2))
v ideo−p layer

(+ t ime (/ * second* 2 4))
mov (+ p o s i t i o n 1 / 2 4)))))

; ; t h i s c a l l s t a r t s the te mpor a l r e c u r s i o n
; ; t he e x e c u t i o n d e a d l i n e f o r t h i s f i r s t c a l l
; ; i s t he d e f a u l t e x e c u t i o n d u r a t i o n o f t he p r oc e s s
(v ideo−p layer (now) (g fx : load−movie ” / tmp / myfi lm . mp4”) 0 . 0)

Listing 3. MPEG Video Playback

Listing 3 demonstrates a straight forward MPEG video
player written in Impromptu. The video-player plays back
video at a rate of 24 frames per second. It has a temporal
constraint on its execution-time mandating that each frame
complete its rendering in less than 1/32nd of a second.

4.3.2 Timed Communication

Impromptu’s primary communication mechanism is via
remote-procedure calls. Impromptu’s RPCs can be either
synchronous or asynchronous. Synchronous RPCs are de-
signed to work within the context of Impromptu’s tempo-
ral recursion model. A synchronous RPC is responsible for
capturing a continuation before sending an asynchronous
message to the remote process. It then immediately breaks
to the top-level. This effectively stalls any active temporal
recursion. The result of executing the procedure call on the
remote process is returned to the sending process, at which
point the sending process executes the stored continuation
with the returned result. A time-out can be applied to the
RPC in which case any stored continuation will lapse after
the time-out period has expired. The time-out is also used as

the maximum-execution duration for the remote procedure
call.

Asynchronous calls can also specify a time-out although
this value is for the remote maximum-execution duration
value only as asynchronous RPC calls do not directly return
values.

Impromptu’s internal NTP support includes clock syn-
chronisation that has been designed to fine-tune the local
NTP host-time across a LAN. This additional level of clock
synchronisation provides temporal accuracy in the microsec-
ond range for communication between distributed processes
[48]. As previously discussed the microsecond range is pre-
cise enough to support the synchronisation of audiovisual
activities.

4.3.3 System enforcement of timing constraints

Impromptu supports deadline enforcement through both the
start-time and execution-time of functions. The Impromptu
EDF scheduler is responsible for ensuring that events are dis-
patched to their requested process, and each process is then
responsible for ensuring that each events execution meets
its execution-time deadline. Events that the EDF fails to dis-
patch on time are subject to a global reaper. Events which fail
to execute within their stated execution-time deadline raise
an exception or call an optionally supplied closure/continu-
ation.

One problem with Impromptu’s execution duration time-
out is the time spent in foreign function calls. Impromptu
does not have the ability to abort computation until the
completion of a foreign function call. This can effect the
systems ability to respond in a timely manner to calls which
exceed their maximum execution duration. However, this
excess will be immediately reported on completion of the
foreign function call, and the computational will abort.

4.3.4 Tolerance to violations and constraints

Impromptu’s temporal constraint violations currently fall
into one of two categories. Either an event is late in starting
execution, or it is late in completing execution. In the first
case there is some limited programmer discretion in setting
a reaper time-out.

The scheduler incorporates a global reaper which is re-
sponsible for culling events whose start times are late by an
amount greater than a user-defined default value (usually in
the order of 1ms). Culled events register an error message
to the users log view, but are otherwise ignored. There is no
similar tolerance for missed execution completion times.

4.3.5 Maintaing consistency in distributed real-time
systems

Impromptu provides co-ordination of distributed processes
by incorporating a Linda style Tuple Space model[48]
known as “Spaces”.Spacesprovides Impromptu with inter-
process co-ordination both locally and remotely. It is imple-
mented on top of Impromptu’s RPC mechanism and sup-

8 2010/9/22

ports the same time-out semantics.Spacesimplementation
is based on the original Linda model [17] and supports
the primitives post, read and remove - or, in Impromptu,
write, read and take. Support for regular expression matches
and numeric conditionals are supported as tuple parameter
matches. Parameter matches can be bound in-place as per
the original Linda model.
; ; no t i m e o u t − w a i t i n d e f i n i t e l y f o r new messages to a r r i v e
; ; and the n r e p e a t
(d e f i n e mai l− reader

