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Abstract—Modern  applications  comprise multiple The statistics are revealing: over 85% of Windows X
components, such as browser plug-ins, often of unkwn  crashes are due to faulty device drivers, and Luhivers
provenance and quality. Statistips show that failue of such  have 2 to 7 times the bug count of the kernel [Such
components accounts for a high percentage of softve {4 res are not limited to kernel drivers; softear
_faults. Enabling isolation of s_uch fine-grained comonents applications also suffer similar problems. Zeigdir
is therefore necessary to increase the robustnessnda .7 o .

resilience of security-critical and safety-critical computer indicates that over 70% of CraSh,eS in the popuiawser
systems. Internet Explorerare due to third party a_dd—ons. In
In this paper, we evaluate whether such fine-graire  addition, over 50% of CERT-reported security thsese
components can be sandboxed through the use of the due to buffer overflow vulnerabilities [5]. The vda
hardware virtualization support available in modern Intel ~ Virtual Machine (JVM) has similar vulnerabilities,
and AMD processors. We compare the performance and pecause any misbehaving Java Native Interface (JINI)
functionality of such an approach to two previous sftware component has the potential to overwrite criticannory
based approaches. The results demonstrate that Iéware  agiong of the JVM, bringing down the entire viltua
isolation minimizes the difficulties encountered wth machine [6]. Clearly, as many researchers have

software based approaches, while also reducing ttsze of hasized tical d is bett it
the trusted computing base, thus increasing configee in emphasized, a critical need 1S betler Componeidisa

the solution’s correctness. We also show that ouelatively SO that hosts are isolated from any extension cowts

simple  implementation  has  equivalent run-time they incorporate [7-9].  Indeed, microkernel based
performance, with overheads of less than 34%, doesot  operating systems take this concept to its ultimate
require custom tool chains and provides enhanced manifestation [10]. Modern trends in browser

functionality over software-only approaches, confiming  architectures also emphasize the gravity of thids
that hardware virtualization technology is a viable poth Microsoft's Internet Exploref4] and Google's
mechanism for fine-grained component isolation. Chrome[11] browser have changed to multi-process
. . architectures in which program components are tisdla
Index = Terms—component  isolation, system call . i L di t fi ;
interpositioning, hardware virtualization, component Into several, disparate operating Systém processes.
software Before discussing component isolation further, the
term ‘component’ must be defined because thereois n
I. INTRODUCTION general consensus on what constitutes a software
component. Szyperski [12] defines it as

a unit of composition with contractually
specified interfaces and explicit context
dependencies only. A software component can

A “process” is the key software abstraction supgubrt
by modern operating systems for protecting and
managing separate applications. However, withraipéd
spread of component based software, a contemporary . X .
application typically extends its functionality gading (t:)smd?s)li%?]db w;ﬁ_e: gergzsggy and is subject to
components dynamically into its process addressespa P y i ) parties. )
For example, operating system kernels load device Mendelsohn [2] provides an overview of such units o
drivers, web browsers load browser plug-ins, anchyma Composition, from th_e earlle_st kind _of reuse in fitnen of
applications support some form of extension comptme Subroutines, to statically linked libraries, folled by
to provide or augment their basic functionalitylthdugh ~ dynamically linked libraries, and culminating in
operating system processes have well-defined isalat component  technologies such ~ as  Microsoft's
mechanisms [1], current operating systems providéUch as SUN's JavaBeans. _
insufficient mechanisms for isolating componentsaof ~ Since the above definition is somewhat expansive, f
particular application from each other [2]. Thisclearly ~OUr purposes we limit eomponento be any executable
demonstrated by the fact that component based aaftw binary unit which is loaded by an application iftown
extensions ofterdecreasethe reliability of the hosting address space, with communication taking place dwstw
application; a badly-written or misbehaving compane the component and its host application via a weflred

either accidentally or deliberately. link libraries (DLL)/shared object (SO) librarieghich



form the primary means of composability in modernadds significant overhead to the code injectioncess
operating systems and applications. Thus, enablingecause, for example, the difference between code a
component isolation at the DLL/SO level is a muchdata can be difficult to identify. Therefore, safe
needed step in creating more robust applications. execution of arbitrary binary components is difficu
Several approaches have been taken to address thiwng SFI if the program was not compiled using an
problem. Broadly, they can be classified into kak- approved compiler.
supported protection, software based protection and The ideas in SFI are directly utilized in the Gaogl
interpretation [13]. In a previous paper, we exjahthis  Native Client (NaCl), which provides a software
categorization into a more fine-grained analysisthd  framework for safe execution of untrusted binary
current state of the art while identifying the sgths and components [18]. NaCl aims to provide browser-dase
weaknesses of different approaches [14]. applications increased computational performance
This paper presents a new solution to the problerthrough native binary components which have actess
based on the hardware virtualization support intoed  performance-oriented features such as SSE inginsti
by both Intel and AMD in their recent microprocaesso compiler intrinsics, hand-coded assembler, etcthout
We introduce a component isolation architecturectvhi compromising on safety [18].
executes each component in a minimal, hardware- Another component isolation technique is a multi-
supported virtual machine, thus strongly isolatesch process application architecture. This model ob@ng
component from its containing host. In contrastato increasingly popular in web browsers [11, 19]. Dasic
heavy-weight, full virtual machine, requiring the idea is to isolate individual components in dispar@S
emulation of devices, component isolation only iegg1  processes and use the operating system's IPC
the virtualization of the processor and memory. r Oumechanisms to communicate between them. In Gaogle’
technique requires only a small Trusted ComputiageB Chromebrowser, a single browser coordinating process
(TCB) which reduces complexity and increasesspawns additional processes to perform sub tagfs [2
confidence in the correctness of the solution. Thd&hese additional processes run at a lower privilegel
remainder of this paper provides a description of o and access is tightly arbitrated by the coordimatin
approach and its practical implementation, a compar browser process. In effect, different components a
with previous techniques, and an evaluation ofotberall  loaded into different processes and communicatides
effectiveness of the approach in terms of bothtnme  place using OS-supplied IPC mechanisms. Thistisola

