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Abstract—Modern applications comprise multiple 
components, such as browser plug-ins, often of unknown 
provenance and quality. Statistics show that failure of such 
components accounts for a high percentage of software 
faults.  Enabling isolation of such fine-grained components 
is therefore necessary to increase the robustness and 
resilience of security-critical and safety-critical computer 
systems. 
In this paper, we evaluate whether such fine-grained 
components can be sandboxed through the use of the 
hardware virtualization support available in modern Intel 
and AMD processors. We compare the performance and 
functionality of such an approach to two previous software 
based approaches.  The results demonstrate that hardware 
isolation minimizes the difficulties encountered with 
software based approaches, while also reducing the size of 
the trusted computing base, thus increasing confidence in 
the solution’s correctness.  We also show that our relatively 
simple implementation has equivalent run-time 
performance, with overheads of less than 34%, does not 
require custom tool chains and provides enhanced 
functionality over software-only approaches, confirming 
that hardware virtualization technology is a viable 
mechanism for fine-grained component isolation.  
 
Index Terms—component isolation, system call 
interpositioning, hardware virtualization, component 
software 

I.  INTRODUCTION 

A “process” is the key software abstraction supported 
by modern operating systems for protecting and 
managing separate applications.  However, with the rapid 
spread of component based software, a contemporary 
application typically extends its functionality by loading 
components dynamically into its process address space.  
For example, operating system kernels load device 
drivers, web browsers load browser plug-ins, and many 
applications support some form of extension components 
to provide or augment their basic functionality.  Although 
operating system processes have well-defined isolation 
boundaries and inter-process communications 
mechanisms [1], current operating systems provide 
insufficient mechanisms for isolating components of a 
particular application from each other [2].  This is clearly 
demonstrated by the fact that component based software 
extensions often decrease the reliability of the hosting 
application; a badly-written or misbehaving component 
can damage the containing host, and other components, 
either accidentally or deliberately. 

The statistics are revealing: over 85% of Windows XP 
crashes are due to faulty device drivers, and Linux drivers 
have 2 to 7 times the bug count of the kernel [3].  Such 
failures are not limited to kernel drivers; software 
applications also suffer similar problems.  Zeigler [4] 
indicates that over 70% of crashes in the popular browser 
Internet Explorer are due to third party add-ons.  In 
addition, over 50% of CERT-reported security threats are 
due to buffer overflow vulnerabilities [5].  The Java 
Virtual Machine (JVM) has similar vulnerabilities, 
because any misbehaving Java Native Interface (JNI) 
component has the potential to overwrite critical memory 
regions of the JVM, bringing down the entire virtual 
machine [6].  Clearly, as many researchers have 
emphasized, a critical need is better component isolation 
so that hosts are isolated from any extension components 
they incorporate [7-9].  Indeed, microkernel based 
operating systems take this concept to its ultimate 
manifestation [10].  Modern trends in browser 
architectures also emphasize the gravity of this issue; 
both Microsoft’s Internet Explorer [4] and Google’s 
Chrome [11] browser have changed to multi-process 
architectures in which program components are isolated 
into several, disparate operating system processes. 

Before discussing component isolation further, the 
term ‘component’ must be defined because there is no 
general consensus on what constitutes a software 
component.  Szyperski [12] defines it as 

a unit of composition with contractually 
specified interfaces and explicit context 
dependencies only.  A software component can 
be deployed independently and is subject to 
composition by third parties.  

Mendelsohn [2] provides an overview of such units of 
composition, from the earliest kind of reuse in the form of 
subroutines, to statically linked libraries, followed by 
dynamically linked libraries, and culminating in 
component technologies such as Microsoft’s 
ActiveX/COM, and cross-platform portable components 
such as SUN’s JavaBeans.  

Since the above definition is somewhat expansive, for 
our purposes we limit a component to be any executable 
binary unit which is loaded by an application into its own 
address space, with communication taking place between 
the component and its host application via a well-defined 
interface.  Primarily, this will be in the form of dynamic 
link libraries (DLL)/shared object (SO) libraries, which 



form the primary means of composability in modern 
operating systems and applications.  Thus, enabling 
component isolation at the DLL/SO level is a much 
needed step in creating more robust applications.  

Several approaches have been taken to address this 
problem.  Broadly, they can be classified into hardware-
supported protection, software based protection and 
interpretation [13].  In a previous paper, we expanded this 
categorization into a more fine-grained analysis of the 
current state of the art while identifying the strengths and 
weaknesses of different approaches [14]. 

This paper presents a new solution to the problem 
based on the hardware virtualization support introduced 
by both Intel and AMD in their recent microprocessors.  
We introduce a component isolation architecture which 
executes each component in a minimal, hardware-
supported virtual machine, thus strongly isolating each 
component from its containing host.  In contrast to a 
heavy-weight, full virtual machine, requiring the 
emulation of devices, component isolation only requires 
the virtualization of the processor and memory.  Our 
technique requires only a small Trusted Computing Base 
(TCB) which reduces complexity and increases 
confidence in the correctness of the solution.  The 
remainder of this paper provides a description of our 
approach and its practical implementation, a comparison 
with previous techniques, and an evaluation of the overall 
effectiveness of the approach in terms of both run-time 
performance and functionality. 

II.   RELATED WORK 

In our previous paper, we reviewed the state of the art 
broadly [14].  Below, we summarise those techniques 
which are closely related to our current solution. 