(lambda (username)
(l e t loop ((ma i lbox (append ” ma i lbox / ” username)))

(s pa c e s: t a k e mai lbox ’ s u b j e c t ’ from ’ message)
(p r i n t f ” from :%s\ n s u b j e c t :%s\n%s ”

from s u b j e c t message)
(loop mai lbox))))

; ; read andrew ’ s mai lbox
(ma i l− reader ” andrew ”)

Listing 4. Linda Co-ordination on Model

4.3.6 Static timing verification

Given the nature of WTP, it is difficult to see how a for-
mal temporal verification of Impromptu programs could pro-
ceed. There appear to be two significant impediments to pro-
viding such an analysis. Firstly, as an environment designed
for WTP, Impromptu programs are extremely dynamic. Not
only is it impossible to say with certainty how many, and
what type of events the system may be required to process,
but it also impossible to know exactly how those events are
to be processed before runtime.

Secondly, the system is distributed and highly reliant on
integration with external libraries. The culmination of these
issues, makes it extremely unlikely that any reasonably-
broad static analysis is possible. Instead, Impromptu at-
tempts to compensate by providing programmers with run-
time feedback about the temporal state of the executing sys-
tem and provides programmers with the ability to control
overdue tasks through the use of programmer-supplied tim-
ing constraints.

4.4 AudioVisual Subsystems

Impromptu provides a substantial runtime system with a
particular focus on audio and visual subsystems. Here we
very briefly present features of these two major subsystems.

4.4.1 Audio Architecture

Impromptu’s audio subsystem implements the Apple Au-
dioUnit specification, a set of design requirements for imple-
menting AudioUnit plugins and the protocols used to con-
nect these nodes into arbitrary data-flow graphs. Addition-
ally, the specification outlines various protocols for commu-
nicating between applications which host these DSP graphs
and the individual AudioUnit plugins which they instantiate
and communicate with. The specification also outlines var-
ious user interface guidelines4 and various conventions for

4 AudioUnit plugins may provide their own custom GUI.

supporting interoperability. The AudioUnit specificationis a
well-established industry standard supported by the majority
of high-end digital audio companies.

The AudioUnit/CoreAudio specification prescribes a syn-
chronous, data-flow system, with an adjustable block size
and a pull architecture. In its standard form the AudioUnit
specification does not explicitly support multi-threaded op-
eration. However, Impromptu supports the parallel process-
ing of upstream subgraphs.

Impromptu also allows on-the-fly compilation of “cus-
tom” AudioUnits at runtime. These “custom” AudioUnits
can be integrated anywhere into the DSP graph. This pro-
vides Impromptu programmers with the ability to mix and
match commercial audio plugins with their own on-the-fly
custom DSP code. Listing 5 shows the code used to com-
pile and load a simple low pass filter. This code can be hot-
swapped at anytime without adversely effecting the audio
signal chain. Listing 5 shows a “custom” low-pass filter.

; ; DSP k e r n e l f o r low pass f i l t e r
(d e f i n e l p− f i l t e r

(lambda (sample t ime c ha nne l d a t a)
(l e t ((f r e que nc y (f64g d a t a 0))

(p0 (f64g d a t a 1))
(p1 (f64g d a t a 2)))

(s e t! p0 (+ p0 (* f re que nc y (− sample p0))))
(s e t! p1 (+ p1 (* f re que nc y (− p0 p1))))
(f 64s d a t a 1 p0)
(f64s d a t a 2 p1)
p1)))

(d e f i n e f i l t e r − d a t (ob j c : d a t a : make (* 8 3)))
(f 64s f i l t e r − d a t 0 0 . 5)
(au : code :l oa d au−code−node ” f i l t e r ” l p− f i l t e r f i l t e r − d a t)

Listing 5. Simple LowPass Filter

4.4.2 Graphics Architecture

Impromptu provides access to the OSX graphics system
through a custom canvas class. Canvases can be constructed
with any dimension and can optionally be run fullscreen on
any available visual display. Any number of canvases can
be instantiated for either Quartz vector/bitmap drawing or
OpenGL rendering.