performance and functionality. into separate processes allows the browser to \va&urvi
component crashes. Microsoftternet Explorer 8
Il. RELATED WORK follows a similar model [4]. There is however, an

increase in complexity as coordination between rs¢ve
rocesses is required. Also, Wahbe et al. [15] enak
trong case against placing software modules in dven
address space, as this requires IPC between them fo
communication, resulting in unacceptable context-
switching overheads [15], so a trade off is madsveen
performance and reliability [20].

Chiueh et al. [21] introduce an intra-address space
component isolation scheme by using the paging and
Qegmentation support in the Intel x86 hardware
architecture, the most prevalent architecture fesktbp
machines.  This support is used to isolate kernel
extensions from the kernel itself, by placing all
extensions in a separate segment of lower privitaga
the kernel. They demonstrate that hardware saisiti@n
provide high efficiency, although their techniqus i
limited to isolating the application from all compnts;
rEomponents themselves are not isolated from edwr.ot

In our previous paper, we reviewed the state ofatthe
broadly [14]. Below, we summarise those technique
which are closely related to our current solution.

A key technique in binary code level isolation is
Software Fault Isolation (SFI). This method wasstfi
described by Wahbe et al. [15] and has been appiied
many forms. It allows untrusted code to be placetthe
same operating system (OS) process as trustedatatle
avoids the overhead of Inter-process Communicatio
(IPC) between processes. It uses software basg¢id st
analysis of the untrusted component’s object caule t
verify that no illegal memory accesses will be made
to inject code for double checking any potentially
harmful instructions, effectively sandboxing thegoral
component. The sandboxed code is created solthat t
high bits of a memory address always fall withire th
sandboxed region, thus preventing components fro

accessing memory outside of its bounds [15]. Watthe Furthermore, this technique is designed for isotati

al’s [15] original idea has been improved andtrusted components from accidental attempts toatéol

implemented in many forms. SFI, originally ., . - : :
demonstrated by Wahbe et al. [15] on a Reducegz;ger?aetg;%;%gjs zifﬁp%r;]derﬁsnm intended téatso

Instruction Set Computer (RISC) arch|t.ecture, hiss a A somewhat similar approach is an application level
been demonstrated on Complex Instruction Set CoamputIibrary for isolating components using x86 segmtoia

(CISC) architectures [16]. Techniques such as rigina hardware [221. This approach is unique in thatehtre
translation [17] are .O.ffShOOtS of the SFI concept. ibrary is[ inlblementepdp in user-mctl)de, requiring no
: I;owever, a suﬁnlflcant Weakne]:sshof_ the; SFI approacbhanges to the OS kernel. Google’s Native Clidsb a
is that ensuring the correctness of the implemiamtas a Y ;

difficult process. As Wahbe et al. [15] point out, utilizes the above hardware segmentation technfque

o F . ; . isolating components.
modification of the executable binary is complicatnd g P



By contrast, our approach makes efficient use ef thsystem as long as its system call interface, wisclts
isolation capabilities provided by the underlyingwindow to the outside world, is strictly controll¢&3].
hardware’s virtualization support. In comparisonthe We utilize this principle for isolating componentithin
techniques described above, the advantages of oarrestricted address space, and provide strictratibin

method can be summarised as follows. over all system calls.
1. It minimizes the size and complexity of the Trusted
Computing Base, by moving the bulk of the IV. ISOLATION ARCHITECTURE

responsibility for achieving security down to the Thjs section describes how our isolation contaiser
hardware level, making the implementation mor,seq by a host application to execute components in
understandable ~ and  less  susceptible  tQonsirained environment. We refer to this isokatio
circumvention. container as th¥irtualization Technology Containg€¥T

2. It does not require compiler level modificatiorfsys  Container). It is, in fact, a minimal virtual maaé,
enabling already-compiled binary components to bevhich uses a portion of the host application’s addr
isolated. space for the virtual machine’s own memory and @ixpl

3. It avoids incorrectly identifying components ashardware virtualization features for safe executimin

(potentially) unsafe, merely because they contaifOmponents.
suspicious-looking instructions, i.e., our analysis = = ———eeeeeem=m=me=me—e—ae-

does not produce ‘false positives’. Instead of Stack

attempting to predict the component’s behaviour ““““’“\l; ““““““

statically, as is done in other approaches, our

technique checks the programactual run-time

behaviour. We thus eliminate the risk of denial of /]\

execution for programs which are difficult to prove ]

secure using static techniques.
4. It gliminates the compl_ex_ity of static analysis and Component Heap

verification and thus eliminates the class of exror

which arise from l_augs_ or misses in the verifier. . Component Data | VT sandboxed

