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Abstract 

Cartilage defects heal imperfectly and osteoarthritic changes develop frequently as a 

result. Although the existence of specific behavior of chondrocytes derived from various 

depth-related zones in vitro has been known for over 20 years and the zones are known 

to differ in biochemical and biomechanical characteristics, only a relatively small body 

of in vitro work has been performed with zonal chondrocytes and current clinical 

treatment strategies do not reflect these native depth-dependent (zonal) differences. This 

is surprising, as it lies at hand that mimicking the zonal organization of articular 

cartilage in neo-tissue by the use of zonal chondrocyte subpopulations may enhance the 

functionality of the graft.  

Although some research groups have made considerable progress in tailoring culture 

conditions using specific growth factors and biomechanical loading protocols, it is 

concluded that an optimal regime for the acquisition of zonal subpopulations has not 

been determined yet. Other yet unmet challenges include the lack of specific zonal cell 

sorting protocols and limited amounts of cells harvested per zone. As a result, the 

engineering of functional tissue has not yet been realized, and no long-term in vivo 

studies utilizing zonal chondrocytes have been described.  

This paper critically reviews the research performed so far and outlines our view of the 

potential future significance of zonal chondrocyte populations in regenerative 

approaches for the treatment of cartilage defects. Secondly, we discuss briefly the 

capabilities of additive manufacturing technologies which can not only create patient-

specific grafts directly from medical imaging data sets, but may also more accurately 

reproduce the complex 3D zonal extracellular matrix architecture by using techniques 

such as hydrogel-based cell printing.  
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1. Introduction 

Cartilage impresses as a relatively simply structured tissue: it is aneural, avascular, and 

it contains few cells of supposedly only one cell type, the chondrocyte. Mature articular 

cartilage has limited healing capacity, and when a cartilage defect occurs, this 

eventually leads to the development of osteoarthritic changes (Prakash et al. 2002). 

Current clinically applied strategies include autologous chondrocyte implantation (ACI) 

(Peterson et al. 2002), microfracture (Lane et al. 2010), and mosaicplasty (Hangody et 

al. 2008). Although short-term results of these treatment modalities are satisfactory, all 

of these approaches have drawbacks. For example, long-term outcome is less favourable 

for microfracture (Saris et al. 2009) and mosaicplasty (Bentley et al. 2003). Moreover, 

the latter approach is also associated with donor site morbidity (Hangody et al. 2008). 

ACI on the other hand requires a two-stage procedure and comes with high expenses 

(Gerlier et al. 2010). Hence, notwithstanding reasonable clinical success, all current 

therapies for cartilage defects have major drawbacks and often result in the formation of 

a fibrous repair tissue rather than regeneration of hyaline cartilage with its specific 

layered organisation. This means that there is room for improvement of current clinical 

practice and use of cartilage constructs with a zonal organisation may be a viable 

alternative.  

Despite its simple appearance, cartilage is in fact a heterogeneous tissue with a 

composition that varies greatly with depth (Figure 1). Articular cartilage can be divided 

into three zones: the superficial (the top 10–20% of the cartilage), middle (the next 40–

60%), and deep (the bottom 30-40%) zone. The superficial zone (SZ) has the highest 

cell density, the lowest amount of glycosaminoglycans (GAGs) (Buckwalter et al. 

1998), and the lowest biosynthetic activity (Wong et al. 1996). With increasing depth, 
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the cell density decreases and the amount of GAGs increases (Buckwalter et al. 1998), 

resulting in the highest amount of GAGs and the lowest cell density in the deep zone 

(DZ). With increasing GAG amount, the compressive modulus of the tissue also 

increases (Schinagl et al. 1997). The cells in the different zones differ in morphology 

and size. Cells in the SZ are small and flattened, while in the DZ cells are larger and 

round (Siczkowski et al. 1990). Further, the collagen fiber alignment differs between 

zones. The collagen fibers have an arcade-like structure (Benninghoff 1925). They 

originate from the calcified cartilage and continue perpendicular to the surface, through 

the DZ to make a transition in the middle zone (MZ) towards an orientation parallel to 

the surface in the superficial layer. The specific orientation of the collagen fibers, 

together with the proteoglycan aggregates that are interspersed between these fibrils, 

provide the tissue with its unique biomechanical characteristics, combining compressive 

stiffness, resilience and shear resistance. Additionally, zonal variations in the collagen 

network and proteoglycans result in vast differences in compressive, shear, and tensile 

properties with depth. These matrix biomechanical differences in-turn lead to significant 

variations in strains and stresses being experienced by the cells in different zones during 

joint loading.  