; ; c r e a t e canvas 640 x480
(d e f i n e canvas (g fx : make−canvas 640 480))
; ; s t a r t l i v e v ide o camera
(g fx : s ta r t− l i ve−v ide o)
; ; c r e a t e a gaus s ian b l u r image f i l t e r
(d e f i n e * b l u r * (g fx : ma ke− f i l t e r ” C IGa us s ia nB lu r”))

; ; p l ay bac k l i v e camera images a t 24 f rames per second
(d e f i n e draw−camera

(lambda (t ime)
(l e t * ((image (g fx : get− l ive− f rame))

(f i l t e re d− ima ge (g fx : a p p l y− f i l t e r * b l u r * image)))
(g fx : draw− image t ime canvas f i l t e re d− ima ge 1)
(c a l l b a c k (+ t ime (/ * s a m p l e r a t e* 2 4)) draw−camera

(+ t ime (/ * s a m p l e r a t e* 2 4))))))

; ; s t a r t drawing to canvas
(draw−camera (now))

Listing 6. Apply gaussian filter to live image stream and
render to canvas

9 2010/9/22

The Impromptu graphics subsystem supports OpenGL,
GLSL, vector drawing, Bitmap drawing, video decoding and
encoding and image processing.

Figure 3. A snapshot of an Impromptu graphics canvas

Graphics animation is handled using Impromptu’s tempo-
ral recursion paradigm for concurrency. Listing 6 illustrates
the application of a gaussian filter to a live video stream at
24 frames per second.

A second temporal recursion can be run at a completely
separate frame-rate, or indeed at a variable frame-rate, with
both rendering to a single, or multiple canvases. Audiovisual
synchronisation is trivial as the same temporal structuresare
used for both audio and visual change-over-time.

4.5 Related Work

There are far too many areas of related work to cover in this
small section. Instead, we will briefly outline a few major
influences and related projects.

Languages such as Lisp [29] and Smalltalk [23] have
influenced Impromptu’s interactive nature. Self [44], Boxer
[1], SubText [15] and SuperGlue [31] have explored the idea
of direct manipulation of the process domain through the
program domain. Simula [13], Erlang [2] and Linda [17]
have all influenced Impromptu’s concurrency model.

A precursor to this paper’s central theme of WTP comes
from Rohrhuber et al.[41] in their presentation of JITLib, a
programming extension for the SuperCollider language (and
where Just In Time is used in the same way that we refer
to WTP). They discuss WTP in relation to real-time audio
signal processing and examine some of the concerns raised
by dynamic, temporal programming.

The first explicit reference to a real-time, temporal re-
cursion, appears to come from the music programming lan-
guage Moxie [9]. Moxie defines acause operation which
can be used to schedule temporal recursions. Dannenburg’s
CMU MIDI Toolkit borrowedcause from Moxie [14].En-
gines[20, 21] andcoroutines[13, 34] both support similar
concurrency styles to temporal recursion although they are

commonly used in implicit abstractions and are generally not
implemented with real-time interrupt scheduling.

There is a long history of research into real-time tempo-
ral semantics in the embedded systems community. Ada, RT-
Java [8] and the synchronous languages Lustre, Esterel and
Signal [5] are a few of the many languages for embedded
programming which support a temporal semantics. How-
ever, these languages have different design goals to WTP
environments. They are primarily designed for product de-
velopment, rather than experimentation, and as a result they
commonly lack the dynamic and interactive nature required
for WTP. They are often designed for demanding real-time
applications, where static analysis is applied to tightly spec-
ified behaviour in order to provide hard real-time temporal
guarantees.

There has been a substantial body of research into Func-
tional Reactive Programming (FRP) as a paradigm for mod-
elling continuousbehavioursand discreteevents[12, 16,
35, 52]. In many respects FRP is similar to synchronous
systems, including ChucK which is discussed below. FRP
shares many of the same advantages as the synchronous lan-
guages (such as formal reasoning) and some of the same
disadvantages (such as performance and interfacing to non-
synchronous systems). FatherTime (FrTime) has attempted
to address some of these concerns by implementing FRP
using asynchronous and impure methods [11]. It is imple-
mented in Scheme and has had some limited exposure to
livecoding practice through the Fluxus [18] project.