A key technique in binary code level isolation is 
Software Fault Isolation (SFI).  This method was first 
described by Wahbe et al. [15] and has been applied in 
many forms.  It allows untrusted code to be placed in the 
same operating system (OS) process as trusted code and 
avoids the overhead of Inter-process Communication 
(IPC) between processes.  It uses software based static 
analysis of the untrusted component’s object code to 
verify that no illegal memory accesses will be made and 
to inject code for double checking any potentially 
harmful instructions, effectively sandboxing the original 
component.  The sandboxed code is created so that the 
high bits of a memory address always fall within the 
sandboxed region, thus preventing components from 
accessing memory outside of its bounds [15].  Wahbe et 
al.’s [15] original idea has been improved and 
implemented in many forms.  SFI, originally 
demonstrated by Wahbe et al. [15] on a Reduced 
Instruction Set Computer (RISC) architecture, has also 
been demonstrated on Complex Instruction Set Computer 
(CISC) architectures [16].  Techniques such as binary 
translation [17] are offshoots of the SFI concept. 

However, a significant weakness of the SFI approach 
is that ensuring the correctness of the implementation is a 
difficult process.  As Wahbe et al. [15] point out, 
modification of the executable binary is complicated and 

adds significant overhead to the code injection process 
because, for example, the difference between code and 
data can be difficult to identify.  Therefore, safe 
execution of arbitrary binary components is difficult 
using SFI if the program was not compiled using an 
approved compiler. 

The ideas in SFI are directly utilized in the Google 
Native Client (NaCl), which provides a software 
framework for safe execution of untrusted binary 
components [18].  NaCl aims to provide browser-based 
applications increased computational performance 
through native binary components which have access to 
performance-oriented features such as SSE instructions, 
compiler intrinsics, hand-coded assembler, etc., without 
compromising on safety [18]. 

Another component isolation technique is a multi-
process application architecture.  This model is becoming 
increasingly popular in web browsers [11, 19].  The basic 
idea is to isolate individual components in disparate OS 
processes and use the operating system’s IPC 
mechanisms to communicate between them.  In Google’s 
Chrome browser, a single browser coordinating process 
spawns additional processes to perform sub tasks [20].  
These additional processes run at a lower privilege level 
and access is tightly arbitrated by the coordinating 
browser process.  In effect, different components are 
loaded into different processes and communication takes 
place using OS-supplied IPC mechanisms.  This isolation 
into separate processes allows the browser to survive 
component crashes.  Microsoft’s Internet Explorer 8 
follows a similar model [4].  There is however, an 
increase in complexity as coordination between several 
processes is required.  Also, Wahbe et al. [15] make a 
strong case against placing software modules in their own 
address space, as this requires IPC between them for 
communication, resulting in unacceptable context-
switching overheads [15], so a trade off is made between 
performance and reliability [20]. 

Chiueh et al. [21] introduce an intra-address space 
component isolation scheme by using the paging and 
segmentation support in the Intel x86 hardware 
architecture, the most prevalent architecture for desktop 
machines.  This support is used to isolate kernel 
extensions from the kernel itself, by placing all 
extensions in a separate segment of lower privilege than 
the kernel.  They demonstrate that hardware solutions can 
provide high efficiency, although their technique is 
limited to isolating the application from all components; 
components themselves are not isolated from each other.  
Furthermore, this technique is designed for isolating 
trusted components from accidental attempts to violate 
their memory boundaries, and is not intended to isolate 
deliberately malicious components. 

A somewhat similar approach is an application level 
library for isolating components using x86 segmentation 
hardware [22].  This approach is unique in that the entire 
library is implemented in user-mode, requiring no 
changes to the OS kernel.  Google’s Native Client also 
utilizes the above hardware segmentation technique for 
isolating components. 



By contrast, our approach makes efficient use of the 
isolation capabilities provided by the underlying 
hardware’s virtualization support.  In comparison to the 
techniques described above, the advantages of our 
method can be summarised as follows. 

1. It minimizes the size and complexity of the Trusted 
Computing Base, by moving the bulk of the 
responsibility for achieving security down to the 
hardware level, making the implementation more 
understandable and less susceptible to 
circumvention. 

2. It does not require compiler level modifications, thus 
enabling already-compiled binary components to be 
isolated. 

3. It avoids incorrectly identifying components as 
(potentially) unsafe, merely because they contain 
suspicious-looking instructions, i.e., our analysis 
does not produce ‘false positives’.  Instead of 
attempting to predict the component’s behaviour 
statically, as is done in other approaches, our 
technique checks the program’s actual run-time 
behaviour.  We thus eliminate the risk of denial of 
execution for programs which are difficult to prove 
secure using static techniques. 

4. It eliminates the complexity of static analysis and 
verification and thus eliminates the class of errors 
which arise from bugs or misses in the verifier. 

Of course, the main disadvantage of our approach is 
that hardware virtualization support is necessary.  
However, many modern microprocessors from Intel and 
AMD already provide such support, and it can be 
expected to become more prevalent in future. 

III.   THREAT MODEL 

Isolation can be analyzed from both a resilience 
perspective and a safety perspective. While resilience 
becomes the key reason for isolation in a trusted 
environment, safety becomes paramount in an untrusted 
one. This is best exemplified by internet browsers which 
extend their functionality through plug-in components.  
In such an environment, both these factors become very 
important, as the extension code may be of unknown 
provenance and quality. 

Our system is designed to deal with such arbitrary 
binary components, from untrusted sources, which need 
to be executed in a constrained environment.  Once a 
component is accepted for execution, it must have 
controlled access to resources, as determined by the host.  
Access to memory must be restricted to areas allowed by 
the host application and attempts to exceed these limits 
must be caught.  The host must be allowed to constrain 
the component by preventing arbitrary access to the 
operating system call interface.  Such access must be 
mediated and the host must be allowed to set resource 
limits on memory usage or disk access.  On the other 
hand, the component must be able to freely avail itself of 
all safe machine instructions. 

