
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Goonasekera, Nuwan A., Caelli, William, & Fidge, Colin (2012) A hard-
ware virtualization-based component sandboxing architecture. Journal of
Software, 7 (9), pp. 2107-2118.

This file was downloaded from: http://eprints.qut.edu.au/55624/

c© Copyright 2012 please consult the authors

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.4304/jsw.7.9.2107-2118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10914803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Goonasekera,_Nuwan.html
http://eprints.qut.edu.au/view/person/Caelli,_William.html
http://eprints.qut.edu.au/view/person/Fidge,_Colin.html
http://eprints.qut.edu.au/55624/
http://dx.doi.org/10.4304/jsw.7.9.2107-2118

A Hardware Virtualization Based Component
Sandboxing Architecture

Nuwan Goonasekera, William Caelli and Colin Fidge
Queensland University of Technology, Brisbane, Australia

Email: nuwan.goonasekera@student.qut.edu, {w.caelli, c.fidge}@qut.edu.au

Abstract—Modern applications comprise multiple
components, such as browser plug-ins, often of unknown
provenance and quality. Statistics show that failure of such
components accounts for a high percentage of software
faults. Enabling isolation of such fine-grained components
is therefore necessary to increase the robustness and
resilience of security-critical and safety-critical computer
systems.
In this paper, we evaluate whether such fine-grained
components can be sandboxed through the use of the
hardware virtualization support available in modern Intel
and AMD processors. We compare the performance and
functionality of such an approach to two previous software
based approaches. The results demonstrate that hardware
isolation minimizes the difficulties encountered with
software based approaches, while also reducing the size of
the trusted computing base, thus increasing confidence in
the solution’s correctness. We also show that our relatively
simple implementation has equivalent run-time
performance, with overheads of less than 34%, does not
require custom tool chains and provides enhanced
functionality over software-only approaches, confirming
that hardware virtualization technology is a viable
mechanism for fine-grained component isolation.

Index Terms—component isolation, system call
interpositioning, hardware virtualization, component
software

I. INTRODUCTION

A “process” is the key software abstraction supported
by modern operating systems for protecting and
managing separate applications. However, with the rapid
spread of component based software, a contemporary
application typically extends its functionality by loading
components dynamically into its process address space.
For example, operating system kernels load device
drivers, web browsers load browser plug-ins, and many
applications support some form of extension components
to provide or augment their basic functionality. Although
operating system processes have well-defined isolation
boundaries and inter-process communications
mechanisms [1], current operating systems provide
insufficient mechanisms for isolating components of a
particular application from each other [2]. This is clearly
demonstrated by the fact that component based software
extensions often decrease the reliability of the hosting
application; a badly-written or misbehaving component
can damage the containing host, and other components,
either accidentally or deliberately.

The statistics are revealing: over 85% of Windows XP
crashes are due to faulty device drivers, and Linux drivers
have 2 to 7 times the bug count of the kernel [3]. Such
failures are not limited to kernel drivers; software
applications also suffer similar problems. Zeigler [4]
indicates that over 70% of crashes in the popular browser
Internet Explorer are due to third party add-ons. In
addition, over 50% of CERT-reported security threats are
due to buffer overflow vulnerabilities [5]. The Java
Virtual Machine (JVM) has similar vulnerabilities,
because any misbehaving Java Native Interface (JNI)
component has the potential to overwrite critical memory
regions of the JVM, bringing down the entire virtual
machine [6]. Clearly, as many researchers have
emphasized, a critical need is better component isolation
so that hosts are isolated from any extension components
they incorporate [7-9]. Indeed, microkernel based
operating systems take this concept to its ultimate
manifestation [10]. Modern trends in browser
architectures also emphasize the gravity of this issue;
both Microsoft’s Internet Explorer [4] and Google’s
Chrome [11] browser have changed to multi-process
architectures in which program components are isolated
into several, disparate operating system processes.

Before discussing component isolation further, the
term ‘component’ must be defined because there is no
general consensus on what constitutes a software
component. Szyperski [12] defines it as

a unit of composition with contractually
specified interfaces and explicit context
dependencies only. A software component can
be deployed independently and is subject to
composition by third parties.

Mendelsohn [2] provides an overview of such units of
composition, from the earliest kind of reuse in the form of
subroutines, to statically linked libraries, followed by
dynamically linked libraries, and culminating in
component technologies such as Microsoft’s
ActiveX/COM, and cross-platform portable components
such as SUN’s JavaBeans.

Since the above definition is somewhat expansive, for
our purposes we limit a component to be any executable
binary unit which is loaded by an application into its own
address space, with communication taking place between
the component and its host application via a well-defined
interface. Primarily, this will be in the form of dynamic
link libraries (DLL)/shared object (SO) libraries, which

form the primary means of composability in modern
operating systems and applications. Thus, enabling
component isolation at the DLL/SO level is a much
needed step in creating more robust applications.

Several approaches have been taken to address this
problem. Broadly, they can be classified into hardware-
supported protection, software based protection and
interpretation [13]. In a previous paper, we expanded this
categorization into a more fine-grained analysis of the
current state of the art while identifying the strengths and
weaknesses of different approaches [14].

This paper presents a new solution to the problem
based on the hardware virtualization support introduced
by both Intel and AMD in their recent microprocessors.
We introduce a component isolation architecture which
executes each component in a minimal, hardware-
supported virtual machine, thus strongly isolating each
component from its containing host. In contrast to a
heavy-weight, full virtual machine, requiring the
emulation of devices, component isolation only requires
the virtualization of the processor and memory. Our
technique requires only a small Trusted Computing Base
(TCB) which reduces complexity and increases
confidence in the correctness of the solution. The
remainder of this paper provides a description of our
approach and its practical implementation, a comparison
with previous techniques, and an evaluation of the overall
effectiveness of the approach in terms of both run-time
performance and functionality.

II. RELATED WORK

In our previous paper, we reviewed the state of the art
broadly [14]. Below, we summarise those techniques
which are closely related to our current solution.