SuperCollider [30] and ChucK [53] are two of the few
programming environments that have directly addressed the
notion of WTP. Both environments are heavily oriented to-
wards audio signal-processing and algorithmic music com-
position and are commonly used for livecoding. Both envi-
ronments share many of the same motivations as Impromptu
although they are less focused on visual applications.

SuperCollider written by James McCartney shares many
architectural features with Impromptu. It is a dynamic, byte-
code interpreted language with a deterministic co-operative
concurrency model, real-time garbage collection and real-
time EDF scheduling. SuperCollider’s concurrency model is
asynchronous.

ChucK, developed by Ge Wang and Perry Cook follows
in the synchronous languages genre (Signal, Lustre, Esterel
[5]) in implementing a concurrency model with temporal se-
mantics based around the synchrony hypothesis. ChucK’s
data-flow [22] “shreds”, are explicit, user space and deter-
ministic.

ChucK’s synchronous approach provides one of the ma-
jor distinctions between the environments. ChucK attempts
to provide a similar (synchronous) semantics for program-
ming tasks at both low-levelcontinuousand higher leveldis-
cretetemporal levels5. This provides for an elegant, unified
semantics for programmers. However, a purely synchronous

5 Continuous in this context meaning changing every tick of some clock

10 2010/9/22

http://vimeo.com/impromptu/videos/sort:plays

implementation strategy makes distributed and integration
programming difficult as synchronous code does not nat-
urally co-ordinate with non-synchronous external libraries
and non-deterministic distributed computation. SuperCol-
lider and Impromptu’s choice of asynchronous concurrency
trades ChucK’s clean semantics for a more flexible architec-
ture.

/ / d e f i n e runner f u n c t i o n
˜ runne r = { |msg , k , i nc|

{ | t ime | / / lambda c l o s i n g over msg k inc
/ / p r i n t i n t e g e r message
(msg ++ k) . p o s t l n ;
/ / i n c r e me n t k
k = k + inc ;
/ / loop in 1 second
SystemClock . schedAbs (t ime + 1 . 0 , t h i s F u n c t i o n) ;

} . va lue (t h i s T h r e a d . s e c onds) ;/ / c a l l anonymous lambda
} ;

/ / s t a r t f i r s t t e mpo r a l r e c u r s i o n
˜ runne r . va lue (”TR−1” , 0 , 1) ;
/ / s t a r t second te mpor a l r e c u r s i o n
˜ runne r . va lue (”TR−2” , 0 , 2) ;

Listing 7. Spawning two SuperCollider Timed Loops

An example of this dual semantics in Impromptu is the
code in Listing 5 which includes on-the-fly compilation of
DSP code in Impromptu. That example isimplicit with re-
gards to both time and concurrency because it is compiled
into a node in a synchronous data-flow graph. It is dynamic,
but is semantically removed from the generally explicit and
asynchronous temporal recursion model used for other Im-
promptu programming6.

/ / d e f i n e s h r e d f u n c t i o n
fun vo id s h r e d r u n n e r (s t r i n g msg , i n t k , i n t i nc)
{

wh i l e (t r u e)
{

/ / p r i n t i n t e g e r w i t h message
<<< msg , k >>>;
/ / i n c r e me n t i n t e g e r
k + inc => k ;
/ / loop in 1 second
1 . 0 : : second => now;

}
}

/ / s t a r t f i r s t s h r e d
s po rk ˜ s h r e d r u n n e r (” shred−1” , 0 , 1) ;
/ / s t a r t second s h r e d
s po rk ˜ s h r e d r u n n e r (” shred−2” , 0 , 2) ;

Listing 8. Spawning two ChucK shreds

Code Listings 7, 8 and 9 compare similar behaviour in Su-
perCollider, ChucK and Impromptu. All three support an ex-
plicit temporal semantics. They all share concurrency mod-
els that are deterministic and lightweight supporting hun-
dreds or thousands of concurrent activities. Neither Super-
Collider or ChucK directly support multi-core processing,
although they are capable of communicating between mul-
tiple separate instances of their runtimes. Both SuperCol-

6 It is worth mentioning that Impromptu’s temporal recursionframework
could be used for signal processing (i.e. low-levelcontinuousprocessing),
but this would fit less comfortably with the AudioUnit specification and is
less efficient.

lider and ChucK provide strong start-time constraints al-
though neither environment currently includes support for
execution-duration constraints.