Therefore, our system is based on the observation that 
a process cannot perform any actions harmful to the 

system as long as its system call interface, which is its 
window to the outside world, is strictly controlled [23].  
We utilize this principle for isolating components within 
a restricted address space, and provide strict arbitration 
over all system calls. 

IV.   ISOLATION ARCHITECTURE 

This section describes how our isolation container is 
used by a host application to execute components in a 
constrained environment.  We refer to this isolation 
container as the Virtualization Technology Container (VT 
Container).  It is, in fact, a minimal virtual machine, 
which uses a portion of the host application’s address 
space for the virtual machine’s own memory and exploits 
hardware virtualization features for safe execution of 
components. 

Figure 1: Virtualization Technology Container design 

Figure 1 shows how a component is executed within a 
host application.  The host application may initially 
request that an untrusted component be loaded into its 
address space.  Such requests are handled by our VT 
Container, which allocates a block of memory for the 
component within the host’s address space, and maps the 
component into it.  The host may then invoke the 
component during the course of its execution.  The 
component call causes execution to switch over to our VT 
Container, which will safely execute the component.  If 
the component attempts to execute a potentially unsafe 
instruction, such as an operating system call, it is trapped 
by the container and the trap handler decides whether the 
instruction is allowed to proceed or must be aborted.  If 
no unsafe instructions are encountered, the component’s 
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execution ends normally and control returns transparently 
to the host application. 

A.  The VT Container’s Relationship to Virtualization 
Hardware 

Our VT Container uses the hardware virtualization 
support introduced to Intel and AMD processors in 
2005 [24-26], to enable safe execution of a component 
within a minimal, lightweight, virtual machine. 

Hardware virtualization is an isolation mechanism 
which has been used for decades.  Although the 
popularity of Virtual Machine (VM) technology waned 
somewhat over the years, there has lately been a 
resurgence of interest in it with the development and 
marketing of software systems such as VMWare [17, 27], 
which provide a Virtual Machine Monitor (VMM) for the 
popular Intel x86 architecture.  This has occurred even 
though the Intel x86 architecture itself had several non-
virtualizable instructions which do not meet Popek and 
Goldberg’s virtualization requirements [28].  Many novel 
techniques have been used to overcome these limitations, 
such as binary translation [17, 27] and para-virtualization 
[29-31]. 

In 2005, Intel and AMD introduced additional machine 
instructions to their respective architectures to remedy 
this problem [24-26].  The machine instructions were 
similar in nature to those of the old IBM System/370 and 
enabled the interpretive execution of code and additional 
hardware-managed control blocks.  The Intel and AMD 
extensions are similar [17], which makes it easy to 
support either instruction set.  Uhlig et al. [32] provide an 
overview of the architecture, with additional details being 
available elsewhere [24-26].  However, as noted by 
Adams and Agesen [17], early versions of Intel’s and 
AMD’s hardware virtualization did not necessarily result 
in better performance, due to the lack of support for 
Memory Management Unit (MMU) virtualization.  To 
remedy this, AMD introduced Nested Page Tables 
(NPT) [26] and Intel has followed suit by introducing 
Extended Page Tables (EPT) in their new Nehalem 
processor architecture, both of which add support for IO 
MMU virtualization [33]. 

Our VT Container exploits these new instructions for 
virtualization of processor hardware.  The 
implementation of the VT Container is based on the open 
source Kernel-based Virtual Machine (KVM) 
project [34], which provides libkvm, a simplified 
abstraction of the processor-specific, lower-level machine 
instructions. 

The virtualization hardware allows the VT Container 
to retain selective control of processor resources, physical 
memory, interrupt management and I/O.  Of special 
utility is the ability to trap on the execution of sensitive 
instructions, which allows fine-grained control over those 
components which attempt to execute potentially 
dangerous code.  The overhead is minimal since the 
hardware always performs the necessary checks. 

 

 

Figure 2: Overview of the VT Container process 

Figure 2 is a conceptual diagram of the process on an 
Intel processor.  Our model corresponds closely to the 
actual hardware implementation.  The VT Container 
plays the same role as a traditional Virtual Machine 
Monitor (VMM).  Each component is comparable to a 
guest executing on the VMM.  The VT Container 
initializes itself by creating a minimal, light-weight 
virtual machine and uses the KVM libraries to initialize 
the necessary processor control structures for virtual 
execution.  These control structures designate memory 
areas for storing the registers of the host machine as well 
as the guest machine, which Intel refers to as a Virtual 
Machine Control Block (VMCB).  The areas are 
initialized by executing the VMXON machine 
instruction [24]. 

There are two main control structures – the host state 
area and the guest state area.  The host state area saves 
the registers of the host before transitioning to guest 
mode execution.  Similarly, the guest state area contains 
the processor registers of the guest.  When transitioning 
out of the VM, the guest registers are persisted in the 
guest state area and the host registers are reloaded from 
the host state area. 

In order to begin execution of a component, we invoke 
the KVM which in turn invokes the VMENTER machine 
instruction, beginning the normal execution of the 
component.  Any exceptional situation will trigger a 
VMEXIT event, which is trapped by the VT Container.  If 
the instruction passes validity checks, it can be allowed to 
continue.  Failure to pass the checks triggers a cleanup 
operation and the host is notified of the failure.  If no 
unexpected errors are encountered, component execution 
completes normally and the VMXOFF machine instruction 
is executed to deallocate the processor’s control 
structures. 