A key technique in binary code level isolation is
Software Fault Isolation (SFI). This method was first
described by Wahbe et al. [15] and has been applied in
many forms. It allows untrusted code to be placed in the
same operating system (OS) process as trusted code and
avoids the overhead of Inter-process Communication
(IPC) between processes. It uses software based static
analysis of the untrusted component’s object code to
verify that no illegal memory accesses will be made and
to inject code for double checking any potentially
harmful instructions, effectively sandboxing the original
component. The sandboxed code is created so that the
high bits of a memory address always fall within the
sandboxed region, thus preventing components from
accessing memory outside of its bounds [15]. Wahbe et
al.’s [15] original idea has been improved and
implemented in many forms. SFI, originally
demonstrated by Wahbe et al. [15] on a Reduced
Instruction Set Computer (RISC) architecture, has also
been demonstrated on Complex Instruction Set Computer
(CISC) architectures [16]. Techniques such as binary
translation [17] are offshoots of the SFI concept.

However, a significant weakness of the SFI approach
is that ensuring the correctness of the implementation is a
difficult process. As Wahbe et al. [15] point out,
modification of the executable binary is complicated and

adds significant overhead to the code injection process
because, for example, the difference between code and
data can be difficult to identify. Therefore, safe
execution of arbitrary binary components is difficult
using SFI if the program was not compiled using an
approved compiler.

The ideas in SFI are directly utilized in the Google
Native Client (NaCl), which provides a software
framework for safe execution of untrusted binary
components [18]. NaCl aims to provide browser-based
applications increased computational performance
through native binary components which have access to
performance-oriented features such as SSE instructions,
compiler intrinsics, hand-coded assembler, etc., without
compromising on safety [18].

Another component isolation technique is a multi-
process application architecture. This model is becoming
increasingly popular in web browsers [11, 19]. The basic
idea is to isolate individual components in disparate OS
processes and use the operating system’s IPC
mechanisms to communicate between them. In Google’s
Chrome browser, a single browser coordinating process
spawns additional processes to perform sub tasks [20].
These additional processes run at a lower privilege level
and access is tightly arbitrated by the coordinating
browser process. In effect, different components are
loaded into different processes and communication takes
place using OS-supplied IPC mechanisms. This isolation
into separate processes allows the browser to survive
component crashes. Microsoft’s Internet Explorer 8
follows a similar model [4]. There is however, an
increase in complexity as coordination between several
processes is required. Also, Wahbe et al. [15] make a
strong case against placing software modules in their own
address space, as this requires IPC between them for
communication, resulting in unacceptable context-
switching overheads [15], so a trade off is made between
performance and reliability [20].

Chiueh et al. [21] introduce an intra-address space
component isolation scheme by using the paging and
segmentation support in the Intel x86 hardware
architecture, the most prevalent architecture for desktop
machines. This support is used to isolate kernel
extensions from the kernel itself, by placing all
extensions in a separate segment of lower privilege than
the kernel. They demonstrate that hardware solutions can
provide high efficiency, although their technique is
limited to isolating the application from all components;
components themselves are not isolated from each other.
Furthermore, this technique is designed for isolating
trusted components from accidental attempts to violate
their memory boundaries, and is not intended to isolate
deliberately malicious components.

A somewhat similar approach is an application level
library for isolating components using x86 segmentation
hardware [22]. This approach is unique in that the entire
library is implemented in user-mode, requiring no
changes to the OS kernel. Google’s Native Client also
utilizes the above hardware segmentation technique for
isolating components.

By contrast, our approach makes efficient use of the
isolation capabilities provided by the underlying
hardware’s virtualization support. In comparison to the
techniques described above, the advantages of our
method can be summarised as follows.

1. It minimizes the size and complexity of the Trusted
Computing Base, by moving the bulk of the
responsibility for achieving security down to the
hardware level, making the implementation more
understandable and less susceptible to
circumvention.

2. It does not require compiler level modifications, thus
enabling already-compiled binary components to be
isolated.

3. It avoids incorrectly identifying components as
(potentially) unsafe, merely because they contain
suspicious-looking instructions, i.e., our analysis
does not produce ‘false positives’. Instead of
attempting to predict the component’s behaviour
statically, as is done in other approaches, our
technique checks the program’s actual run-time
behaviour. We thus eliminate the risk of denial of
execution for programs which are difficult to prove
secure using static techniques.

4. It eliminates the complexity of static analysis and
verification and thus eliminates the class of errors
which arise from bugs or misses in the verifier.

Of course, the main disadvantage of our approach is
that hardware virtualization support is necessary.
However, many modern microprocessors from Intel and
AMD already provide such support, and it can be
expected to become more prevalent in future.

III. THREAT MODEL

Isolation can be analyzed from both a resilience
perspective and a safety perspective. While resilience
becomes the key reason for isolation in a trusted
environment, safety becomes paramount in an untrusted
one. This is best exemplified by internet browsers which
extend their functionality through plug-in components.
In such an environment, both these factors become very
important, as the extension code may be of unknown
provenance and quality.

Our system is designed to deal with such arbitrary
binary components, from untrusted sources, which need
to be executed in a constrained environment. Once a
component is accepted for execution, it must have
controlled access to resources, as determined by the host.
Access to memory must be restricted to areas allowed by
the host application and attempts to exceed these limits
must be caught. The host must be allowed to constrain
the component by preventing arbitrary access to the
operating system call interface. Such access must be
mediated and the host must be allowed to set resource
limits on memory usage or disk access. On the other
hand, the component must be able to freely avail itself of
all safe machine instructions.

Therefore, our system is based on the observation that
a process cannot perform any actions harmful to the

system as long as its system call interface, which is its
window to the outside world, is strictly controlled [23].
We utilize this principle for isolating components within
a restricted address space, and provide strict arbitration
over all system calls.

IV. ISOLATION ARCHITECTURE

This section describes how our isolation container is
used by a host application to execute components in a
constrained environment. We refer to this isolation
container as the Virtualization Technology Container (VT
Container). It is, in fact, a minimal virtual machine,
which uses a portion of the host application’s address
space for the virtual machine’s own memory and exploits
hardware virtualization features for safe execution of
components.

Figure 1: Virtualization Technology Container design

Figure 1 shows how a component is executed within a
host application. The host application may initially
request that an untrusted component be loaded into its
address space. Such requests are handled by our VT
Container, which allocates a block of memory for the
component within the host’s address space, and maps the
component into it. The host may then invoke the
component during the course of its execution. The
component call causes execution to switch over to our VT
Container, which will safely execute the component. If
the component attempts to execute a potentially unsafe
instruction, such as an operating system call, it is trapped
by the container and the trap handler decides whether the
instruction is allowed to proceed or must be aborted. If
no unsafe instructions are encountered, the component’s

Host Application Text

Host Application Heap

Host Application Data

Stack

 VT Sandboxed

Component

Component Heap

Component Data

Component Text

Component Stack

Trap
Handler

execution ends normally and control returns transparently
to the host application.