 

Various proteins are preferentially secreted among zones: in the superficial zone, 

clusterin (Khan et al. 2001; Malda et al. 2010), proteoglycan-4 (PRG4) also known as 

superficial zone protein (SZP) (Flannery et al. 1999) and Del-1 (Pfister et al. 2001) are 

more prominent, while in the MZ the levels of cartilage intermediate layer protein 

(CILP) (Bernardo et al. 2011; Lorenzo et al. 1998) are highest. Cartilage oligomeric 

matrix protein (COMP) is mainly seen in the MZ and DZ (DiCesare et al. 1995; Murray 
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et al. 2001). These proteins most probably contribute to the zone-specific functionality 

of the cartilage. The exact specific functions of many of the zone-related proteins 

remain unclear, but some information about their function is known. Del-1, for example, 

acts as a regulator of vascularization (Penta et al. 1999), clusterin plays a role in cellular 

stress protection (Rosenberg et al. 1995), and COMP is a mediator in chondrocyte 

attachment and matrix assembly (Blumbach et al. 2009; Di Cesare et al. 1996). The 

presence of PRG4 in the SZ of cartilage ensures boundary lubrication and low-friction 

articulation (Jay et al. 1998), which has led to the hypothesis that transplanting or 

implanting cells or tissues that can secrete SZP may aid functional lubrication (Klein et 

al. 2003; Schmidt et al. 2004). 

The heterogeneity of articular cartilage is not explicitly addressed in current therapies 

for cartilage defects. For this reason, under the hypothesis that replicating the zonal 

hierarchy will lead to better long-term function of cartilage constructs, attempts have 

been made to mimic the zonal architecture of the tissue using zonal chondrocyte 

subpopulations. It has become clear, however, that this approach is fraught with 

difficulties and that there are many obstacles on the road. While still going from the 

premise that the creation of zonal constructs leads to superior results, this has raised the 

question whether the approach using zonal chondrocyte subpopulations is not 

overcomplicated and whether possibly zonal characteristics could be obtained as well 

using less complicated approaches (e.g. through manipulation of the biochemical or 

biomechanical environment).   

 

The goals of this discussion paper are to 1) give a critical appraisal of tissue engineering 

approaches that have used zonal chondrocytes to mimic native cartilage, 2) to present 
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our view of the zonal concept’s role in optimizing constructs for cartilage regeneration, 

and 3) to suggest the most effective and reliable approaches to create zonal differences.  

 

2. Current status of research 

2.1 Isolation and culture of zonal chondrocytes 

Experiments have been performed to elucidate the role of zonal cell populations in 

cartilage tissue formation in vitro. It has been demonstrated that cartilage tissue from the 

different zones can be harvested under sterile conditions. The zonal tissue can then be 

separated directly using dissection (Coates et al. 2011; Hwang et al. 2007; Sharma et al. 

2007; Siczkowski et al. 1990; Waldman et al. 2003) or abrasion (Darling et al. 2005) 

techniques by using a surgical blade. Alternatively, (osteo)chondral cores can be 

obtained from which the cartilage is dissected using a microtome (Schmidt et al. 2004) 

or manually (Kim et al. 2003). SZ chondrocytes have also been isolated from mouse 

cartilage using sequential brief treatment with trypsin and collagenase (Yasuhara et al. 