Of course, the main _dlsadvantage of our approach is Component Text Component
that hardware virtualization support is necessary. -
However, many modern microprocessors from Intel and cOmponen‘tSt\ack
AMD already provide such support, and it can be ~  f--------------- R
expected to become more prevalent in future. RS
lIl. THREAT MODEL [~
Isolation can be analyzed from both a resilience ~  l--ocooo--- S H;ﬁ’e

perspective and a safety perspective. While resiée Host Application Heap
becomes the key reason for isolation in a trusted P ——
environment, safety becomes paramount in an uetiust Host Application Data _~~
one. This is best exemplified by internet browsehsch L
extend their functionality through plug-in compot®en Host Application Text

In such an environment, both these factors becosng v
important, as the extension code may be of unknown
provenance and quality.
Our system is designed to deal with such arbitrary Figure 1 shows how a component is executed within a
binary components, from untrusted sources, whiagtdne host application. The host application may inigial
to be executed in a constrained environment. Qmce request that an untrusted component be loadeditmito
component is accepted for execution, it must haveddress space. Such requests are handled by our VT
controlled access to resources, as determinedeblgdbt.  Container, which allocates a block of memory foe th
Access to memory must be restricted to areas afldwe component within the host's address space, and thaps
the host application and attempts to exceed thHesits| component into it. The host may then invoke the
must be caught. The host must be allowed to cainstr component during the course of its execution. The
the component by preventing arbitrary access to theomponent call causes execution to switch oveutovd@
operating system call interface. Such access test Container, which will safely execute the componeit.
mediated and the host must be allowed to set resourthe component attempts to execute a potentiallyafens
limits on memory usage or disk access. On therothénstruction, such as an operating system cal§ itapped
hand, the component must be able to freely aws@lfiof by the container and the trap handler decides wehetie
all safe machine instructions. instruction is allowed to proceed or must be albrtéf
Therefore, our system is based on the observdii@n t no unsafe instructions are encountered, the conmpene
a process cannot perform any actions harmful to the

Figure 1: Virtualization Technology Container desig



execution ends normally and control returns trarespéy
to the host application.

A. The VT Container’s Relationship to Virtualizati Component 0 Component 1
Hardware

Our VT Container uses the hardware virtualization
support introduced to Intel and AMD processors in
2005 [24-26], to enable safe execution of a compbne
within a minimal, lightweight, virtual machine.

Hardware virtualization is an isolation mechanism
which has been used for decades. Although the Figure 2: Overview of the VT Container process
popularity of Virtual Machine (VM) technology waned  Figure 2 is a conceptual diagram of the procesaron
somewhat over the years, there has lately been |atel processor. Our model corresponds closelyhto
resurgence of interest in it with the developmend a actual hardware implementation. The VT Container
marketing of software systems such as VMWare [T7, 2 plays the same role as a traditional Virtual Maehin
which provide a Virtual Machine Monitor (VMM) fohe  Monitor (VMM). Each component is comparable to a
popular Intel x86 architecture. This has occuresen guest executing on the VMM. The VT Container
though the Intel x86 architecture itself had sevem- initializes itself by creating a minimal, light-vegit
virtualizable instructions which do not meet Pogeld  virtual machine and uses the KVM libraries to mitie
Goldberg's virtualization requirements [28]. Mangvel the necessary processor control structures fomalirt
techniques have been used to overcome these longat execution. These control structures designate memo
such as binary translation [17, 27] and para-viization  areas for storing the registers of the host macamwell
[29-31]. as the guest machine, which Intel refers to as reuadi

In 2005, Intel and AMD introduced additional maahin Machine Control Block (VMCB). The areas are
instructions to their respective architectures émedy initialized by executing the VMXON machine
this problem [24-26]. The machine instructions ever instruction [24].
similar in nature to those of the old IBM Systen%&hd There are two main control structures — the haatest

enabled the interpretive execution of code andtmadil  zrea and the guest state area. The host statesavea
hardware-managed control blocks. The Intel and AMGhe registers of the host before transitioning teegy
extensions are similar [17], which makes it easy tqnode execution. Similarly, the guest state are@ains
support either instruction set. Uhlig et al. [p2pvide an  the processor registers of the guest. When tiansiy
overview of the architecture, with additional ditdieing oyt of the VM, the guest registers are persistedha
available elsewhere [24-26]. However, as noted byyest state area and the host registers are reldeate
Adams and Agesen [17], early versions of Intel'sl an the host state area.
AMD’s hardware virtualization did not necessarigsult In order to begin execution of a component, we kevo
in better performance, due to the lack of support f the KvM which in turn invokes th¥ MENTERmachine
Memory Management Unit (MMU) virtualization. To instruction, beginning the normal execution of the
remedy this, AMD introduced Nested Page Tablegomponent. Any exceptional situation will trigger
(NPT) [26] and Intel has followed suit by infrodogi  \/\ex|T event, which is trapped by the VT Container. If
Extended Page Tables (EPT) in their né¥ehalem e jnsiryction passes validity checks, it can leved to
processor architecture, both of which add supmm®  .,htinye. Failure to pass the checks triggerseantlp
MMU virtualization [33]. _ _ operation and the host is notified of the failuré. no
Our VT Container exploits these new instructions fo unexpected errors are encountered, component éxecut

ylrttfahzatlto? O}I th p\r/c_)rcgssotr_ hgrdbwarea q Thecompletes normally and th&MXOFFmachine instruction
Implementation ot the ontainer 1S based on pen is executed to deallocate the processor’'s control
source Kernel-based Virtual Machine (KVM) structures

project [34], which provides libkvm, a simplified
abstraction of the processor-specific, lower-lawachine  B. Implementation
instructions. In order to test and compare our VT Container
The virtualization hardware allows the VT Containerconcept, we have developed a demonstrable protatiype
to retain selective control of processor resourphgsical  gyr solution, which supports both standard ELF
memory, interrupt management and I/O. Of speciagxecutables as well as the modified native exetegab
utility is the ability to trap on the execution sénsitive supported by Google Native Client. An additional
instructions, which allows fine-grained control otkose advantage is that we can directly execute stanG&2@
components which attempt to execute potentialleompiled ELF executables, whereas both the above
dangerous code. The overhead is minimal since thes|utions require custom tool chains. We utilize ELF
hardware always performs the necessary checks. loaders provided in both these implementationsréate
the in-memory layout of the ELF executable. Insthi
section, we describe the loading and executionga®of
a typical component.