B.  Implementation 

In order to test and compare our VT Container 
concept, we have developed a demonstrable prototype of 
our solution, which supports both standard ELF 
executables as well as the modified native executables 
supported by Google Native Client. An additional 
advantage is that we can directly execute standard GCC 
compiled ELF executables, whereas both the above 
solutions require custom tool chains.  We utilize the ELF 
loaders provided in both these implementations to create 
the in-memory layout of the ELF executable.  In this 
section, we describe the loading and execution process of 
a typical component.  
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Figure 3: Implementation of the VT Container 

Figure 3 shows the VT Container’s context at an 
implementation level.  We read and parse in an 
Executable and Linkable Format (ELF) executable.  We 
then load the executable into our VT Container, which is 
where the bulk of our implementation lies.  The VT 
Container is responsible for the safe execution of the 
component and the handling of any potentially dangerous 
instructions.  The VT Container is built on top of KVM 
(Kernel Virtual Machine), which provides a layer of 
abstraction over the lower level virtualization 
instructions, in the form of a device driver. 

If a component makes a system call, the VT Container 
carries it out on the component’s behalf.  Here too, our 
prototype saved a significant amount of work by building 
on top of NaCl’s system call layer.  The NaCl 
implementation provides a highly restricted system call 
layer which we have modified to suit our needs. 

The typical process, as per the numbers in Figure 3 is 
as follows: 

1. An ELF executable is loaded into the VT Container. 

2. The VT Container uses the KVM device driver to 
execute the component. 

3. The KVM module interfaces with the virtualization 
hardware and shields the layers above from the 
specific processor in use (Intel or AMD). 

4. System calls by a component are intercepted and 
passed into the modified system call layer. 

5. The system call layer may invoke the operating 
system to carry out the actual system call and return 
results to the component. 

The following sections give a detailed, step by step 
description of the tasks carried out by the VT Container, 
during initialization and execution of a component. 

1) Initialization of a component 

This section describes the step-wise process for 
initializing the VT Container and loading an executable 
into it for execution. 

1. When an ELF executable is launched, the module is 
initially read in and the ELF header parsed.  Our 
implementation supports standard ELF files as well 
as Google’s customized ELF format. 

2. The ELF executable is mapped into a contiguous 
block of memory, which is 256MB in size by default.  
This 256MB block serves as the initial physical 
memory for the virtual machine.  Thus, there is a 1:1 

correspondence between this memory block and the 
physical memory map seen by the virtual machine.  
If the ELF executable is in NaCl format, the first 
64KB of this memory is padded with nulls, similar to 
NaCl’s default implementation, which helps in the 
detection of null pointer exceptions.  We also use the 
trampoline code used in NaCl.  This trampoline code 
is used to exit the VT Container in NaCl executables 
and carry out system calls and is described in detail 
below.  The executable’s text and data sections come 
afterwards.  The rest of the memory is uninitialized. 

3. Once the executable is mapped in and the memory 
area initialized, we initialize the Virtual Machine 
Control Block (VMCB) needed by the processor, 
specifying the aforementioned memory area as the 
physical memory block used by the virtual machine.  
We use KVM’s abstraction layer to initialize the 
VMCB. 

4. Once the virtual machine’s processor control block is 
defined, we then initialize the processor registers and 
switch the machine directly into 32 bit mode.  In this 
way, we avoid having to write a bootstrap loader 
which would switch the processor from 16-bit real 
mode to 32-bit protected mode.  Protected mode is 
set by setting the Protection Enable (PE) bit in the 
CR0 register [Intel 2007b]. 

5. Before protected mode can be properly used, the 
machine’s Global Descriptor Table (GDT) must be 
initialized.  In order to simplify our implementation, 
we disable paging hardware altogether and use 
segmentation hardware only.  We use a flat memory 
model, and the GDT is initialized with a code 
segment which is the size of the text portion of the 
memory map. 

6. We make the data segment span the entire virtual 
memory and the stack segment and other segment 
registers such as FS, GS and ES are also set to use a 
flat memory model, by spanning the machine’s 
allocated physical RAM.  We do not use Local 
Descriptor Tables and therefore do not need to 
initialize the relevant structures. 

Thus, we directly bootstrap a minimal virtual machine 
with the processor already in 32-bit mode and assigned a 
flat memory model, greatly simplifying the programming 
model for a component.  The memory map is shown in 
Figure 4. 

2) Execution within a VT Container 

Execution of a component within a VT Container 
begins as follows. 

1. After initialization of the virtual machine, we set the 
VM’s Instruction Pointer to the component’s entry 
point.  At this moment, we only support ELF 
executables which are statically linked and the 
relative locations zero based, so that we do not need 
to perform any relocation. 

2. An initial stack is set up for the program and the base 
pointer and frame pointer are initialized to point to 
the top of the stack.  Any command line arguments 
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used are pushed onto the stack area and the memory 
is adjusted as required. 

3. The virtual machine is then launched via KVM, and 
execution begins from the program’s entry point. 

 
Figure 4: Component memory layout 

3) Initialization of the C runtime environment 

The first task performed by the running program is to 
initialize the C runtime environment, which is needed for 
basic input/output and for accessing system services.  
NaCl executables use a modified version of the newlib C 
runtime library, which is statically linked with the 
component.  We support this same version of newlib so 
that direct binary compatibility with NaCl components 
can be enabled. 