; ; d e f i n e te mpor a l r e c u r s i o n f u n c t i o n
(d e f i n e runne r

(lambda (t ime msg k inc)
; ; p r i n t i n t e g e r message
(p r i n t msg k)
; ; loop in 1 second and inc r e me n t i n t e g e r
(s c he du le (+ t ime * second*) runne r

(+ t ime * second*) msg (+ k inc) i nc)))

; ; s t a r t f i r s t TR
(runne r (now) ” tr−1 ” 0 1)
; ; s t a r t second TR
(runne r (now) ” tr−2 ” 0 2))

Listing 9. Spawning two Impromptu “temporal recursions”

5. Discussion
5.1 Cyber-physical systems

Drawing temporal and concurrency concerns into the pro-
gram domain brings the activity of programming into the do-
main of cyber-physical systems where programmers become
agents with a cyber-physical relationship with the world.
As computing becomes increasingly dominated by cyber-
physical systems, the traditional, data-transformational view
of computing passed down from Church and Turing [25] [7]
becomes increasingly incommensurate with computational
demands[43]. As expressed by Edward Lee:

... why is the latency of audio signals in modern
PCs a large fraction of a second? Audio processes
are quite slow by physical standards, and a large frac-
tion of a second is an enormous amount of time. To
achieve good audio performance in a computer (e.g.
in a set-top box, which is required to have good audio
performance), engineers are forced to discard many
of the innovations of the last 30 years of computing.
They often work without an operating system, with-
out virtual memory, without high-level programming
languages, without memory management, and with-
out reusable component libraries, which do not expose
temporal properties on their interfaces. Those innova-
tions are built on a key premise: that time is irrelevant
to correctness; it is at most a measure of quality. Faster
is better, if you are willing to pay the price. By con-
trast, what these systems need is not faster computing,
but physical actions taken at the right time. It needs to
be a semantic property, not a quality factor. [25]

It is not that computer science has not attempted to rec-
oncile a physical time with a computational time but, rather,
the level of abstraction at which this reconciliation usually
occurs. Modern operating systems, routinely provide high-
precision clocks and operate successfully in highly concur-
rent and media-rich environments. Nevertheless, temporality
is lost when moving to higher-level languages and runtime

11 2010/9/22

environments because real-world time is not of primary con-
cern to the computational process for many programming
tasks.

With Time Programming is a paradigm which meets
many of Lee’s key concerns. With Time Programmers are
active participants in the world and have a fundamental inter-
est in time and concurrency. Their role, as human agents in
a cyber-physical relationship with the world, is not only re-
active but also intentional. They become an integral part ofa
cyber-physical system by providing stimulus for the system
and reacting responsively to its perturbations in the world.
Significantly, their role is not merely gestural (or direct)but
also procedural, and procedural control provides the ability
to plan for future states and to adapt to changing require-
ments computationally. Providing WTP programmers with
the ability to act procedurally in a reactive feedback loop
with the physical world requires suitable time and concur-
rency semantics. In particular, we see the need for a “first-
class” semantics for time and a deterministic concurrency
paradigm. For WTP, one of the primary ramifications of
such first-class semantics for time is the possibility of align-
ing development time, computational time and real-world
clock-time.

5.2 Conclusion

We have discussed a programming paradigm which we have
called With Time Programming and we have claimed that
WTP is an extension of just-in-time programming where the
programmer’s real-world causal agency is supported by real-
time programming infrastructure. WTP is directed towards
experimental and experiential practices where an environ-
mental artefact is the primary goal.

We have described a WTP programming environment,
Impromptu, and we have discussed how Impromptu’s sup-
port for accurate start-time and execution-time constraints,
in combination with a simple, lightweight concurrency pat-
tern, helps a programmer to reason about, to control and to
react within a multimedia cyber-physical system. In the fu-
ture, we are interested in applying Impromptu to other do-
mains, such as robotics and command-and-control, in situa-
tions where human agency is of central concern.