VMENTER VMENTER,
VMEXIT VMEXIT

VMXON VT Container VMXOFF




Host Process

System Call
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Figure 3: Implementation of the VT Container

3.
Figure 3 shows the VT Container's context at an

implementation level. We read and parse in an
Executable and Linkable Format (ELF) executablee W
then load the executable into our VT Container,clvhig
where the bulk of our implementation lies. The VT
Container is responsible for the safe executionthef
component and the handling of any potentially damge
instructions. The VT Container is built on top K¥M
(Kernel Virtual Machine), which provides a layer of
abstraction over the lower level virtualization
instructions, in the form of a device driver.

If a component makes a system call, the VT Containe
carries it out on the component’s behalf. Here mar
prototype saved a significant amount of work bylding
on top of NaCl's system call layer. The NaCl
implementation provides a highly restricted systeafi S.
layer which we have modified to suit our needs.

The typical process, as per the numbers in Figuse 3
as follows:

1. An ELF executable is loaded into the VT Container.
2. The VT Container uses the KVM device driver to
execute the component.

3. The KVM module interfaces with the virtualization g
hardware and shields the layers above from the
specific processor in use (Intel or AMD).

4. System calls by a component are intercepted and
passed into the modified system call layer.

5. The system call layer may invoke the operating
system to carry out the actual system call andrmetu
results to the component.

correspondence between this memory block and the
physical memory map seen by the virtual machine.
If the ELF executable is in NaCl format, the first
64KB of this memory is padded with nulls, similar t
NaCl's default implementation, which helps in the
detection of null pointer exceptions. We also tise
trampoline code used in NaCl. This trampoline code
is used to exit the VT Container in NaCl executable
and carry out system calls and is described inildeta
below. The executable’s text and data sectionsecom
afterwards. The rest of the memory is uninitialize

Once the executable is mapped in and the memory
area initialized, we initialize the Virtual Machine
Control Block (VMCB) needed by the processor,
specifying the aforementioned memory area as the
physical memory block used by the virtual machine.
We use KVM's abstraction layer to initialize the
VMCB.

Once the virtual machine’s processor control blisck
defined, we then initialize the processor registard
switch the machine directly into 32 bit mode. Hist
way, we avoid having to write a bootstrap loader
which would switch the processor from 16-bit real
mode to 32-bit protected mode. Protected mode is
set by setting the Protection Enable (PE) bit ia th
CROregister [Intel 2007b].

Before protected mode can be properly used, the
machine’s Global Descriptor Table (GDT) must be
initialized. In order to simplify our implementati,

we disable paging hardware altogether and use
segmentation hardware only. We use a flat memory
model, and the GDT is initialized with a code
segment which is the size of the text portion & th
memory map.

We make the data segment span the entire virtual
memory and the stack segment and other segment
registers such as FS, GS and ES are also set ® use
flat memory model, by spanning the machine’s
allocated physical RAM. We do not use Local
Descriptor Tables and therefore do not need to
initialize the relevant structures.

Thus, we directly bootstrap a minimal virtual mahi

The following sections give a detailed, step bypste With the processor already in 32-bit mode and assiga

description of the tasks carried out by the VT @aner,
during initialization and execution of a component.

flat memory model, greatly simplifying the programin
model for a component. The memory map is shown in

Figure 4.

1) Initialization of a component

This section describes the step-wise process for
initializing the VT Container and loading an exexhle
into it for execution.

1. When an ELF executable is launched, the module i&-
initially read in and the ELF header parsed. Our
implementation supports standard ELF files as well
as Google’s customized ELF format.

2. The ELF executable is mapped into a contiguous
block of memory, which is 256MB in size by default.
This 256MB block serves as the initial physicalz-
memory for the virtual machine. Thus, there ish 1

2) Execution within a VT Container

Execution of a component within a VT Container
begins as follows.

After initialization of the virtual machine, we site
VM’s Instruction Pointer to the component’s entry
point. At this moment, we only support ELF
executables which are statically linked and the
relative locations zero based, so that we do netlne
to perform any relocation.

An initial stack is set up for the program and biase
pointer and frame pointer are initialized to paoiat
the top of the stack. Any command line arguments



used are pushed onto the stack area and the memory frame pointers adjusted to store the necessarynretu

is adjusted as required.

3. The virtual machine is then launched via KVM, and6.
execution begins from the program’s entry point.

é— Stack Program Text Program Data é— Heap

values.

Finally, execution resumes by changing the virtual
machine’s instruction pointer to resume execution
from the return address stored on the stack.

The untrusted code resumes execution.

Figure 4: Component memory layout

3) Initialization of the C runtime environment

The first task performed by the running progranois
initialize the C runtime environment, which is neddor
basic input/output and for accessing system sesvice
NaCl executables use a modified version of the ibe@I
runtime library, which is statically linked with eh
component. We support this same version of nesdib
that direct binary compatibility with NaCl comporien
can be enabled.