Newlib initializes itself by allocating memory for the 
Thread Control Block and makes a system call to 
initialize the corresponding operating system thread.  
NaCl’s default implementation additionally stores a 
pointer to the Thread Control Block in the GS segment 
register.  In our implementation, we modify the virtual 
machine’s GS segment register instead.  This is an 
example of the kind of modification needed at the system 
call layer in order to make it compatible with our 
implementation. 

4) Execution of system calls 

Figure 5 shows the typical sequence of actions which 
take place during a system call. 

1. A normal ELF executable will initiate a system call 
by invoking INT 0x80 or by using the fast system 
call instructions.  In the case of Google’s Native 
Client executables, it does this by jumping to a 
trampoline mechanism where each system call goes 
through a trusted code routine. 

2. We modify this routine to suspend execution of the 
virtual machine by executing a sequence that triggers 
a VMEXIT event, thereby intercepting the system 
call. 

3. Upon interception of the system call, we carry out 
the actual system call after verifying the parameters.  
The Dispatcher routine is responsible for figuring out 
which system call was requested.  The component 
can only execute a subset of the available system 
calls and are completely controllable, making the 
execution of arbitrary code secure.  

4. Before the system call is executed, the parameters 
are validated to ensure that the values are within 
range and that only permitted system resources are 
accessed. 

5. Once the system call is complete, the results are set 
in the virtual machine’s registers and the stack and 

frame pointers adjusted to store the necessary return 
values. 

6. Finally, execution resumes by changing the virtual 
machine’s instruction pointer to resume execution 
from the return address stored on the stack. 

7. The untrusted code resumes execution. 

 
Figure 5: Execution sequence for a system call 

5) Handling of unsafe instructions 

Potentially unsafe machine instructions are handled by 
trapping on the execution of sensitive instruction types.  
The process is described below. 

1. The execution of instructions defined as sensitive 
causes the virtualization hardware to trigger an exit 
into the VT Container.  By default, all privileged ring 
0 instructions are trapped.  All other instructions are 
allowed to execute with no constraints within the 
virtual machine.  The VMCB is configured to trap on 
these sensitive instructions through the KVM layer. 

2. If an attempt to execute a sensitive instruction is 
detected, our trap handlers are invoked.  The trap 
handler then takes steps to terminate the offending 
component. 

We also use this trapping functionality for our 
implementation of system call handling.  However, in 
that instance, we execute the system call on the 
component’s behalf and return the results via the virtual 
machine’s stack. 

6) Threading 

We provide an extremely simplified implementation of 
threads, with one virtual processor per thread. 

1. When a component requests the creation of a new 
thread, we create a new virtual machine, but map in 
the same memory belonging to the creator’s thread.  
In other words, both virtual machines share the same 
physical memory. 

2. Once the virtual machine is initialized, the virtual 
processor’s instruction pointer is set to the thread’s 
entry point. 
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3. The GS register must also be set to point to the 
Thread Control Block of the new thread. 

4. The virtual machine execution is then started, 
thereby having two virtual processors executing the 
two different threads. 

V.  COMPARATIVE ANALYSIS 

This section directly compares our solution to the 
Google Native Client, which focuses on using static 
analysis, as well as Vx32, which emphasizes runtime 
binary translation. 

Table 1: Comparison of steps to load and execute a component 

VT Container Google Native Client Vx32 

1. Load 
component 

2. Switch to 
sandbox 

3. Execute code 
4. Trap on 

exception or 
execute till end 

 

1. Load component 
2. Verify 

component 
3. Patch unsafe 

instructions 
4. Switch to 

sandbox 
5. Execute code 
6. Trap on exception 

or execute till end 

 

1. Load component 
2. Create sandbox  
3. Translate code 

fragment 
4. Execute code 

fragment 
5. Repeat steps 3 

and 4 till 
execution ends 
or an exception 
occurs 

Table 1 provides an overview of steps needed to load 
and execute a component.  As can be seen, our approach 
saves significantly on load-time complexity by removing 
the code verification and patching steps altogether.  Our 
approach thus eliminates an entire class of problems 
related to static analysis and code verification, as 
discussed below. 

Our implementation saves significantly on execution 
overheads since no additional instructions need to be 
inserted.  Our initial measurements show that code bloat 
for Google Native Client is significantly high, because it 
requires that jumps be aligned to 32-byte boundaries.  
Neither our implementation nor Vx32 have such an 
alignment requirement, so can significantly lower the size 
of the executable code.  However, we suffer a heavier 
penalty for sensitive instructions, as the trap handler may 
need to perform a context switch back to user space in 
order to handle the instruction.  However, the complexity 
of our implementation is greatly reduced as no binary 
code patching needs to be done. 

As shown in Table 2 our technique also differs 
fundamentally at a conceptual level.  Google’s NaCl 
relies on pre-execution checking, using static analysis, 
and rejects a component if it does not meet its defined 
criteria.  It also inserts run-time checks into the code.  
Our technique simply starts executing the component and 
aborts if unsafe instructions are encountered.  Therefore, 
our focus is on run-time checking as opposed to both 
load-time and run-time checking.  We argue that our 
technique is both faster, less complicated and more 
robust.  In particular, our approach will execute 
components which contain potentially unsafe instructions 
only in dead code, whereas NaCl will not execute such 
components at all. 