2011). Although these methods do not yield “pure” zonal cell populations, the enriched 

populations of zonal chondrocytes harvested this way show clear differences both 

directly after isolation and in expansion culture (Aydelotte et al. 1988; Kim et al. 2003; 

Klein et al. 2003; Ng et al. 2009; Schrobback et al. 2011; Schuurman et al. 2009; 

Sharma et al. 2007). It is important to note that in the research focusing on the 

(stratified) combination of zonal chondrocytes, almost exclusively unexpanded, articular 

cartilage chondrocytes from skeletally immature donors have been used thus far (Kim et 

al. 2003; Klein et al. 2003; Ng et al. 2009; Sharma et al. 2007) (Table 1). An important 

characteristic of immature chondrocyte subpopulations is their high metabolic activity 

and chondrogenic potential (Hidaka et al. 2006; Pestka et al. 2011), which makes them 
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well-suited for this type of research. However, it should be realized that immature DZ 

cells significantly differ from mature DZ zone cells, because the former originate from a 

zone that is vascularized and later becomes bone through the process of endochondral 

ossification (Karaplis 2008). It is known that already early in fetal life discrimination 

can be made between chondrocytes that will undergo the process of endochondral 

ossification and those destined to retain their chondrocyte phenotype in the mature 

articular cartilage layer (Lecocq et al. 2008). This makes the use of immature 

chondrocytes for this type of research highly questionable.  

In this same line of argument, it was shown in a direct comparison that SZ cells have a 

more stable phenotype during growth than DZ cells do (Hidaka et al. 2006). As 

differences between zonal populations are more prominent in immature cells, immature 

cells should be solely seen as a source for models and caution should be taken when 

translating outcomes to the human situation because of the limited clinical relevance.  

 

Under clinical circumstances, only a limited number of chondrocytes is available, and in 

order to yield clinically relevant numbers, expansion of cells is necessary, which entails 

dedifferentiation. The general signs of dedifferentiation in cultured chondrocytes are the 

expression and secretion of collagen type I instead of collagen type II, and a lower 

synthesis of GAGs (Benya et al. 1982). This process can be reversed by using growth 

factors (Jakob et al. 2001) and 3-dimensional culture methods (Benya et al. 1982; 

Martin et al. 1999; Stewart et al. 2000). Zonal populations will also undergo general 

dedifferentiation and thus lose their chondrogenic phenotype during expansion. 

Additionally, they will lose their specific zonal phenotype characteristics as well 

(Darling et al. 2005). Zonal cells will entirely or partly lose their size differences 
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(Siczkowski et al. 1990) and the expression and secretion of specific zonal proteins, 

such as PRG4 (Darling et al. 2005), clusterin (Malda et al. 2010), COMP (Schuurman 

et al. 2009), and CILP (Schrobback et al. 2012). Using the growth factors basic 

fibroblast growth factor (basic FGF) and transforming growth factor-β (TGF-β) during 

expansion and redifferentiation (Darling et al. 2005), or culturing under low oxygen 

conditions (Schrobback et al. 2011), chondrocytes can reacquire at least part of their 

specific zonal chondrogenic characteristics. Culturing cells in a 3-dimensional (3D) 

environment, either scaffold-free or in a hydrogel (Darling et al. 2005; Schuurman et al. 

2009), favors redifferentiation, although even this does not completely reverse the 

dedifferentiation process (Darling et al. 2005). Moreover, it has been suggested that 

growth factor use for re-inducing specific features of SZ and DZ cells should be 

differential, since growth factors affect zonal cells differently (Darling et al. 2005).  

 

Separately cultured chondrocytes from the DZ produce more GAGs than those from the 

SZ (Aydelotte et al. 1988; Cheng et al. 2007; Hwang et al. 2007; Lee et al. 1998; 

Schuurman et al. 2009; Siczkowski et al. 1990) and during redifferentiation zonal cells 

will start producing (part of) their specific proteins (Darling et al. 2005; Klein et al. 