We are entering an age in which many computing activ-
ities will no longer be primarily algebraic and transforma-
tional. Instead, computing devices will increasingly interact
with each other and the world around them in cyber-physical
systems. The work described here is part of a continuing ex-
ploration into the act of programming as a real-time causal
activity where the human programmer is an active agent in a
cyber-physical world.

References
[1] A. A diSessa and H. Abelson. Boxer: a reconstructible com-

putational medium.Communications of the ACM, 29(9):859–
868, 1986.

[2] J. Armstrong. Making reliable distributed systems in the
presence of sodware errors. PhD thesis, Royal Institute of
Technology, Stockholm, Sweden, 2003.

[3] H. G. Baker. The treadmill: Real-time garbage collection
without motion sickness.ACM SIGPLAN Notices, 27:66–70,
1992.

[4] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cun-
ningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries, et al. Manifesto for agile software development,
2001.Online: http://www.agilemanifesto.org, 2001.

[5] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. De Simone. The synchronous languages
12 years later.Proceedings of the IEEE, 91(1):64–83, 2003.

[6] R. Beraldi and L. Nigro. Distributed simulation of timedpetri
nets.IEEE CONCURRENCY, 7(4):52–62, 1999.

[7] W. Beynon, R. Boyatt, and S. Russ. Rethinking program-
ming. In Information Technology: New Generations, 2006.
ITNG 2006. Third International Conference on, pages 149–
154, 2006.

[8] A. Burns and A. Wellings.Real-Time Systems and Program-
ming Languages: ADA 95, Real-Time Java, and Real-Time
POSIX. Addison Wesley, 2001.

[9] D. Collinge. Moxie: A language for computer music perfor-
mance. pages 217–220. International Computer Music Con-
ference, ICMC, 1984.

[10] N. Collins, A. McLean, J. Rohrhuber, and A. Ward. Live
coding in laptop performance.Organised Sound, 8(03):321–
330, 2004.

[11] G. Cooper and S. Krishnamurthi. Frtime: Functional reactive
programming in plt scheme.Computer science technical
report. Brown University. CS-03-20, 2004.

[12] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade.
In Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, page 18. ACM, 2003.

[13] O. Dahl and K. Nygaard. Simula: an algol-based simulation
language.Communications of the ACM, 9(9):678, 1966.

[14] R. Dannenberg. The cmu midi toolkit. InProceedings of the
1986 International Computer Music Conference, pages 53–
56, 1986.

[15] J. Edwards. Subtext: Uncovering the simplicity of program-
ming. In In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 505–518. ACM,
2005.

[16] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the second ACM SIGPLAN international con-
ference on Functional programming, pages 263–273. ACM,
1997.

[17] D. Gelernter. Generative communication in linda.ACM
Transactions on Programming Languages and Systems
(TOPLAS), 7(1):80–112, 1985.

[18] D. Griffiths. Fluxus, 2010. URL
http://www.pawfal.org/fluxus/.

[19] C. Hancock. Real-time programming and the big ideas of
computational literacy. PhD thesis, Citeseer, 2003.

12 2010/9/22

http://www.pawfal.org/fluxus/

[20] C. Haynes and D. Friedman. Abstracting timed preemption
with engines* 1.Computer Languages, 12(2):109–121, 1987.

[21] R. Hieb and R. Dybvig. Continuations and concurrency. In
Proceedings of the second ACM SIGPLAN symposium on
Principles & practice of parallel programming, pages 128–
136. ACM, 1990.

[22] R. Karp and R. Miller. Properties of a model for parallel
computations: Determinancy, termination, queueing.SIAM
Journal on Applied Mathematics, pages 1390–1411, 1966.

[23] A. Kay. Smalltalk, a communication medium for childrenof
all ages. Xerox Palo Alto Research Center, Palo Alto, CA,
1974.

[24] E. Lee. Concurrent models of computation for embedded
software. System-on-chip: next generation electronics, page
223, 2006.

[25] E. Lee. Computing needs time.Communications of the ACM,
52(5):70–79, 2009.