Newlib initializes itself by allocating memory fdhe
Thread Control Block and makes a system call to
initialize the corresponding operating system ttrea

VT Container Host
Untrusted
Code
Trampoline Contéxt witch Dispatcher
via KYM
Parameter
Validation
Untrusted Context Switch Syscall
Code via KYM Imblementation

NaCl's default implementation additionally stores a
pointer to the Thread Control Block in the GS segme
register. In our implementation, we modify thetwdl
machine’s GS segment register instead. This is
example of the kind of modification needed at thetem

Figure 5: Execution sequence for a system call

a?'n) Handling of unsafe instructions
Potentially unsafe machine instructions are hantled

call layer in order to make it compatible with our trapping on the execution of sensitive instructtgpes.
implementation. The process is described below.

4) Execution of system calls L.

Figure 5 shows the typical sequence of actions hvhic
take place during a system call.

1. A normal ELF executable will initiate a system call
by invoking INT 0x80 or by using the fast system
call instructions. In the case of Google’s Native
Client executables, it does this by jumping to ay
trampoline mechanism where each system call goes
through a trusted code routine.

2. We modify this routine to suspend execution of the
virtual machine by executing a sequence that trigge

The execution of instructions defined as sensitive
causes the virtualization hardware to trigger alh ex
into the VT Container. By default, all privilegeidg

0 instructions are trapped. All other instructi@re
allowed to execute with no constraints within the
virtual machine. The VMCB is configured to trap on
these sensitive instructions through the KVM layer.

If an attempt to execute a sensitive instruction is
detected, our trap handlers are invoked. The trap
handler then takes steps to terminate the offending
component.

We also use this trapping functionality for our

a VMEXIT event, thereby intercepting the systemjmplementation of system call handling. However, i

call. that instance, we execute the system call on the
3. Upon interception of the system call, we carry outcomponent’s behalf and return the results via tineial

the actual system call after verifying the paramsete machine’s stack.

The Dispatcher routine is responsible for figuring
which system call was requested. The compone

nef) Threading

can only execute a subset of the available system We prov_ide an e_xtremely simplified implementatidn o
calls and are completely controllable, making thehréads, with one virtual processor per thread.

execution of arbitrary code secure. 1.

4. Before the system call is executed, the parameters
are validated to ensure that the values are within
range and that only permitted system resources are
accessed.

5. Once the system call is complete, the results efre s2-
in the virtual machine’s registers and the stact an

When a component requests the creation of a new
thread, we create a new virtual machine, but map in
the same memory belonging to the creator’'s thread.
In other words, both virtual machines share theesam
physical memory.

Once the virtual machine is initialized, the vidtua
processor’s instruction pointer is set to the ttrea
entry point.



3. The GS register must also be set to point to the Notably, our implementation is immune to static
Thread Control Block of the new thread. analysis and verification bugs. In contrast, auséc
4. The virtual machine execution is then startedcontest conducted by Google to test for loophaie¥aCl
thereby having two virtual processors executing théevealed several bugs in the code verifier andhpagc
two different threads. system, which allowed for arbitrary code execution
vulnerabilities, enabling a malicious componengéscape
component isolation [35]. Our implementation ist no
vulnerable to such errors, since execution is €lytir
This section directly compares our solution to theconstrained to the virtual machine, making for areno
Google Native Client, which focuses on using statiGsecure implementation. We have tested this byuixeg
analysis, as well as Vx32, which emphasizes runtimgimilar classes of bugs reported in the Native r@lie
binary translation. security contest, and showed that the code is anabl
break free from the confines of our container. ctailed
example is discussed in Section 0.

V. COMPARATIVE ANALYSIS

Table 1: Comparison of steps to load and execatergonent

VT Container Google Native Client Vx32 Our technique also offers the advantage of beisdyea
adaptable to 64-bit code, something that introduwash
1 'Eg;dponem ; '\-/zér‘? component é?ggtgosf;‘ﬁggg” greater complexity to NaCl and Vx32 and is curngentl
. ify X
5 Switch to component Translate code unsupportgd, because both. NaQI and Vx32 mal_<e use of
sandbox 3. Patch unsafe fragment segmentation hardware which is no longer availaisie
3. Execute code instructions Execute code Intel's 64-bit architecture [18].
4. Trapon 4. Switch to fragment However, we do share similar vulnerabilities as NaC
exception or sandbox Repeat steps 3

execute till end

Execute code

Trap on exception

or execute till end

and 4 till
execution ends
or an exception
occurs

Table 1 provides an overview of steps needed td lo

and Vx32 at the system call layer, since any lotghat
this level can be exploited in an identical wayn oth
systems the problem can potentially be avoided by
carefully validating parameters before execution of
asystem calls.)