2003; Schuurman et al. 2009). Altogether, it is possible to harvest enriched 

subpopulations of zonal chondrocytes and at least partially re-induce the zonal 

phenotype of these cells using 3D culture, growth factors and low oxygen tension. This 

makes the use of zonal chondrocytes for the fabrication of stratified cartilage constructs 

in principle feasible, but there are several potential hurdles in the way.  
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An important challenge lies in isolating pure zonal chondrocyte populations. Whilst 

separation of zonal cartilage tissue is possible, as mentioned previously, there are no 

methods described to separate pure zonal chondrocyte subpopulations from a mixed 

population isolated from a cartilage biopsy. Chondrocyte subpopulation sorting using a 

fluorescence-activated cell sorter (FACS) based on cell surface molecules may be 

feasible, as SZ chondrocytes express greater levels of αVβ3 integrins {Woods, 1994 

#959}, and DZ chondrocytes have higher levels of cell-surface keratan sulfate in situ 

{Zanetti, 1985 #299}. Alternatively, various candidate markers based on proteins 

present in the ECM of native cartilage have also been proposed to distinguish between 

zonal cells (Bernardo et al. 2011; DiCesare et al. 1995; Flannery et al. 1999; Khan et al. 

2001; Malda et al. 2010; Pfister et al. 2001). However, though preferentially secreted in 

native cartilage zones, they are not specific for a single chondrocyte subpopulation. 

Additionally, sorting cells based on secreted molecules is problematic since both the 

secreted molecule must be retained in the cell and the antibody must be transported into 

the cell. Theoretically, zonal chondrocytes could instead be sorted based on their size 

using a fluorescence-activated cell sorter. Sorting cells based on volume may give better 

outcomes than cell size, since the cell volume scales with the cube of the diameter; the 

average difference of 32% between SZ and DZ in cell diameter would translate to a 

difference of 124% in volume (Hunziker et al. 2002). However, although the original 

method for electronic cell sorting was based on Coulter volume {Fulwyler, 1965 

#2092}, modern cell sorters all focus on optical properties of cells, thus such separation 

of zonal chondrocytes has not been shown.  Surrogate optical measures of volume, such 

as forward scatter width (FSC-W), side scatter area (SSC-A), or autofluorescence may 

be applicable, but need to be optimized for each cell type and cell sorter {Tzur, 2012 
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#2093}.  Despite improvements in separating cell subpopulations based on volume, 

there remains a significant overlap in cell volume even between the most divergent 

chondrocyte populations. Therefore, size-based sorting is unlikely to result in pure 

populations from the different zones. 

 

Another problem regarding the creation of zonal constructs based on the use of zone-

associated chondrocyte populations is the current lack of a gold standard for the 

determination of the zonal phenotype of newly formed cartilage. The International 

Cartilage Repair Society histological grading scheme includes depth –dependent 

characteristics (Mainil-Varlet et al. 2010), however, this assessment and other 

assessments of tissue are only based on the resemblance of the neo-tissue to the native 

tissue with respect to GAG content, cell morphology, and a number of – not completely 

understood - native cartilage proteins. These observations raise the somewhat 

philosophical but very relevant question to what extent the division of articular cartilage 

in three different zones reflects reality or represents just the use of a simplified 

categorical scale to describe an underlying continuous phenotypic transition in cartilage 

characteristics from the surface to the calcified layer. 

 

2.2 Mechanical loading to enhance zonal differences in vitro 

Biomechanical loading experienced by native tissue in vivo influences ECM synthesis 

and remodeling, and is thus critical for the zonal structure of articular cartilage. It has 

previously been shown in young, growing animals, that mechanical loading directs the 

formation of “horizontal” topographical heterogeneity over the surface of a given joint 

and can affect the development of collagen orientation (Brama et al. 2001, 2002, 2009), 
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and that also in vertical direction, i.e. depth-related, changes in the distribution of 

extracellular matrix components is influenced by exercise (van Weeren et al. 2008).  

Experimental evidence from in vitro research on the effect of force direction on 

collagen alignment supports these in vivo data (Kock et al. 2011). Further numerical 

models predict that a combination of compression and shear stress holds promise to 

result in a physiological collagen structure (Khoshgoftar et al. 2011). It is therefore 

likely that mechanical stimulation will be necessary to truly recapitulate the zonal 

structure of cartilage in an engineered tissue. 