[26] I. Lee, S. Davidson, and V. Wolfe. Motivating time as a first
class entity.Technical Reports (CIS), page 288, 1987.

[27] T. Magnusson. Ixilang. URL
http://www.ixi-audio.net/ixilang/.

[28] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and
M. Resnick. Scratch: a sneak preview [education]. InCreat-
ing, Connecting and Collaborating through Computing, 2004.
Proceedings. Second International Conference on, pages 104–
109, 2004.

[29] J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part i.Communications of the
ACM, 3(4):195, 1960.

[30] J. McCartney. Rethinking the computer music language:Su-
percollider.Computer Music Journal, 26(4):61–68, 2002.

[31] S. McDirmid. Living it up with a live programming language.
In Proceedings of the 2007 OOPSLA conference, volume 42,
pages 623–638. ACM New York, NY, USA, 2007.

[32] A. McLean. Hacking perl in nightclubs.at http://www. perl.
com/pub/a/2004/08/31/livecode. html, 2004.

[33] D. Mills. Rfc 1305-network time protocol (version 3) specifi-
cation. Implementation and Analysis, 1992.

[34] A. Moura and R. Ierusalimschy. Revisiting coroutines.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 31(2):6, 2009.

[35] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive
programming, continued. InProceedings of the 2002 ACM
SIGPLAN workshop on Haskell, page 64. ACM, 2002.

[36] S. Papert. Mindstorms: Children, computers, and powerful
ideas. Basic Books New York, 1980.

[37] R. Potter. Just-in-time programming.Watch What I Do:
Programming by Demonstration, MIT Press, Cambridge, MA,
pages 513–526, 1993.

[38] M. Puckette. Max at seventeen.Computer Music Journal, 26
(4):31–43, 2002.

[39] R Project for Statistical Computing.
http://www.r-project.org/.

[40] C. Roads.Microsound. The MIT Press, 2004.

[41] J. Rohrhuber, A. de Campo, and R. Wieser. Algorithms today
notes on language design for just in time programming. In
International Computer Music Conference, page 291. ICMA,
2005.

[42] E. Sandewall. Programming in an interactive environment:
the“lisp”experience.ACM Computing Surveys (CSUR), 10(1):
35–71, 1978.

[43] B. C. Smith.On the origin of objects / Brian Cantwell Smith.
MIT Press, Cambridge, Mass. :, 1996. ISBN 0262193639
0262692090.

[44] R. Smith and D. Ungar. Programming as an experience: The
inspiration for self. Object-Oriented Programming, pages
303–330.

[45] A. Sorensen. Impromptu: an interactive programming envi-
ronment for composition and performance.Proceedings of
the Australasian Computer Music Conference, 2005.

[46] A. Sorensen. Oscillating rhythms, 2008. URL
http://www.acid.net.au

[47] A. Sorensen. Livecoding screencasts, 2010. URL
http://vimeo.com/impromptu/videos/sort:plays.

[48] A. Sorensen. A distributed memory for networked livecoding
performance. InInternational Computer Music Conference.
ICMA, ICMA, June 2010.

[49] A. Sorensen and A. Brown. aa-cell in practice: An approach
to musical live coding’. InProceedings of the International
Computer Music Conference, pages 292–299, 2007.

[50] D. Souflis and J. Shapiro. Tinyscheme. URL
http://tinyscheme.sourceforge.net.

[51] TOPLAP. Toplap website. URLhttp://www.toplap.org.

[52] Z. Wan and P. Hudak. Functional reactive programming from
first principles. InProceedings of the ACM SIGPLAN 2000
conference on Programming language design and implemen-
tation, pages 242–252. ACM, 2000.

[53] G. Wang, P. Cook, et al. Chuck: A concurrent, on-the-fly
audio programming language. InProceedings of International
Computer Music Conference, pages 219–226. Citeseer, 2003.

13 2010/9/22

http://www.ixi-audio.net/ixilang/
http://www.r-project.org/
http://www.acid.net.au
http://vimeo.com/impromptu/videos/sort:plays
http://tinyscheme.sourceforge.net
http://www.toplap.org