A. The VT Container’s Relationship to Virtualization
Hardware

Our VT Container uses the hardware virtualization
support introduced to Intel and AMD processors in
2005 [24-26], to enable safe execution of a component
within a minimal, lightweight, virtual machine.

Hardware virtualization is an isolation mechanism
which has been used for decades. Although the
popularity of Virtual Machine (VM) technology waned
somewhat over the years, there has lately been a
resurgence of interest in it with the development and
marketing of software systems such as VMWare [17, 27],
which provide a Virtual Machine Monitor (VMM) for the
popular Intel x86 architecture. This has occurred even
though the Intel x86 architecture itself had several non-
virtualizable instructions which do not meet Popek and
Goldberg’s virtualization requirements [28]. Many novel
techniques have been used to overcome these limitations,
such as binary translation [17, 27] and para-virtualization
[29-31].

In 2005, Intel and AMD introduced additional machine
instructions to their respective architectures to remedy
this problem [24-26]. The machine instructions were
similar in nature to those of the old IBM System/370 and
enabled the interpretive execution of code and additional
hardware-managed control blocks. The Intel and AMD
extensions are similar [17], which makes it easy to
support either instruction set. Uhlig et al. [32] provide an
overview of the architecture, with additional details being
available elsewhere [24-26]. However, as noted by
Adams and Agesen [17], early versions of Intel’s and
AMD’s hardware virtualization did not necessarily result
in better performance, due to the lack of support for
Memory Management Unit (MMU) virtualization. To
remedy this, AMD introduced Nested Page Tables
(NPT) [26] and Intel has followed suit by introducing
Extended Page Tables (EPT) in their new Nehalem
processor architecture, both of which add support for IO
MMU virtualization [33].

Our VT Container exploits these new instructions for
virtualization of processor hardware. The
implementation of the VT Container is based on the open
source Kernel-based Virtual Machine (KVM)
project [34], which provides libkvm, a simplified
abstraction of the processor-specific, lower-level machine
instructions.

The virtualization hardware allows the VT Container
to retain selective control of processor resources, physical
memory, interrupt management and I/O. Of special
utility is the ability to trap on the execution of sensitive
instructions, which allows fine-grained control over those
components which attempt to execute potentially
dangerous code. The overhead is minimal since the
hardware always performs the necessary checks.

Figure 2: Overview of the VT Container process

Figure 2 is a conceptual diagram of the process on an
Intel processor. Our model corresponds closely to the
actual hardware implementation. The VT Container
plays the same role as a traditional Virtual Machine
Monitor (VMM). Each component is comparable to a
guest executing on the VMM. The VT Container
initializes itself by creating a minimal, light-weight
virtual machine and uses the KVM libraries to initialize
the necessary processor control structures for virtual
execution. These control structures designate memory
areas for storing the registers of the host machine as well
as the guest machine, which Intel refers to as a Virtual
Machine Control Block (VMCB). The areas are
initialized by executing the VMXON machine
instruction [24].

There are two main control structures – the host state
area and the guest state area. The host state area saves
the registers of the host before transitioning to guest
mode execution. Similarly, the guest state area contains
the processor registers of the guest. When transitioning
out of the VM, the guest registers are persisted in the
guest state area and the host registers are reloaded from
the host state area.

In order to begin execution of a component, we invoke
the KVM which in turn invokes the VMENTER machine
instruction, beginning the normal execution of the
component. Any exceptional situation will trigger a
VMEXIT event, which is trapped by the VT Container. If
the instruction passes validity checks, it can be allowed to
continue. Failure to pass the checks triggers a cleanup
operation and the host is notified of the failure. If no
unexpected errors are encountered, component execution
completes normally and the VMXOFF machine instruction
is executed to deallocate the processor’s control
structures.

B. Implementation

In order to test and compare our VT Container
concept, we have developed a demonstrable prototype of
our solution, which supports both standard ELF
executables as well as the modified native executables
supported by Google Native Client. An additional
advantage is that we can directly execute standard GCC
compiled ELF executables, whereas both the above
solutions require custom tool chains. We utilize the ELF
loaders provided in both these implementations to create
the in-memory layout of the ELF executable. In this
section, we describe the loading and execution process of
a typical component.

Component 0 Component 1

VT Container VMXON VMXOFF

VMEXIT

VMENTER

VMEXIT

VMENTER

Figure 3: Implementation of the VT Container

Figure 3 shows the VT Container’s context at an
implementation level. We read and parse in an
Executable and Linkable Format (ELF) executable. We
then load the executable into our VT Container, which is
where the bulk of our implementation lies. The VT
Container is responsible for the safe execution of the
component and the handling of any potentially dangerous
instructions. The VT Container is built on top of KVM
(Kernel Virtual Machine), which provides a layer of
abstraction over the lower level virtualization
instructions, in the form of a device driver.

If a component makes a system call, the VT Container
carries it out on the component’s behalf. Here too, our
prototype saved a significant amount of work by building
on top of NaCl’s system call layer. The NaCl
implementation provides a highly restricted system call
layer which we have modified to suit our needs.

The typical process, as per the numbers in Figure 3 is
as follows:

1. An ELF executable is loaded into the VT Container.

2. The VT Container uses the KVM device driver to
execute the component.

3. The KVM module interfaces with the virtualization
hardware and shields the layers above from the
specific processor in use (Intel or AMD).

4. System calls by a component are intercepted and
passed into the modified system call layer.

5. The system call layer may invoke the operating
system to carry out the actual system call and return
results to the component.

The following sections give a detailed, step by step
description of the tasks carried out by the VT Container,
during initialization and execution of a component.

1) Initialization of a component

This section describes the step-wise process for
initializing the VT Container and loading an executable
into it for execution.

1. When an ELF executable is launched, the module is
initially read in and the ELF header parsed. Our
implementation supports standard ELF files as well
as Google’s customized ELF format.

2. The ELF executable is mapped into a contiguous
block of memory, which is 256MB in size by default.
This 256MB block serves as the initial physical
memory for the virtual machine. Thus, there is a 1:1

correspondence between this memory block and the
physical memory map seen by the virtual machine.
If the ELF executable is in NaCl format, the first
64KB of this memory is padded with nulls, similar to
NaCl’s default implementation, which helps in the
detection of null pointer exceptions. We also use the
trampoline code used in NaCl. This trampoline code
is used to exit the VT Container in NaCl executables
and carry out system calls and is described in detail
below. The executable’s text and data sections come
afterwards. The rest of the memory is uninitialized.