 

Mechanical loading can clearly promote in vitro ECM formation, as reviewed in (Grad 

et al. 2011), and can also be used to specifically influence the behavior of zonal 

chondrocytes (Table 2). However, chondrocytes vary dramatically in their response to 

different loading types (compression, tension, shear, hydrostatic pressure), and specific 

loading parameters (frequency, amplitude, duration, duty cycle), and therefore selection 

of an appropriate loading regime is a complicated and challenging task, especially if 

multiple cell types and biomaterials are to be used in the construct. SZ and DZ bovine 

chondrocytes in agarose hydrogels responded differently to dynamic compression (0-

15% compression, 0-3 Hz, 24 hrs/day); GAG was generally inhibited and protein 

synthesis improved for SZ at all frequencies, whereas GAG was increased at 1 Hz 

protein synthesis virtually unchanged for DZ at all frequencies {Lee, 1998 #100}. 

Nonetheless, these effects are not consistently reported over a range of studies using 

bovine cells of different ages or human chondrocytes, different construct specifications 

and various compression protocols. Surprisingly, when optimising dynamic 

compression loading parameters for SZ and DZ human OA chondrocytes in alginate 
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constructs, the same high strain protocol (0-50% compression, 1 Hz, 3 hrs/day) was best 

for both cell types {Jeon, 2012 #2094}. In this study, as well as others (Raizman et al. 

2009), there seems to be a homogenization effect, i.e. loss of zonal differences, when 

dynamic compression is applied, as shown by increasing matrix synthesis by SZ and 

decreasing synthesis by DZ cells in response to compression. Dynamic tensile loading 

(0-10% tension, 1 Hz, 12 hrs/day) of zonal chondrocytes in fibrin gels also showed a 

leveling of matrix accumulation, through stimulation of SZ chondrocytes and 

maintenance of DZ chondrocyte levels{Vanderploeg, 2008 #1470}; additionally, MDZ 

bovine chondrocytes in alginate increased PRG4 expression in response to dynamic 

tension (0-9% tension, 0.5 Hz, 3 hrs/day) [Wong, Bone 2003] . This is undesirable from 

a biomimetic point of view when zonal chondrocytes are to be used; SZ and DZ cells in 

native cartilage have specific properties and should retain these in tissue-engineered 

cartilage.  

 

Based on stresses experienced by chondrocytes in vivo, maintenance of the DZ 

phenotype might benefit from exposure to hydrostatic pressure, whereas the SZ 

phenotype might be promoted by shear loading, and more complex loading protocols 

may be needed to generate zonal differences within a construct. Indeed, a combination 

of compression and shear in a joint-simulator bioreactor resulted in increased expression 

of PRG4 by mixed chondrocytes {Grad, 2005 #712}, but only increased the PRG4 

expression levels of DZ chondrocytes when separate subpopulations were used, and 

only those near the articulating surface were affected {Li, 2007 #2039}. This suggests 

that by applying specific loading conditions, one may be able to generate appropriate 

zonal differences in the constructs without the need for using multiple chondrocyte sub-
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populations. A depth-dependent mechanical loading protocol, for instance as described 

by Kock et al. (Kock et al. 2011), may also be a good step forward in (re)creating the 

desired anisotropic structure and composition in tissue-engineered constructs.  

 

 

2.3 Generation of organized constructs with zonal cell populations 

Since zonal chondrocytes do not show self-organization in vitro (Hayes et al. 2007), 

zonal subpopulations in tissue constructs should be deposited in layers to mimic the 

native zonal stratification. A number of studies describe such approaches (Table 1). In 

such layered engineered constructs of chondrocyte subpopulations embedded in 

diacrylated poly(ethylene)-based materials (Kim et al. 2003; Sharma et al. 2007) or 

agarose hydrogels (Ng et al. 2009), the compartment with cells from the deep layer 

produces more GAGs (Kim et al. 2003; Sharma et al. 2007) and collagen (Sharma et al. 