Table 2: Comparison of approaches

and execute a component. As can be seen, ourabpro

saves significantly on load-time complexity by resmg
the code verification and patching steps altogetht@ur VT Container | Google Native Vx32
approach thus eliminates an entire class of prablem Client
related to static analysis and code verificatiors, a Approach Hardware SFI SFI
discussed below. Virtualization

Our |mplementat|on Sa?’_es S|g_n|f|cant_ly on execution Technique Minimal virtual Static Analysis | Runtime binal
overheads since no additional instructions neecdeéo machine containe translation
inserted. Our initial measurements show that dudet ] ] ] ] ]
for Google Native Client is significantly high, keese it ISA 32biv6abit 32biveabit 32bit
requires that jumps be aligned to 32-byte boundari¢ specific Intel VT/AMD Segmentation | Segmentatig
Neither our implementation nor Vx32 have such an Hardware SVM
alignment requirement, so can significantly lowes size | features used
of the executable code. However, we suffer a leavi compile time None Customized too None
penalty for sensitive instructions, as the trapdt@mmay | requirements chain with code
need to perform a context switch back to user sjace alignment
order to handle the instruction. However, the clexipy requirements

of our implementation is greatly reduced as no tyina
code patching needs to be done.

As shown in Table 2 our technique also differs

fundamentally at a conceptual level.
relies on pre-execution checking, using static ysig|
and rejects a component if it does not meet itsnddf
criteria. It also inserts run-time checks into ttede.
Our technique simply starts executing the compoaadt
aborts if unsafe instructions are encountered. réfbee,

VI. EFFECTIVENESS OF THESOLATION ARCHITECTURE

These examples were

In this section we evaluate the effectiveness af ou
Google’s NaCinethod by demonstrating its use through examplagew

comparing and contrasting the results with Google’'s
Native Client and Vx32.

incorporated into test routines and applied agaih

systems.

security guarantees than NacCl

and

We show that our solution provides s&ong
Vx32, while

our focus is on run-time checking as opposed td botg|iminating the complexity of the code analysis and
load-time and run-time checking. We argue that oUferification process and the need for runtime hjinar

technique is both faster, less complicated and mo
robust. In particular, our approach will

'Ranslation.

execute

components which contain potentially unsafe ingions ~ A- Example 1 — Handling lllegal Instructions

Figure 6 shows a C code fragment containing agalle
assembler instruction. It illustrates an attenopdirectly
access an 1/O port through thaet instruction. Typically,

only in dead code, whereas NaCl will not executehsu
components at all.



user level programs are disallowed from accessif®g | Ids , far calls, etc.
ports directly. This kind of problem could arisetio
from malicious code or a programming error suclams

attempt to divide by zero.

#include  <stdio.h>

void run_test() {

asm ( "movl $32, %%eax; \
out %%eax, $0xf1"

Vx32 also suffers from similar
constraints. Our method does not require suchargas
execution is entirely constrained to the virtualchiae,
and loading segment registers for example, onlgcdf
the virtual processor. This produces far feweisdal
positives.

C. Example 3 — Addressing Errors

The program in Figure 7 highlights an extremely
It makes use of an

common programming mistake.
uninitialized pointer which performs a ‘wild stor@ito

"%eax" memory. When an attempt is made to access memory

} ) outside of the boundaries defined by the VMCS, \fiie
hardware can be configured to trap into our speeifior
int main( int argc, char *argv[]) { handler.
run_test();
return  0O;
} #include  <stdio.h>

void run_test() {
int *test, offset = 1024*1024*10;
test[offset] = 10;

Figure 6: Example code containing an unsafe instmc

We can selectively forbid sensitive instructiongtth
should not be executed, and our VT Container adibets
policy of disabling such instructions by defaulthis is int main( int argc,
done by configuring the VMCB to intercept the sfiedi run_test(); -
instruction, in this case, theut instruction. The } rewrn - 0;
virtualization hardware will then automatically pravhen
an attempt is made to execute the instruction. dAfe
then mediate and terminate the module gracefully or
allow it to continue if the instruction is deemed In comparison to NaCl and Vx32, the protection
innocuous. performance is identical, since both NaCl and Vx32

When compared to NaCl, the protection offered 86 segmentation hardware to enforce similar cairgs.
similar. NacCl Would_ refuse to a}lllowlexecution et D. Example 4 — Addressing Exploits
above component since the verification process avoul L
detect the presence of the disallowed instruction O“T laSt_ example demonstrates_ a situation where our
statically. Vx32 allows execution of the componbnt,  echnique is safer than NaCl.  This example is @na

because it dynamically translates the next ‘fragmeh bug Qetected ap_d submitted during the _Nativ.e. Client
code to be executed, it may abort during runtimé if security competition, where several flaws in theifier

encounters the illegal instruction during its binar were identified [35]. _Although the bug  has _been
translation process, even when the instructionlfitse subsequently patched, it serves to illustrate wiergial

only executed conditionally. We, however, trapyonl danger of instruction; .mis_sed during.t.he_verif'mnti
when an illegal instruction is actually reachedgifer. process, and that eliminating the verification sx

The advantage of this is better illustrated byakample ~Provides far greater security guarantees as well as
below. flexibility.
The exploit took advantage of a miss in the varifie

B. Example 2 — Reducing False Positives where opcode prefixes for 2 byte instructions weog
In this example we modify the previous programconstrained. The code fragment in Figure 8 ilatsts the
slightly to conditionally execute the illegal insttion by ~ key instructions used in the exploit. It works fyshing
0n|y Ca”ing the run_test method if condition the valueOx10001 onto the stack, which points to the
‘argc <0 ' is true. In practiceargc will never be Mmiddle of the firstmov instruction, which now represents

less than 0, meaning that this will be dead codéhén the restricted instructioimt 3.
running program and the potentially harmful instioe
can never be executed. NaCl however, would
nevertheless generate a false positive and refuaiaw
execution of the program and Vx32 would fail attmome
when it encounters that fragment of code. Our otth
entirely eliminates this class of false positivimgéther.
Although the above example is somewhat contrivied, i
serves to illustrate that NaCl is always forceeroon the
safe side, and disallow a range of instructionscivtdre
generally innocuous but potentially unsafe, suchakhs
instructions that modify the x86 segment stateluitiog

char * argv[]) {

Figure 7: Example code with an uninitialized pointe

€s:0x10000: mov eax, OXxCCCCCCCC

€s:0x10080: mov ~ $0x10001,%ebx
€s:0x10085: push  %ebx
€s:0x10086: xor  %eax,%eax
€s:0x10088: test  %eax,%eax
€s:0x1008a: datal6 je Ox7fAf
€s:0x1008f: add  %al,(%eax)