3. Once the executable is mapped in and the memory
area initialized, we initialize the Virtual Machine
Control Block (VMCB) needed by the processor,
specifying the aforementioned memory area as the
physical memory block used by the virtual machine.
We use KVM’s abstraction layer to initialize the
VMCB.

4. Once the virtual machine’s processor control block is
defined, we then initialize the processor registers and
switch the machine directly into 32 bit mode. In this
way, we avoid having to write a bootstrap loader
which would switch the processor from 16-bit real
mode to 32-bit protected mode. Protected mode is
set by setting the Protection Enable (PE) bit in the
CR0 register [Intel 2007b].

5. Before protected mode can be properly used, the
machine’s Global Descriptor Table (GDT) must be
initialized. In order to simplify our implementation,
we disable paging hardware altogether and use
segmentation hardware only. We use a flat memory
model, and the GDT is initialized with a code
segment which is the size of the text portion of the
memory map.

6. We make the data segment span the entire virtual
memory and the stack segment and other segment
registers such as FS, GS and ES are also set to use a
flat memory model, by spanning the machine’s
allocated physical RAM. We do not use Local
Descriptor Tables and therefore do not need to
initialize the relevant structures.

Thus, we directly bootstrap a minimal virtual machine
with the processor already in 32-bit mode and assigned a
flat memory model, greatly simplifying the programming
model for a component. The memory map is shown in
Figure 4.

2) Execution within a VT Container

Execution of a component within a VT Container
begins as follows.

1. After initialization of the virtual machine, we set the
VM’s Instruction Pointer to the component’s entry
point. At this moment, we only support ELF
executables which are statically linked and the
relative locations zero based, so that we do not need
to perform any relocation.

2. An initial stack is set up for the program and the base
pointer and frame pointer are initialized to point to
the top of the stack. Any command line arguments

OS Kernel

VT

Container

KVM

ELF Loader
System Call

Service Layer

Virtualization Hardware

Host Process

1 4

2

3

5

used are pushed onto the stack area and the memory
is adjusted as required.

3. The virtual machine is then launched via KVM, and
execution begins from the program’s entry point.

Figure 4: Component memory layout

3) Initialization of the C runtime environment

The first task performed by the running program is to
initialize the C runtime environment, which is needed for
basic input/output and for accessing system services.
NaCl executables use a modified version of the newlib C
runtime library, which is statically linked with the
component. We support this same version of newlib so
that direct binary compatibility with NaCl components
can be enabled.

Newlib initializes itself by allocating memory for the
Thread Control Block and makes a system call to
initialize the corresponding operating system thread.
NaCl’s default implementation additionally stores a
pointer to the Thread Control Block in the GS segment
register. In our implementation, we modify the virtual
machine’s GS segment register instead. This is an
example of the kind of modification needed at the system
call layer in order to make it compatible with our
implementation.

4) Execution of system calls

Figure 5 shows the typical sequence of actions which
take place during a system call.

1. A normal ELF executable will initiate a system call
by invoking INT 0x80 or by using the fast system
call instructions. In the case of Google’s Native
Client executables, it does this by jumping to a
trampoline mechanism where each system call goes
through a trusted code routine.

2. We modify this routine to suspend execution of the
virtual machine by executing a sequence that triggers
a VMEXIT event, thereby intercepting the system
call.

3. Upon interception of the system call, we carry out
the actual system call after verifying the parameters.
The Dispatcher routine is responsible for figuring out
which system call was requested. The component
can only execute a subset of the available system
calls and are completely controllable, making the
execution of arbitrary code secure.

4. Before the system call is executed, the parameters
are validated to ensure that the values are within
range and that only permitted system resources are
accessed.

5. Once the system call is complete, the results are set
in the virtual machine’s registers and the stack and

frame pointers adjusted to store the necessary return
values.

6. Finally, execution resumes by changing the virtual
machine’s instruction pointer to resume execution
from the return address stored on the stack.

7. The untrusted code resumes execution.

Figure 5: Execution sequence for a system call

5) Handling of unsafe instructions

Potentially unsafe machine instructions are handled by
trapping on the execution of sensitive instruction types.
The process is described below.

1. The execution of instructions defined as sensitive
causes the virtualization hardware to trigger an exit
into the VT Container. By default, all privileged ring
0 instructions are trapped. All other instructions are
allowed to execute with no constraints within the
virtual machine. The VMCB is configured to trap on
these sensitive instructions through the KVM layer.

2. If an attempt to execute a sensitive instruction is
detected, our trap handlers are invoked. The trap
handler then takes steps to terminate the offending
component.

We also use this trapping functionality for our
implementation of system call handling. However, in
that instance, we execute the system call on the
component’s behalf and return the results via the virtual
machine’s stack.

6) Threading

We provide an extremely simplified implementation of
threads, with one virtual processor per thread.

1. When a component requests the creation of a new
thread, we create a new virtual machine, but map in
the same memory belonging to the creator’s thread.
In other words, both virtual machines share the same
physical memory.

2. Once the virtual machine is initialized, the virtual
processor’s instruction pointer is set to the thread’s
entry point.

 Program Text Program Data Heap Stack

Context Switch

Untrusted

Code

Trampoline Dispatcher

Parameter

Validation

Syscall

Implementation

Untrusted

Code

VT Container Host

Context Switch

via KVM

Context Switch

via KVM

3. The GS register must also be set to point to the
Thread Control Block of the new thread.

4. The virtual machine execution is then started,
thereby having two virtual processors executing the
two different threads.

V. COMPARATIVE ANALYSIS

This section directly compares our solution to the
Google Native Client, which focuses on using static
analysis, as well as Vx32, which emphasizes runtime
binary translation.

Table 1: Comparison of steps to load and execute a component

VT Container Google Native Client Vx32

1. Load
component

2. Switch to
sandbox

3. Execute code
4. Trap on

exception or
execute till end

1. Load component
2. Verify

component
3. Patch unsafe

instructions
4. Switch to

sandbox
5. Execute code
6. Trap on exception

or execute till end

1. Load component
2. Create sandbox
3. Translate code

fragment
4. Execute code

fragment
5. Repeat steps 3

and 4 till
execution ends
or an exception
occurs

Table 1 provides an overview of steps needed to load
and execute a component. As can be seen, our approach
saves significantly on load-time complexity by removing
the code verification and patching steps altogether. Our
approach thus eliminates an entire class of problems
related to static analysis and code verification, as
discussed below.