2007), and has higher shear and compressive strength (Sharma et al. 2007) than the 

compartment with cells from the superficial layer. Values for collagen, GAG and 

mechanical properties in these constructs are comparable to, or higher than, non-zonal 

engineered constructs consisting of full thickness chondrocytes (Ng et al. 2009; Sharma 

et al. 2007). Further, GAG content of the compartment with cells from the superficial 

layer is significantly lower when cultured in the absence of cells from the deeper layers 

(Ng et al. 2009). No differences were seen in COMP gene expression between 

compartments (Kim et al. 2003), but cultured SZ cells secrete PRG4, while DZ cells do 

not (Ng et al. 2009). In stratified scaffold-free constructs combining SZ and MZ cells, 

intermediate properties can be observed for thickness, GAG and collagen content, when 

compared to SZ and MZ only constructs. Further, in that type of construct zonal 
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proteoglycan PRG4 is mainly seen in parts containing SZ cells (Klein et al. 2003). In 

the only study assessing zonal chondrocytes constructs in vivo, scaffold-free implants in 

the patellofemoral groove of mini-pigs showed limited matrix production, and loss of 

zonal organization (Chawla et al. 2007).  

 

In summary, stratification of zonal cells can lead to depth-dependent differences in 

vitro; however, the step towards in vivo zonal performance remains a challenge. Simple, 

anatomically relevant shapes with layered zonal chondrocytes have been fabricated 

using a molding method in a scaffold-free approach{Han, 2008 #1425}. State-of-the-art 

techniques such as magnetically guided 3D cell patterning and additive manufacturing 

(AM) may prove to be useful and versatile approaches for this application. Using the 

former, the manipulation of cells into multi-directional cell arrangements is possible, 

both in vitro and in situ (Grogan et al. 2012). By harnessing the capabilities of AM 

formerly also alluded to as Solid-Freeform Fabrication (SFF) or Rapid Prototyping (RP) 

living tissue of arbitrary 3D shapes can be created directly from computer-aided design 

(CAD) data (Fedorovich et al. 2012; Klein et al. 2009; Melchels et al. 2011; Schuurman 

et al. 2011) (Figure 2). Not only can patient-specific constructs be created directly from 

medical imaging data sets, but the complex 3D multi-tissue configurations of the native 

articular cartilage can be more accurately reproduced by using cell printing in an AM 

modus (Mechels et al 2012). Moreover, most articular cartilage defects have a very 

specific 3D shape and hence unique spatial distribution of the various chondrocyte 

phenotypes, which traditional cartilage tissue engineering techniques have great 

difficulty reproducing. Further, AM allows for the fabrication of constructs which have 

mechanical properties similar to native tissues (Cui et al. 2012; Schuurman et al. 2011). 
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An important feature is porosity of the constructs that can be controlled in great detail 

(Fedorovich et al. 2008), creating the opportunity to optimize diffusion of nutrients and 

waste products (Shipley et al. 2009), and thus to engineer large and hence clinically 

relevant constructs.  

 

3. Future Perspectives 

If zonal chondrocytes are to be used, apart from the previously mentioned issues, a 

number of general challenges need to be overcome in order to reach a clinical 

application. First, the challenge of obtaining sufficient cells needs to be addressed. 

Typically, only a limited amount of cells can be harvested from a patient, and these cells 

need to be expanded or combined with another cell source. Expansion of chondrocytes 

leads to dedifferentiation and loss of (zonal) phenotype. A promising approach is to 

combine primary chondrocytes with bone marrow-derived mesenchymal stromal cells 

(BMSCs). For full-thickness chondrocytes, this method leads to BMSC-induced 

chondrocyte proliferation (Acharya et al. 2012) and chondrocyte-enhanced 

chondrogenesis by BMSCs (Acharya et al. 2012; Mo et al. 2009; Wu et al. 2011). In 

this way, not only the quantity problem is solved, it may also bring one-stage surgery 

for cartilage defects a step closer to the bedside. Of course, for a zonal approach it will 

be necessary to investigate whether a co-culture of this kind also benefits zonal 

chondrocytes.  

 