Figure 8: Example code with an illegal jump



Normally, such an unaligned jump would be establishthe upper and lower bounds that can pectsd
disallowed and detected by the verifier. Howewbe in best and worst case scenarios respectively.
bug exploits the 16-bit data prefix to truncate fhep We performed empirical performance measurements
target, which the verifier miscomputed. As a rgstle  on four main workloads:
code jumps into @et instruction in the trampoline code 1. Execution of a simple loop based calculation.
region, which r_esult_s in a returr_l t(_) the qddress_hpd Execution of a “null” system call.
onto the stack, in this case, the illegdal 3 instruction. ) ) ) ) )

Execution of 1/O instructions (which require an

In our approach the illegal instruction is detectdten it )
attempts to execute. operating system call and therefore, at least one
context switch).

While this problem was patched in NaCl soon
afterwards, it serves to illustrate the difficuitywriting a The results show that the overheads of our apprimach
fool-proof static verifier. As a result, even Iéga compute-bound scenarios are comparable to those of
instructions need to be severely restricted in ofde NaCl with no significant differences in performance
prevent potentially harmful exploits. This samassl of (keeping in mind that our prototype implementation
problems applies to Vx32, as the binary translationutilizes the NaCl system call layer for NaCl conilplat
process is vulnerable to similar circumvention. or  executables).
method, since all execution occurs within the coedi of In the second experiment, a simple transition id an
a virtual machine, code execution can be allowedrin out of the VM was performed in a tight loop, ad@dxbut
unrestrained fashion, as long as proper checkirpie 20% overhead in comparison to NaCl's performance.
when switching between borders. This border cngssi  In the third experiment, the system call execution
happens only during system calls, making our mefaod overhead varied, with 10% being typical with anlieuat
simpler and easier to verify correct. Therefone, above case of 400%. The difference between the typieakc
example executes but is unable to bypass the @mnbh and the outlier demonstrates that attendant cirtames
the virtual machine (barring any actual errors fe t of the environment, such as competition with other
hardware implementation). system processes, internal kernel buffering eto. loa

o dominating factors in determining overall overheads
E. Example 5 — General-purpose Applications

In order to evaluate the technique in a more realev B. Large-scale Benchmarks
situation, we create a modified version of the Bzip In order to empirically measure how these approgche
compression program with various bugs insertedesd t perform under more realistic workloads, we've tdste
isolation effectiveness. This included illegaltinstions ~ performance for several scenarios.
within dead code, accidental array bounds viol&iand 1. Execution of three compute-bound graphics
other suspicious but harmless code. We ran thifred performance tests provided with Native Client'st tes
version under both the Native Client, Vx32 and YAe suite:
Container. We found that, while all three effeetiw
prevented malicious code from executing, the pre-
emptive approach of the Native Client resulted in
increased false positives, even though the actde did
nothing harmful. Vx32's binary translation process c. Life: a cellular automata simulation of
triggered false positives only when the code fragime Conway’s Game of Life
was encountered, although it would abort even & th2  Quake

instruction itself was never executed. 3 The SPEC2006 benchmark suite

VIl. PERFORMANCE OF THH SOLATION ARCHITECTURE In all of the above cases, we disabled VSYNC so tha

_ . the rendering thread would not be put on hold tht
To ensure that our solution does not introduceiisplay’s vertical refresh had completed.

unacceptable  overheads, we  executed some
microbenchmarks of illustrative cases as well asieso 1) Graphics performance tests

Earth: a ray-tracing workload, projecting a flat
image of the earth onto a spinning globe

Voronoi: a brute force Voronoi tessellation

large scale benchmarks, keeping in mind that owmeat The samples were built with nacl-g++ version 4.2.2
VT Container implementation is merely a proof-of- with compiler parametersO3 —-mfpmath=sse
concept prototype. In all cases our VT Contaimdut®n  —msse —fomit-frame-pointer . The Linuxtime

was compared with Google’s Native Client, and derta command was used to measure the execution time3n a
benchmarks were also run against Vx32. Performanagases.

was tested in 3 cases—native execution as a linux Both Earth and Voronoi were executed with 4 worker
executable, execution within Google’s NaCl Containe threads for 1000 frames, averaged over 3 runse Wifs
and execution within our VTContainer. run as a single thread for 5000 frames. The resuk

A Microbenchmarks summarised in Table 3.

The microbenchmarks were chosen to test performance
under highly specific circumstances. These help to



Table 3: Compute/graphics performance tests. Taneelapsed time
in seconds. Lower is better.

Native Client VT Container
Linux
Sample . .
Executable Ex%(:nL:(telon Overhead Ex_?ic:rl:gon Overhead
Voronoi 34.13 19.18 -43.8%| 19.12| -43.98%
Earth 11.3§ 11.64 2.28%| 12.48 9.66%
Life 14.88 17.47 17% 17.88 20.16%

Somewhat surprisingly, we found that both the Nativ Mcf benchmark, which peaked at 4%.