Our implementation saves significantly on execution
overheads since no additional instructions need to be
inserted. Our initial measurements show that code bloat
for Google Native Client is significantly high, because it
requires that jumps be aligned to 32-byte boundaries.
Neither our implementation nor Vx32 have such an
alignment requirement, so can significantly lower the size
of the executable code. However, we suffer a heavier
penalty for sensitive instructions, as the trap handler may
need to perform a context switch back to user space in
order to handle the instruction. However, the complexity
of our implementation is greatly reduced as no binary
code patching needs to be done.

As shown in Table 2 our technique also differs
fundamentally at a conceptual level. Google’s NaCl
relies on pre-execution checking, using static analysis,
and rejects a component if it does not meet its defined
criteria. It also inserts run-time checks into the code.
Our technique simply starts executing the component and
aborts if unsafe instructions are encountered. Therefore,
our focus is on run-time checking as opposed to both
load-time and run-time checking. We argue that our
technique is both faster, less complicated and more
robust. In particular, our approach will execute
components which contain potentially unsafe instructions
only in dead code, whereas NaCl will not execute such
components at all.

Notably, our implementation is immune to static
analysis and verification bugs. In contrast, a security
contest conducted by Google to test for loopholes in NaCl
revealed several bugs in the code verifier and patching
system, which allowed for arbitrary code execution
vulnerabilities, enabling a malicious component to escape
component isolation [35]. Our implementation is not
vulnerable to such errors, since execution is entirely
constrained to the virtual machine, making for a more
secure implementation. We have tested this by executing
similar classes of bugs reported in the Native Client
security contest, and showed that the code is unable to
break free from the confines of our container. A detailed
example is discussed in Section 0.

Our technique also offers the advantage of being easily
adaptable to 64-bit code, something that introduces much
greater complexity to NaCl and Vx32 and is currently
unsupported, because both NaCl and Vx32 make use of
segmentation hardware which is no longer available on
Intel’s 64-bit architecture [18].

However, we do share similar vulnerabilities as NaCl
and Vx32 at the system call layer, since any loopholes at
this level can be exploited in an identical way. (In both
systems the problem can potentially be avoided by
carefully validating parameters before execution of
system calls.)

Table 2: Comparison of approaches

 VT Container Google Native
Client

Vx32

Approach Hardware
Virtualization

SFI SFI

Technique Minimal virtual
machine container

Static Analysis Runtime binary
translation

ISA 32bit/64bit 32bit/64bit 32bit

Specific
Hardware

features used

Intel VT/AMD
SVM

Segmentation Segmentation

Compile time
requirements

None Customized tool
chain with code

alignment
requirements

None

VI. EFFECTIVENESS OF THE ISOLATION ARCHITECTURE

In this section we evaluate the effectiveness of our
method by demonstrating its use through examples, while
comparing and contrasting the results with Google’s
Native Client and Vx32. These examples were
incorporated into test routines and applied against both
systems. We show that our solution provides stronger
security guarantees than NaCl and Vx32, while
eliminating the complexity of the code analysis and
verification process and the need for runtime binary
translation.

A. Example 1 – Handling Illegal Instructions

Figure 6 shows a C code fragment containing an illegal
assembler instruction. It illustrates an attempt to directly
access an I/O port through the out instruction. Typically,

user level programs are disallowed from accessing I/O
ports directly. This kind of problem could arise both
from malicious code or a programming error such as an
attempt to divide by zero.

Figure 6: Example code containing an unsafe instruction

We can selectively forbid sensitive instructions that
should not be executed, and our VT Container adopts the
policy of disabling such instructions by default. This is
done by configuring the VMCB to intercept the specified
instruction, in this case, the out instruction. The
virtualization hardware will then automatically trap when
an attempt is made to execute the instruction. We can
then mediate and terminate the module gracefully or
allow it to continue if the instruction is deemed
innocuous.

When compared to NaCl, the protection offered is
similar. NaCl would refuse to allow execution of the
above component since the verification process would
detect the presence of the disallowed instruction
statically. Vx32 allows execution of the component but,
because it dynamically translates the next ‘fragment’ of
code to be executed, it may abort during runtime if it
encounters the illegal instruction during its binary
translation process, even when the instruction itself is
only executed conditionally. We, however, trap only
when an illegal instruction is actually reached, if ever.
The advantage of this is better illustrated by the example
below.

B. Example 2 – Reducing False Positives

In this example we modify the previous program
slightly to conditionally execute the illegal instruction by
only calling the run_test method if condition
‘argc < 0 ’ is true. In practice, argc will never be
less than 0, meaning that this will be dead code in the
running program and the potentially harmful instruction
can never be executed. NaCl however, would
nevertheless generate a false positive and refuse to allow
execution of the program and Vx32 would fail at runtime
when it encounters that fragment of code. Our method
entirely eliminates this class of false positive altogether.

Although the above example is somewhat contrived, it
serves to illustrate that NaCl is always forced to err on the
safe side, and disallow a range of instructions which are
generally innocuous but potentially unsafe, such as all
instructions that modify the x86 segment state, including

lds , far calls, etc. Vx32 also suffers from similar
constraints. Our method does not require such caution, as
execution is entirely constrained to the virtual machine,
and loading segment registers for example, only affects
the virtual processor. This produces far fewer false
positives.

C. Example 3 – Addressing Errors

The program in Figure 7 highlights an extremely
common programming mistake. It makes use of an
uninitialized pointer which performs a ‘wild store’ into
memory. When an attempt is made to access memory
outside of the boundaries defined by the VMCS, the VT
hardware can be configured to trap into our specific error
handler.

Figure 7: Example code with an uninitialized pointer

In comparison to NaCl and Vx32, the protection
performance is identical, since both NaCl and Vx32 use
x86 segmentation hardware to enforce similar constraints.

D. Example 4 – Addressing Exploits

Our last example demonstrates a situation where our
technique is safer than NaCl. This example is an actual
bug detected and submitted during the Native Client
security competition, where several flaws in the verifier
were identified [35]. Although the bug has been
subsequently patched, it serves to illustrate the potential
danger of instructions missed during the verification
process, and that eliminating the verification process
provides far greater security guarantees as well as
flexibility.