However, the arguments raised above urge open-minded consideration of the entire 

zonal concept. The idea that zonal neo-tissue or constructs reflecting the native 

structural depth-dependent differences may have advantages over homogeneous 
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material is valid and still stands. Yet, most of the attempts to generate zonal tissue have 

used cells from zonal subpopulations to achieve this, which approach is built on the 

premise that the cells are leading in determining zonal characteristics. This seems 

logical, as the cells produce the matrix and not vice versa. While this is true, another 

mechanistic option is that the cells are driven by the environmental (biomechanical and 

biochemical) conditions, which change with increasing depth. Load dissipation in 

cartilage is depth-dependent and non-linear (Koolstra et al. 2006); oxygen tension also 

changes rather dramatically with distance from the surface in an a-vascular tissue like 

cartilage (Zhou et al. 2004). In this concept, the cells are programmed according to their 

depth-dependent location and adapt their morphology and expression patterns driven by 

the biomechanical and biochemical cues that change with distance from the articular 

surface: they follow instead of lead. As the topographical heterogeneity in biochemical 

and structural extracellular matrix characteristics of articular cartilage is known to 

develop under the influence of biomechanical loading (Brama et al. 2002, 2009), such a 

mechanism is highly likely. If the micro-environment rather than the cells is leading in 

creating the zonal structure, one may wonder if strategies based on use of zonally 

harvested cells are not overcomplicated indeed, and potentially even inherently 

ineffective. An approach based on the use of a single cell source, combined with the 

right biochemical and/or biomechanical cues may be simpler and more effective. There 

are some indications that this may be the way to go. Use of specific different 

biomaterials in one construct, BMSCs can be directed towards differentiation into zonal 

chondrogenic cells (Nguyen et al. 2011a; Nguyen et al. 2011b), as an alternative for 

zonal chondrocytes. This method shows great promise, since it potentially could solve 

the problems of limited availability of zonal chondrocytes, donor site morbidity and 
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chondrocyte dedifferentiation. Another promising approach for tissue engineering, that 

might lead to the formation of zonal cell populations, is the combination of a structure 

with biomechanical characteristics similar to the natural situation (hence creating a 

similar force dissipation pattern) with cells that resemble juvenile cells (e.g. MSCs, but 

induced pluripotent stem cells (IPS) could be a viable option too)). The realization of 

such an approach seems feasible and it has been shown already that the combination of 

different biomaterials and smart scaffold design can affect the ECM deposition by 

influencing cell alignment (Wise et al. 2009). For the fabrication of such complex 

multiple-material structures AM techniques are useful (Fedorovich et al. 2012; Mironov 

et al. 2003; Schuurman et al. 2011). To further enhance the desired anisotropic tissue 

formation, a depth-dependent mechanical loading protocol could be employed. A 

mechanical loading regime can also be used to test whether a construct will be able to 

withstand the compressive loads and shear forces it will be subjected to in vivo. 

Possibly, zonal cartilage architecture could also be combined with pre-vascularized 

bone grafts to enhance vascularization and integration of the implant. When biomimetic 

and/or cell-instructive biomaterials would be used, specific cell types can be attracted 

and cell behavior such as proliferation and differentiation selectively promoted (Lutolf 

et al. 2005; Romano et al. 2012). 
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Such an environment-driven cell differentiation approach is from a translational 

perspective much less complicated and thus more likely to make it to the clinic than one 

involving use of various populations of zonal chondrocytes. However, the challenge of 

producing satisfactory cartilaginous tissue with a zonal composition in vivo is still great 

and may even be greater than it seems, since negative outcomes of attempts to do so are 

not likely to be published (Stern et al. 1997). We therefore urge research groups to also 

publish their negative results, avoiding unnecessary duplication of the work by others. 

In this way more promising approaches van be explored, thus accelerating the progress 

towards the ultimate goal of regeneration of fully functional cartilage. 

 

We conclude from our literature review that the limited successes achieved so far in the 

restoration of the native tissue organization of articular cartilage, reflect the lack of 

proper understanding of the requirements for zonal cartilage. It is striking, that while the 

first reports about zonal differences in cartilage tissue date back more than 20 years ago 

(Archer et al. 1990; Aydelotte et al. 1988) and a substantial amount of in vitro work has 

been performed on full-thickness cartilage tissue engineering, only one short-term in 

vivo study relying on the zonal concept has been reported (Chawla et al. 2007). Hence, 

there is reason to believe that an overly simplistic conception of how the zonal 

characteristics of cartilage are generated and maintained in vivo has led to an 

overcomplicated strategy to achieve the same in artificial constructs.  Alternatives for 

the use of zonal chondrocytes, like the use of mechanical loading regimes, instructive 

biomaterials and smart scaffold design that prompt cells to develop a zonal phenotype 

exist and should be further investigated. The use of BMSC’s or IPS in this context 

seems especially promising. In our view, the regeneration of zonal cartilage remains an 
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utmost important aim for the cartilage tissue engineering community, but the way how 

to realize this needs careful reconsideration.  
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 Figures and tables 

 

 

Table 1. Overview of stratified approaches using zonal chondrocyte subpopulations. 