Notably, our implementation is immune to static 
analysis and verification bugs.  In contrast, a security 
contest conducted by Google to test for loopholes in NaCl 
revealed several bugs in the code verifier and patching 
system, which allowed for arbitrary code execution 
vulnerabilities, enabling a malicious component to escape 
component isolation [35].  Our implementation is not 
vulnerable to such errors, since execution is entirely 
constrained to the virtual machine, making for a more 
secure implementation.  We have tested this by executing 
similar classes of bugs reported in the Native Client 
security contest, and showed that the code is unable to 
break free from the confines of our container.  A detailed 
example is discussed in Section 0. 

Our technique also offers the advantage of being easily 
adaptable to 64-bit code, something that introduces much 
greater complexity to NaCl and Vx32 and is currently 
unsupported, because both NaCl and Vx32 make use of 
segmentation hardware which is no longer available on 
Intel’s 64-bit architecture [18]. 

However, we do share similar vulnerabilities as NaCl 
and Vx32 at the system call layer, since any loopholes at 
this level can be exploited in an identical way.  (In both 
systems the problem can potentially be avoided by 
carefully validating parameters before execution of 
system calls.) 

Table 2: Comparison of approaches 

 VT Container Google Native 
Client 

Vx32 

Approach Hardware 
Virtualization 

SFI SFI 

Technique Minimal virtual 
machine container 

Static Analysis Runtime binary 
translation 

ISA 32bit/64bit 32bit/64bit 32bit 

Specific 
Hardware 

features used 

Intel VT/AMD 
SVM 

Segmentation Segmentation 

Compile time 
requirements 

None Customized tool 
chain with code 

alignment 
requirements 

None 

VI.   EFFECTIVENESS OF THE ISOLATION ARCHITECTURE 

In this section we evaluate the effectiveness of our 
method by demonstrating its use through examples, while 
comparing and contrasting the results with Google’s 
Native Client and Vx32.  These examples were 
incorporated into test routines and applied against both 
systems.  We show that our solution provides stronger 
security guarantees than NaCl and Vx32, while 
eliminating the complexity of the code analysis and 
verification process and the need for runtime binary 
translation. 

A.  Example 1 – Handling Illegal Instructions 

Figure 6 shows a C code fragment containing an illegal 
assembler instruction.  It illustrates an attempt to directly 
access an I/O port through the out  instruction. Typically, 



user level programs are disallowed from accessing I/O 
ports directly.  This kind of problem could arise both 
from malicious code or a programming error such as an 
attempt to divide by zero. 

 

 
Figure 6: Example code containing an unsafe instruction 

We can selectively forbid sensitive instructions that 
should not be executed, and our VT Container adopts the 
policy of disabling such instructions by default.  This is 
done by configuring the VMCB to intercept the specified 
instruction, in this case, the out  instruction.  The 
virtualization hardware will then automatically trap when 
an attempt is made to execute the instruction.  We can 
then mediate and terminate the module gracefully or 
allow it to continue if the instruction is deemed 
innocuous. 

When compared to NaCl, the protection offered is 
similar.  NaCl would refuse to allow execution of the 
above component since the verification process would 
detect the presence of the disallowed instruction 
statically.  Vx32 allows execution of the component but, 
because it dynamically translates the next ‘fragment’ of 
code to be executed, it may abort during runtime if it 
encounters the illegal instruction during its binary 
translation process, even when the instruction itself is 
only executed conditionally.  We, however, trap only 
when an illegal instruction is actually reached, if ever.  
The advantage of this is better illustrated by the example 
below. 

B.   Example 2 – Reducing False Positives 

In this example we modify the previous program 
slightly to conditionally execute the illegal instruction by 
only calling the run_test  method if condition 
‘argc < 0 ’ is true.  In practice, argc  will never be 
less than 0, meaning that this will be dead code in the 
running program and the potentially harmful instruction 
can never be executed.  NaCl however, would 
nevertheless generate a false positive and refuse to allow 
execution of the program and Vx32 would fail at runtime 
when it encounters that fragment of code.  Our method 
entirely eliminates this class of false positive altogether. 

Although the above example is somewhat contrived, it 
serves to illustrate that NaCl is always forced to err on the 
safe side, and disallow a range of instructions which are 
generally innocuous but potentially unsafe, such as all 
instructions that modify the x86 segment state, including 

lds , far calls, etc.  Vx32 also suffers from similar 
constraints.  Our method does not require such caution, as 
execution is entirely constrained to the virtual machine, 
and loading segment registers for example, only affects 
the virtual processor.  This produces far fewer false 
positives. 

C.  Example 3 – Addressing Errors 

The program in Figure 7 highlights an extremely 
common programming mistake.  It makes use of an 
uninitialized pointer which performs a ‘wild store’ into 
memory.  When an attempt is made to access memory 
outside of the boundaries defined by the VMCS, the VT 
hardware can be configured to trap into our specific error 
handler. 

 
Figure 7: Example code with an uninitialized pointer 

In comparison to NaCl and Vx32, the protection 
performance is identical, since both NaCl and Vx32 use 
x86 segmentation hardware to enforce similar constraints. 

D.  Example 4 – Addressing Exploits 

Our last example demonstrates a situation where our 
technique is safer than NaCl.  This example is an actual 
bug detected and submitted during the Native Client 
security competition, where several flaws in the verifier 
were identified [35].  Although the bug has been 
subsequently patched, it serves to illustrate the potential 
danger of instructions missed during the verification 
process, and that eliminating the verification process 
provides far greater security guarantees as well as 
flexibility. 

The exploit took advantage of a miss in the verifier, 
where opcode prefixes for 2 byte instructions were not 
constrained.  The code fragment in Figure 8 illustrates the 
key instructions used in the exploit.  It works by pushing 
the value 0x10001  onto the stack, which points to the 
middle of the first mov instruction, which now represents 
the restricted instruction int  3. 