The exploit took advantage of a miss in the verifier,
where opcode prefixes for 2 byte instructions were not
constrained. The code fragment in Figure 8 illustrates the
key instructions used in the exploit. It works by pushing
the value 0x10001 onto the stack, which points to the
middle of the first mov instruction, which now represents
the restricted instruction int 3.

Figure 8: Example code with an illegal jump

#include <stdio.h>

void run_test() {
asm ("movl $32, %%eax; \
 out %%eax, $0xf1"
 :
 :
 : "%eax"
);
}

int main(int argc, char * argv[]) {
 run_test();
 return 0;
}

#include <stdio.h>

void run_test() {
 int *test, offset = 1024*1024*10;
 test[offset] = 10;
}

int main(int argc, char * argv[]) {
 run_test();
 return 0;
}

cs:0x10000: mov eax, 0xCCCCCCCC
…
…
cs:0x10080: mov $0x10001,%ebx
cs:0x10085: push %ebx
cs:0x10086: xor %eax,%eax
cs:0x10088: test %eax,%eax
cs:0x1008a: data16 je 0x7f4f
cs:0x1008f: add %al,(%eax)

Normally, such an unaligned jump would be
disallowed and detected by the verifier. However, the
bug exploits the 16-bit data prefix to truncate the jump
target, which the verifier miscomputed. As a result, the
code jumps into a ret instruction in the trampoline code
region, which results in a return to the address pushed
onto the stack, in this case, the illegal int 3 instruction.
In our approach the illegal instruction is detected when it
attempts to execute.

While this problem was patched in NaCl soon
afterwards, it serves to illustrate the difficulty in writing a
fool-proof static verifier. As a result, even legal
instructions need to be severely restricted in order to
prevent potentially harmful exploits. This same class of
problems applies to Vx32, as the binary translation
process is vulnerable to similar circumvention. In our
method, since all execution occurs within the confines of
a virtual machine, code execution can be allowed in an
unrestrained fashion, as long as proper checking is done
when switching between borders. This border crossing
happens only during system calls, making our method far
simpler and easier to verify correct. Therefore, the above
example executes but is unable to bypass the confines of
the virtual machine (barring any actual errors in the
hardware implementation).

E. Example 5 – General-purpose Applications

In order to evaluate the technique in a more real-world
situation, we create a modified version of the bzip2
compression program with various bugs inserted to test
isolation effectiveness. This included illegal instructions
within dead code, accidental array bounds violations and
other suspicious but harmless code. We ran this modified
version under both the Native Client, Vx32 and the VT
Container. We found that, while all three effectively
prevented malicious code from executing, the pre-
emptive approach of the Native Client resulted in
increased false positives, even though the actual code did
nothing harmful. Vx32’s binary translation process
triggered false positives only when the code fragment
was encountered, although it would abort even if the
instruction itself was never executed.

VII. PERFORMANCE OF THE ISOLATION ARCHITECTURE

To ensure that our solution does not introduce
unacceptable overheads, we executed some
microbenchmarks of illustrative cases as well as some
large scale benchmarks, keeping in mind that our current
VT Container implementation is merely a proof-of-
concept prototype. In all cases our VT Container solution
was compared with Google’s Native Client, and certain
benchmarks were also run against Vx32. Performance
was tested in 3 cases—native execution as a linux
executable, execution within Google’s NaCl Container
and execution within our VTContainer.

A. Microbenchmarks

The microbenchmarks were chosen to test performance
under highly specific circumstances. These help to

establish the upper and lower bounds that can be expected
in best and worst case scenarios respectively.

We performed empirical performance measurements
on four main workloads:

1. Execution of a simple loop based calculation.

2. Execution of a “null” system call.

3. Execution of I/O instructions (which require an
operating system call and therefore, at least one
context switch).

The results show that the overheads of our approach in
compute-bound scenarios are comparable to those of
NaCl with no significant differences in performance
(keeping in mind that our prototype implementation
utilizes the NaCl system call layer for NaCl compatible
executables).

In the second experiment, a simple transition in and
out of the VM was performed in a tight loop, added about
20% overhead in comparison to NaCl’s performance.

In the third experiment, the system call execution
overhead varied, with 10% being typical with an outlier
case of 400%. The difference between the typical case
and the outlier demonstrates that attendant circumstances
of the environment, such as competition with other
system processes, internal kernel buffering etc. can be
dominating factors in determining overall overheads.

B. Large-scale Benchmarks

In order to empirically measure how these approaches
perform under more realistic workloads, we’ve tested
performance for several scenarios.

1. Execution of three compute-bound graphics
performance tests provided with Native Client’s test
suite:

a. Earth: a ray-tracing workload, projecting a flat
image of the earth onto a spinning globe

b. Voronoi: a brute force Voronoi tessellation

c. Life: a cellular automata simulation of
Conway’s Game of Life

2. Quake

3. The SPEC2006 benchmark suite

In all of the above cases, we disabled VSYNC so that
the rendering thread would not be put on hold till the
display’s vertical refresh had completed.

1) Graphics performance tests

The samples were built with nacl-g++ version 4.2.2
with compiler parameters –O3 –mfpmath=sse
–msse –fomit-frame-pointer . The Linux time
command was used to measure the execution time in all 3
cases.

Both Earth and Voronoi were executed with 4 worker
threads for 1000 frames, averaged over 3 runs. Life was
run as a single thread for 5000 frames. The results are
summarised in Table 3.

Table 3: Compute/graphics performance tests. Times are elapsed time
in seconds. Lower is better.

Somewhat surprisingly, we found that both the Native
Client and the VT Container significantly out-performed
the native executable in the Voronoi test. However, the
results are consistent with those reported by Yee et al.
[18].

In the other two instances, the results were as expected,
with the native Linux executable having the best
performance. The Native Client and the VT Container
had fairly similar performance in all 3 cases, with the VT
Container having a slight edge on the Voronoi example
and a loss in the other two tests.

2) Quake

Quake was executed on Suse Linux 11.3 with kernel
mode setting switched off at 1024x768 resolution. Quake
was built using –O3 optimization. The version used was
sdlquake-1.0.9 from www.libsdl.org. The results are
shown in Table 4.

Table 4: Quake performance comparison. Numbers are in frames per
second. Higher is better.