Client and the VT Container significantly out-perfeed

the native executable in the Voronoi test.
results are consistent with those reported by Yeal.e

[18].

Howettee

In the other two instances, the results were asagd, _ AL
with the native Linux executable having the pestooth kernel versions and executable compilatiomsfla

performance. The Native Client and the VT ContaineMatching.
had fairly similar performance in all 3 cases, viltk VT

Container having a slight edge on the Voronoi examp

and a loss in the other two tests.

2) Quake

Quake was executed on Suse Linux 11.3 with kerne

mode setting switched off at 1024x768 resolutiQuake

was built using-O3 optimization. The version used was
The resultse ar

sdlquake-1.0.9 from www.libsdl.org.

shown in

Table 4.

Table 4: Quake performance comparison. Numbermdrames per
second. Higher is better.

As expected, in all cases, native execution of the
unmodified binary provided the best results. Ireatept
one case, the NaCl execution time was slightlyeloéktan
the VTContainer execution. This was not unantiggda
since the context switch overhead takes a toll
execution times. However, in all cases, the paréorce
of the VT container was extremely competitive, wtitle
overhead being less than 1% in all cases, excephéo
In contrast,
Vx32's results were slower, with overheads incegasp
to 4%.

The tests were rerun on a Core-i7 920 quad core
processor with 4GB Ram as shown in Figure 10. The
configuration was identical to the previous machimith

on

Run # Linux Executable | Native Client| VT Container
1 137.1 123.0 122.1

2 136.9 124.0 121.5

3 136.0 124.1 121.3
Average 136.67 123.7 121.6

30

# Core i5 Base Run
©Core i5 Nacl Run
H Core i5 VT Sandbox Run

O Core i5 Vx32 Run

While performance differences between nulls were

minimal and almost negligible, we found that théivea
Linux executable performed best overall. The dédfee
between the Native Client and the VT Container wer¢
extremely small, with the VT Container incurringlayht
overhead of about 1.7%.

3) SPEC2006 results

The performance of our approach was tested priynaril
by executing the SPEC2006 benchmark suite. W
compared our approach against native executiorhef t
binary with no modifications, running the binariesing
Google’s NaCl implementation, the Vx32
implementation and comparing it with our own apjifoa
Only the C integer benchmarks are supported by th
Vx32 runtime at the moment.

The tests were run on two machine configurations
Figure 9 shows the results on a Core-i5 540M pismmes
dual core CPU with 4GB of RAM, running on OpenSuse
11.3 with kernel version 2.6.34.07. The execasbl
were compiled with theO3 gcc flag in all 3 cases. The

Figure 9: SPEC2006 on Core i5-540M processor

25

T T T T

@ Core i7 Base Run
ElCore i7 Nacl Run
M Core i7 VT Sandbox Run

[ICore i7 Vx32 Run

vertical axis is the ratio of each test's executtane

against a reference execution time provided by SPEC

Higher values are better.

Figure 10: SPEC2006 on Core i7-920 processor

The results were similar, although the differenaese
more pronounced this time. The overheads rangisds



10% although the mcf overheads were far
pronounced at 34%. The difference is mainly attdable

morehe introduction of Intel EPT and AMD Nested Paging
support, and therefore, this also presents oppitigsirior

to cache locality and context switching overheadsfurther performance and isolation improvement, ared
However, since this was the only anomolous casedave intend to explore this avenue in future.

not consider it to be representative of averagee cas
performance.

Overall, we found that the performance of the NaCh]
production code, current Vx32 implementation and ou
initial VT Container prototype were competitive it
each other. This is despite the fact that ourqgiype [2]
currently suffers from excessive context switchilug to
its reliance on the KVM driver. Potentially thiseyxhead
could be reduced by moving parts of the code irger u
space, which would significantly improve the VT
Container solution’s performance.

[3]

VIIl. SUMMARY AND CONCLUSIONS

[4]

We have seen that component isolation mechanisms at
the operating system level are an increasingly mapod
security need. We have developed a new solutiadheo
problem which uses the virtualization hardware supp [5]
available in modern processors. By comparison with
software-based techniques, as exemplified by theg&o
Native Client and Vx32, our approach has the foifgy
advantages.

1. Elimination of an entire class of problems relatedl®]
to code verification and patching.

2. A significantly smaller Trusted Computing Base
and therefore, increased confidence in the safety
of the system. 7]

3. Our prototype implementation already provides
competitive performance in comparison to NacCl
and better performance than Vx32, with the
promise of even better performance in an
optimized implementation. [8]

Since we perform checks at runtime, we minimize
false positives which would prevent the execution
of valid components. [9]

5. The approach is easily extendable to support 64-
bit code.

6. Our approach does not require the use of custor[nlO]
tool chains, and can isolate standard Linux
binaries. [11]

The major drawback of our approach is its reliaoge
hardware specific features, although current treimds
microprocessor design suggest that this is notriause
limitation.

We believe that the technique demonstrated in this
paper can be further optimized for better perforceaby  [13]
reducing unnecessary context switches. In additits
technique is also applicable to isolating operatiggtem
drivers, which have thus far been difficult to hkendith
other methods due to memory sharing with the O$14]
kernel [3]. While others have explored the isolatiof
driver isolation wusing full virtual machines [36],
lightweight driver isolation using hardware virtizaltion
support has been described by Tan et al. [37], diggu
Intel's VT-x extensions. However, their researcbdated

[12]
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