SZ: superficial zone cells, MZ: middle zone cells, DZ: deep zone cells, PEGDA: 

poly(ethylene glycol) diacrylate, PEODA: poly(ethylene oxide) diacrylate,  P0: primary 

cells, P1: cells expanded for 1 passage. 
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free (filter-

culture) 

 

 

Immature, P0 

 

SZ/MZ constructs: matrix 

growth and compressive 

properties lie in between the 

values of SZ and MZ alone 

constructs 

 

 

(Klein et al. 2003) 

 

SZ, MZ 

 

Scaffold-

free (filter-

culture) 

 

Immature, P1 

 

In vivo: stratification of 

cells lost 

 

(Chawla et al. 

2007) 
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SZ, DZ 

 

PEODA 

 

Immature, P0 

 

Stratified constructs: lower 

proliferation and higher 

matrix synthesis DZ cells 

alone, and greater shear and 

compressive strength than 

SZ or DZ cells alone.  

 

 

(Sharma et al. 

2007) 

 

SZ, MDZ 

 

Agarose 

 

 

 

Immature, P0 

 

GAG, collagen and 

mechanical properties 

higher for zonal constructs 

than non-zonal constructs. 

Zonal constructs: 

depth-dependent mechanical 

properties 

 

(Ng et al. 2009) 
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Table 2. Overview of mechanical loading protocols for zonal subpopulations (SZ: 

superficial zone cells, DZ: deep zone cells) and their effect on zonal behavior.  

 

Loading type Culture type Effect SZ Effect DZ Reference 

 

Cyclic 

compression 

 

Agarose hydrogel 

 

Decreased GAG 

synthesis, 

increased 

proliferation 

 

 

Increased GAG 

synthesis  

 

 

(Lee et al. 1998) 

 

Cyclic 

compression  

 

Cells seeded on 

calcium 

polyphosphate 

discs 

 

 

Increased collagen 

and GAG synthesis 

 

Decreased 

collagen and GAG 

synthesis 

 

(Raizman et al. 2009) 

Cyclic 

compression 

Tensile loading 

Alginate hydrogel 

Fibrin hydrogel 

 

Increased GAG 

synthesis 

 

GAG synthesis 

unaffected, 

decreased collagen  

 

{Jeon, 2012 #2094} 

(Vanderploeg et al. 

2008) 
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Figure 1. Zonal organization in normal articular cartilage. A) Three-dimensional 

histology and schematic showing cell and collagen fibril organization in the superficial, 

middle and deep zones. Also depicted are changes in levels of oxygen, collagen cross-

links (lysylpyridinoline (LP), hydroxylysylpyridinoline (HP)), and compressive 

modulus (HA0) through the thickness of the tissue. B) Equilibrium partitioning of an 

ionic contrast agent (EPIC) micro-CT map of GAG distribution in human articular 

cartilage, comparable with C) Alcian Blue staining. D) PRG4 (Nugent-Derfus et al. 

2007) appears to be suitable as a marker for the superficial zone, as do E) 

developmental endothelial locus-1 (del-1) (Pfister et al. 2001) and F) Notch 1 (Ustunel 

et al. 2008). G) Cartilage intermediate layer protein (CILP) (Lorenzo et al. 1998) is 

found in the interterritorial matrix of middle and deep zones, whereas H) Jagged 1 

(Ustunel et al. 2008) is highly expressed in cells of the middle and deep zones. 

Reproduced and adapted from Klein et al. (Klein et al. 2009). 
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Figure 2. Possible combination of the use of additive manufacturing, smart materials, 

and (zonal) cells. A 3-dimensional (3D) design is loaded into the computer and 

converted to a 3D shape, using multiple cell types. Adapted from (Schuurman et al. 

2011). 

 

 

 

 