Run # Linux Executable Native Client VT Container

1
2
3

137.1
136.9
136.0

123.0
124.0
124.1

122.1
121.5
121.3

Average 136.67 123.7 121.63

While performance differences between nulls were
minimal and almost negligible, we found that the native
Linux executable performed best overall. The difference
between the Native Client and the VT Container were
extremely small, with the VT Container incurring a slight
overhead of about 1.7%.

3) SPEC2006 results

The performance of our approach was tested primarily
by executing the SPEC2006 benchmark suite. We
compared our approach against native execution of the
binary with no modifications, running the binaries using
Google’s NaCl implementation, the Vx32
implementation and comparing it with our own approach.
Only the C integer benchmarks are supported by the
Vx32 runtime at the moment.

The tests were run on two machine configurations.
Figure 9 shows the results on a Core-i5 540M processor
dual core CPU with 4GB of RAM, running on OpenSuse
11.3 with kernel version 2.6.34.07. The executables
were compiled with the –O3 gcc flag in all 3 cases. The
vertical axis is the ratio of each test’s execution time
against a reference execution time provided by SPEC.
Higher values are better.

As expected, in all cases, native execution of the
unmodified binary provided the best results. In all except
one case, the NaCl execution time was slightly better than
the VTContainer execution. This was not unanticipated,
since the context switch overhead takes a toll on
execution times. However, in all cases, the performance
of the VT container was extremely competitive, with the
overhead being less than 1% in all cases, except for the
mcf benchmark, which peaked at 4%. In contrast,
Vx32’s results were slower, with overheads increased up
to 4%.

The tests were rerun on a Core-i7 920 quad core
processor with 4GB Ram as shown in Figure 10. The
configuration was identical to the previous machine, with
both kernel versions and executable compilation flags
matching.

Figure 9: SPEC2006 on Core i5-540M processor

Figure 10: SPEC2006 on Core i7-920 processor

The results were similar, although the differences were
more pronounced this time. The overheads ran as high as

0

5

10

15

20

25

30

Core i5 Base Run

Core i5 Nacl Run

Core i5 VT Sandbox Run

Core i5 Vx32 Run

0

5

10

15

20

25

30

35

Core i7 Base Run

Core i7 Nacl Run

Core i7 VT Sandbox Run

Core i7 Vx32 Run

Sample
Linux

Executable

Native Client VT Container

Execution
Time Overhead

Execution
Time Overhead

Voronoi 34.13 19.18 −43.8% 19.12 −43.98%
Earth 11.38 11.64 2.28% 12.48 9.66%
Life 14.88 17.47 17% 17.88 20.16%

10% although the mcf overheads were far more
pronounced at 34%. The difference is mainly attributable
to cache locality and context switching overheads.
However, since this was the only anomolous case, we do
not consider it to be representative of average case
performance.

Overall, we found that the performance of the NaCl
production code, current Vx32 implementation and our
initial VT Container prototype were competitive with
each other. This is despite the fact that our prototype
currently suffers from excessive context switching due to
its reliance on the KVM driver. Potentially this overhead
could be reduced by moving parts of the code into user
space, which would significantly improve the VT
Container solution’s performance.

VIII. SUMMARY AND CONCLUSIONS

We have seen that component isolation mechanisms at
the operating system level are an increasingly important
security need. We have developed a new solution to the
problem which uses the virtualization hardware support
available in modern processors. By comparison with
software-based techniques, as exemplified by the Google
Native Client and Vx32, our approach has the following
advantages.

1. Elimination of an entire class of problems related
to code verification and patching.

2. A significantly smaller Trusted Computing Base
and therefore, increased confidence in the safety
of the system.

3. Our prototype implementation already provides
competitive performance in comparison to NaCl
and better performance than Vx32, with the
promise of even better performance in an
optimized implementation.

4. Since we perform checks at runtime, we minimize
false positives which would prevent the execution
of valid components.

5. The approach is easily extendable to support 64-
bit code.

6. Our approach does not require the use of custom
tool chains, and can isolate standard Linux
binaries.

The major drawback of our approach is its reliance on
hardware specific features, although current trends in
microprocessor design suggest that this is not a serious
limitation.

We believe that the technique demonstrated in this
paper can be further optimized for better performance by
reducing unnecessary context switches. In addition, this
technique is also applicable to isolating operating system
drivers, which have thus far been difficult to handle with
other methods due to memory sharing with the OS
kernel [3]. While others have explored the isolation of
driver isolation using full virtual machines [36],
lightweight driver isolation using hardware virtualization
support has been described by Tan et al. [37], by using
Intel’s VT-x extensions. However, their research predated

the introduction of Intel EPT and AMD Nested Paging
support, and therefore, this also presents opportunities for
further performance and isolation improvement, and we
intend to explore this avenue in future.

REFERENCES

[1] A. S. Tanenbaum, Modern Operating Systems, 2nd
ed.: Prentice Hall, 2001.

[2] N. Mendelsohn, "Operating systems for component
software environments," in The Sixth Workshop on
Hot Topics in Operating Systems, 1997, pp. 49-54.

[3] M. M. Swift, et al., "Nooks: an architecture for
reliable device drivers," presented at the
Proceedings of the 10th ACM SIGOPS European
Workshop: Beyond the PC, Saint-Emilion, France,
2002.

[4] A. Zeigler. (2008, 2009, Jan 30). IE8 and Loosely-
Coupled IE (LCIE) [Online]. Available:
http://blogs.msdn.com/ie/archive/2008/03/11/ie8-
and-loosely-coupled-ie-lcie.aspx

[5] L. Lam and T. Chiueh, "Checking array bound
violation using segmentation hardware," in
Proceedings of the International Conference on
Dependable Systems and Networks, 2005, pp. 388-
397.

[6] Y. Chiba, "Heap Protection for Java Virtual
Machines," presented at the Proceedings of the 4th
International Symposium on Principles and Practice
of Programming in Java, Mannheim, Germany,
2006.

[7] M. M. Swift, et al., "Improving the reliability of
commodity operating systems," presented at the
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, Bolton Landing, NY,
USA, 2003.

[8] B. Leslie, et al., "User-Level Device Drivers:
Achieved Performance " Journal of Computer
Science and Technology, vol. 20, pp. 654-664, 2005.

[9] J. N. Herder, et al., "Fault isolation for device
drivers," in IEEE/IFIP International Conference on
Dependable Systems & Networks, 2009, pp. 33-42.