 
 
 
 
 
 
 

 

Figure 8: Example code with an illegal jump 

#include  <stdio.h>  
 
void  run_test() { 
asm ( "movl $32, %%eax; \  
      out  %%eax, $0xf1"  
      : 
      : 
      : "%eax"  
    ); 
} 
 
int  main( int  argc, char * argv[]) { 
  run_test(); 
  return  0; 
} 
 

#include  <stdio.h>  
 
void  run_test() { 
  int  *test, offset = 1024*1024*10; 
  test[offset] = 10; 
} 
 
int  main( int  argc, char * argv[]) { 
  run_test(); 
  return  0; 
} 

cs:0x10000: mov eax, 0xCCCCCCCC 
… 
… 
cs:0x10080: mov    $0x10001,%ebx 
cs:0x10085: push   %ebx 
cs:0x10086: xor    %eax,%eax 
cs:0x10088: test   %eax,%eax 
cs:0x1008a: data16 je 0x7f4f 
cs:0x1008f: add    %al,(%eax)  



Normally, such an unaligned jump would be 
disallowed and detected by the verifier.  However, the 
bug exploits the 16-bit data prefix to truncate the jump 
target, which the verifier miscomputed.  As a result, the 
code jumps into a ret  instruction in the trampoline code 
region, which results in a return to the address pushed 
onto the stack, in this case, the illegal int  3 instruction.  
In our approach the illegal instruction is detected when it 
attempts to execute. 

While this problem was patched in NaCl soon 
afterwards, it serves to illustrate the difficulty in writing a 
fool-proof static verifier.  As a result, even legal 
instructions need to be severely restricted in order to 
prevent potentially harmful exploits.  This same class of 
problems applies to Vx32, as the binary translation 
process is vulnerable to similar circumvention.  In our 
method, since all execution occurs within the confines of 
a virtual machine, code execution can be allowed in an 
unrestrained fashion, as long as proper checking is done 
when switching between borders.  This border crossing 
happens only during system calls, making our method far 
simpler and easier to verify correct.  Therefore, the above 
example executes but is unable to bypass the confines of 
the virtual machine (barring any actual errors in the 
hardware implementation). 

E.  Example 5 – General-purpose Applications 

In order to evaluate the technique in a more real-world 
situation, we create a modified version of the bzip2 
compression program with various bugs inserted to test 
isolation effectiveness.  This included illegal instructions 
within dead code, accidental array bounds violations and 
other suspicious but harmless code.  We ran this modified 
version under both the Native Client, Vx32 and the VT 
Container.  We found that, while all three effectively 
prevented malicious code from executing, the pre-
emptive approach of the Native Client resulted in 
increased false positives, even though the actual code did 
nothing harmful.  Vx32’s binary translation process 
triggered false positives only when the code fragment 
was encountered, although it would abort even if the 
instruction itself was never executed. 

VII.   PERFORMANCE OF THE ISOLATION ARCHITECTURE 

To ensure that our solution does not introduce 
unacceptable overheads, we executed some 
microbenchmarks of illustrative cases as well as some 
large scale benchmarks, keeping in mind that our current 
VT Container implementation is merely a proof-of-
concept prototype.  In all cases our VT Container solution 
was compared with Google’s Native Client, and certain 
benchmarks were also run against Vx32.  Performance 
was tested in 3 cases—native execution as a linux 
executable, execution within Google’s NaCl Container 
and execution within our VTContainer. 

A.  Microbenchmarks 

The microbenchmarks were chosen to test performance 
under highly specific circumstances. These help to 

establish the upper and lower bounds that can be expected 
in best and worst case scenarios respectively. 

We performed empirical performance measurements 
on four main workloads: 

1. Execution of a simple loop based calculation. 

2. Execution of a “null” system call. 

3. Execution of I/O instructions (which require an 
operating system call and therefore, at least one 
context switch). 

The results show that the overheads of our approach in 
compute-bound scenarios are comparable to those of 
NaCl with no significant differences in performance 
(keeping in mind that our prototype implementation 
utilizes the NaCl system call layer for NaCl compatible 
executables). 

In the second experiment, a simple transition in and 
out of the VM was performed in a tight loop, added about 
20% overhead in comparison to NaCl’s performance. 

In the third experiment, the system call execution 
overhead varied, with 10% being typical with an outlier 
case of 400%.  The difference between the typical case 
and the outlier demonstrates that attendant circumstances 
of the environment, such as competition with other 
system processes, internal kernel buffering etc. can be 
dominating factors in determining overall overheads. 

B.  Large-scale Benchmarks 

In order to empirically measure how these approaches 
perform under more realistic workloads, we’ve tested 
performance for several scenarios. 

1. Execution of three compute-bound graphics 
performance tests provided with Native Client’s test 
suite: 

a. Earth: a ray-tracing workload, projecting a flat 
image of the earth onto a spinning globe 

b. Voronoi: a brute force Voronoi tessellation 

c. Life:  a cellular automata simulation of 
Conway’s Game of Life 

2. Quake 

3. The SPEC2006 benchmark suite 

In all of the above cases, we disabled VSYNC so that 
the rendering thread would not be put on hold till the 
display’s vertical refresh had completed.  

1) Graphics performance tests 

The samples were built with nacl-g++ version 4.2.2 
with compiler parameters –O3 –mfpmath=sse 
–msse –fomit-frame-pointer .  The Linux time  
command was used to measure the execution time in all 3 
cases. 