[10] A. S. Tanenbaum, et al., "Can we make operating
systems reliable and secure?," Computer, vol. 39,
pp. 44-51, 2006.

[11] A. Barth, et al. (2008, 2009 Jan. 30). The Security
Architecture of the Chromium Browser. Available:
http://crypto.stanford.edu/websec/chromium/

[12] C. Szyperski, Component Software - Beyond Object-
Oriented Programming, 2nd ed.: Addison-Wesley,
2002.

[13] C. Small and M. Seltzer, "A comparison of OS
extension technologies," in Proceedings of the
USENIX 1996 Annual Technical Conference, San
Diego, CA, 1996, pp. 41-54.

[14] N. A. Goonasekera, et al., "50 Years of Isolation,"
in Proceedings of the 2009 Symposia and
Workshops on Ubiquitous, Autonomic and Trusted
Computing, Brisbane, Australia, 2009, pp. 54-60.

[15] R. Wahbe, et al., "Efficient software-based fault
isolation," SIGOPS Operating Systems Review, vol.
27, pp. 203-216, 1993.

[16] S. McCamant and G. Morrisett, "Evaluating SFI for
a CISC architecture," presented at the Proceedings
of the 15th conference on USENIX Security
Symposium, Vancouver, B.C., Canada, 2006.

[17] K. Adams and O. Agesen, "A comparison of
software and hardware techniques for x86
virtualization," ACM SIGARCH Computer
Architecture News, vol. 34, pp. 2-13, 2006.

[18] B. Yee, et al., "Native Client: A Sandbox for
Portable, Untrusted x86 Native Code,"
Communications of the ACM, vol. 53, pp. 91-99,
2010.

[19] C. Reis, et al., "Using Processes to Improve the
Reliability of Browser-based Applications,"
Department of Computer Science and Engineering,
University of Washington, Technical Report UW-
CSE-2007-12-01, 2007.

[20] The Google Chrome Team. (2008, 2009, Jan 30).
Chromium Developer Documentation: Multi-
process Architecture [Online]. Available:
http://dev.chromium.org/developers/design-
documents/multi-process-architecture

[21] T. Chiueh, et al., "Integrating segmentation and
paging protection for safe, efficient and transparent
software extensions," presented at the Proceedings
of the Seventeenth ACM Symposium on Operating
Systems Principles, Charleston, South Carolina,
United States, 1999.

[22] B. Ford and R. Cox, "Vx32: Lightweight User-level
Sandboxing on the x86," in USENIX Annual
Technical Conference, Boston, MA, 2008, pp. 293–
306.

[23] T. Garfinkel, et al., "Flexible OS support and
applications for trusted computing," presented at the
Proceedings of the 9th conference on Hot Topics in
Operating Systems - Volume 9, Lihue, Hawaii,
2003.

[24] Intel, Intel 64 and IA-32 Architectures Software
Developer's Manual vol. 1: Basic Architecture: Intel
Corporation, 2007.

[25] Intel, Intel 64 and IA-32 Architectures Software
Developer's Manual Volume 3B vol. 3B: System
Programming Guide: Intel Corporation, 2007.

[26] AMD. (2008, 2009 Jan. 30). AMD-V™ Nested
Paging [Online]. Available:
http://developer.amd.com/assets/NPT-WP-1%201-
final-TM.pdf

[27] J. Sugerman, et al., "Virtualizing I/O Devices on
VMware Workstation's Hosted Virtual Machine
Monitor," presented at the Proceedings of the
General Track: 2002 USENIX Annual Technical
Conference, 2001.

[28] J. S. Robin and C. E. Irvine, "Analysis of the Intel
Pentium's ability to support a secure virtual machine
monitor," in Proceedings of the 9th USENIX
Security Symposium, Denver, Colorado, 2000, p. 10.

[29] P. Barham, et al., "Xen and the art of virtualization,"
ACM SIGOPS Operating Systems Review, vol. 37,
pp. 164-177, 2003.

[30] K. Fraser, et al., "Safe hardware access with the Xen
virtual machine monitor," presented at the 1st
Workshop on Operating System and Architectural
Support for the On-Demand IT Infrastructure,
Boston, MA, 2004.

[31] E. Bugnion, et al., "Disco: running commodity
operating systems on scalable multiprocessors,"
ACM Transactions on Computer Systems (TOCS),
vol. 15, pp. 412-447, 1997.

[32] R. Uhlig, et al., "Intel virtualization technology,"
Computer, vol. 38, pp. 48-56, 2005.

[33] Intel. (2008, 25th May, 2011). Intel® Virtualization
Technology [Online]. Available:
http://www.intel.com/technology/virtualization/inde
x.htm

[34] Redhat. (2010, 2010, Jul. 20). Kernel Based Virtual
Machine [Online]. Available:
http://www.linux-kvm.org/page/Main_Page

[35] Google. (2009, 2010 Jul. 20). Native Client Security
Contest [Online]. Available:
http://code.google.com/contests/nativeclient-
security/

[36] J. LeVasseur, et al., "Unmodified device driver
reuse and improved system dependability via virtual
machines," presented at the Proceedings of the 6th
Symposium on Operating Systems Design &
Implementation, San Francisco, CA, 2004.

[37] L. Tan, et al., "iKernel: Isolating Buggy and
Malicious Device Drivers Using Hardware
Virtualization Support," in Third IEEE International
Symposium on Dependable, Autonomic and Secure
Computing, 2007, pp. 134-144.

Nuwan Goonasekera: is a PhD Candidate at the Queensland
University of Technology. He received his B.Sc. in Information
Systems from the Manchester Metropolitan University, UK in
2004. His research interests include software reliability and
fault tolerance, security and software engineering. He worked as
a senior software engineer at a leading ERP vendor developing
enterprise applications.

William Caelli : Professor Caelli is a Senior Research Scientist
in the Information Security Institute and an Adjunct Professor in
the Faculty of Science and Technology at the Queensland
University of Technology. He has had over 47 years research
and development, education, consultancy and business
involvement in information and communications technology
with 37 years of that involved in all aspects of computer and
network security, including high trust systems, cryptology and
cryptographic systems integration.

Colin Fidge: is a Professor of Computer Science at the
Queensland University of Technology where he teaches
software engineering. His research interests include modelling
and analysis of complex systems, especially those that are
deemed security-critical, safety-critical or mission-critical.