Both Earth and Voronoi were executed with 4 worker 
threads for 1000 frames, averaged over 3 runs.  Life was 
run as a single thread for 5000 frames.  The results are 
summarised in Table 3. 



Table 3: Compute/graphics performance tests.  Times are elapsed time 
in seconds.  Lower is better. 

Somewhat surprisingly, we found that both the Native 
Client and the VT Container significantly out-performed 
the native executable in the Voronoi test.  However, the 
results are consistent with those reported by Yee et al. 
[18]. 

In the other two instances, the results were as expected, 
with the native Linux executable having the best 
performance.  The Native Client and the VT Container 
had fairly similar performance in all 3 cases, with the VT 
Container having a slight edge on the Voronoi example 
and a loss in the other two tests. 

2) Quake 

Quake was executed on Suse Linux 11.3 with kernel 
mode setting switched off at 1024x768 resolution.  Quake 
was built using –O3 optimization.  The version used was 
sdlquake-1.0.9 from www.libsdl.org.  The results are 
shown in Table 4. 

Table 4: Quake performance comparison.  Numbers are in frames per 
second.  Higher is better. 

Run # Linux Executable Native Client VT Container 

1 
2 
3 

137.1 
136.9 
136.0 

123.0 
124.0 
124.1 

122.1 
121.5 
121.3 

Average 136.67 123.7 121.63 

While performance differences between nulls were 
minimal and almost negligible, we found that the native 
Linux executable performed best overall.  The difference 
between the Native Client and the VT Container were 
extremely small, with the VT Container incurring a slight 
overhead of about 1.7%. 

3) SPEC2006 results 

The performance of our approach was tested primarily 
by executing the SPEC2006 benchmark suite.  We 
compared our approach against native execution of the 
binary with no modifications, running the binaries using 
Google’s NaCl implementation, the Vx32 
implementation and comparing it with our own approach.  
Only the C integer benchmarks are supported by the 
Vx32 runtime at the moment. 

The tests were run on two machine configurations.  
Figure 9 shows the results on a Core-i5 540M processor 
dual core CPU with 4GB of RAM, running on OpenSuse 
11.3 with kernel  version 2.6.34.07.  The executables 
were compiled with the –O3 gcc flag in all 3 cases.  The 
vertical axis is the ratio of each test’s execution time 
against a reference execution time provided by SPEC.  
Higher values are better. 

As expected, in all cases, native execution of the 
unmodified binary provided the best results.  In all except 
one case, the NaCl execution time was slightly better than 
the VTContainer execution.  This was not unanticipated, 
since the context switch overhead takes a toll on 
execution times.  However, in all cases, the performance 
of the VT container was extremely competitive, with the 
overhead being less than 1% in all cases, except for the 
mcf benchmark, which peaked at 4%.  In contrast, 
Vx32’s results were  slower, with overheads increased up 
to 4%. 

The tests were rerun on a Core-i7 920 quad core 
processor with 4GB Ram as shown in Figure 10.  The 
configuration was identical to the previous machine, with 
both kernel versions and executable compilation flags 
matching. 

 
Figure 9: SPEC2006 on Core i5-540M processor 

 
Figure 10: SPEC2006 on Core i7-920 processor 

The results were similar, although the differences were 
more pronounced this time.  The overheads ran as high as 
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10% although the mcf overheads were far more 
pronounced at 34%.  The difference is mainly attributable 
to cache locality and context switching overheads.  
However, since this was the only anomolous case, we do 
not consider it to be representative of average case 
performance. 

Overall, we found that the performance of the NaCl 
production code, current Vx32 implementation and our 
initial VT Container prototype were competitive with 
each other.  This is despite the fact that our prototype 
currently suffers from excessive context switching due to 
its reliance on the KVM driver.  Potentially this overhead 
could be reduced by moving parts of the code into user 
space, which would significantly improve the VT 
Container solution’s performance.  

VIII.   SUMMARY AND CONCLUSIONS 

We have seen that component isolation mechanisms at 
the operating system level are an increasingly important 
security need.  We have developed a new solution to the 
problem which uses the virtualization hardware support 
available in modern processors.  By comparison with 
software-based techniques, as exemplified by the Google 
Native Client and Vx32, our approach has the following 
advantages. 

1. Elimination of an entire class of problems related 
to code verification and patching. 

2. A significantly smaller Trusted Computing Base 
and therefore, increased confidence in the safety 
of the system. 

3. Our prototype implementation already provides 
competitive performance in comparison to NaCl 
and better performance than Vx32, with the 
promise of even better performance in an 
optimized implementation. 

4. Since we perform checks at runtime, we minimize 
false positives which would prevent the execution 
of valid components. 

5. The approach is easily extendable to support 64-
bit code. 

6. Our approach does not require the use of custom 
tool chains, and can isolate standard Linux 
binaries. 

The major drawback of our approach is its reliance on 
hardware specific features, although current trends in 
microprocessor design suggest that this is not a serious 
limitation. 

We believe that the technique demonstrated in this 
paper can be further optimized for better performance by 
reducing unnecessary context switches.  In addition, this 
technique is also applicable to isolating operating system 
drivers, which have thus far been difficult to handle with 
other methods due to memory sharing with the OS 
kernel [3].  While others have explored the isolation of 
driver isolation using full virtual machines [36], 
lightweight driver isolation using hardware virtualization 
support has been described by Tan et al. [37], by using 
Intel’s VT-x extensions. However, their research predated 

the introduction of Intel EPT and AMD Nested Paging 
support, and therefore, this also presents opportunities for 
further performance and isolation improvement, and we 
intend to explore this avenue in future. 
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