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JFA based Speaker Recognition using Delta-Phase and MFCC features
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Abstract
This paper investigates the use of mel-frequency delta-
phase (MFDP) features in comparison to, and in fusion with,
traditional mel-frequency cepstral coefficient (MFCC) features
within joint factor analysis (JFA) speaker verification. MFCC
features, commonly used in speaker recognition systems, are
derived purely from the magnitude spectrum, with the phase
spectrum completely discarded. In this paper, we investigate if
features derived from the phase spectrum can provide additional
speaker discriminant information to the traditional MFCC ap-
proach in a JFA based speaker verification system. Results are
presented which provide a comparison of MFCC-only, MFDP-
only and score fusion of the two approaches within a JFA
speaker verification approach. Based upon the results presented
using the NIST 2008 Speaker Recognition Evaluation (SRE)
dataset, we believe that, while MFDP features alone cannot
compete with MFCC features, MFDP can provide complemen-
tary information that result in improved speaker verification per-
formance when both approaches are combined in score fusion,
particularly in the case of shorter utterances.

Index Terms: speaker verification, MFCC features, JFA, Delta-
phase

1. Introduction
In recent speaker verification research, the joint factor anal-
ysis (JFA) technique has become one of more successful ap-
proaches to speaker verification by explicitly modelling enrol-
ment and verification mismatch. This approach is typically
based upon acoustic features derived from the magnitude spec-
trum, with most approaches using mel-frequency cepstral coef-
ficients (MFCC) to represent the acoustic domain for modelling
against the universal background model (UBM) in forming the
speaker and channel factors. While there have been investiga-
tions of phase-based features for speaker verification using sim-
ple Gaussian mixture model (GMM) [1] and support vector ma-
chine (SVM) [2] approaches, no investigation has yet been per-
formed using phase-based features in the explicit channel and
speaker modelling approach taken by JFA speaker verification
systems.

In order to make use of the phase spectrum for speaker ver-
ification, it needs to be transformed into a meaningful represen-
tation that provides adequate discrimination between individual
speakers. One of the first attempts at using phase-based fea-
tures for automatic speaker recognition was through the use of
modified group delay function (GDF) by Murthy et al. [3], de-
fined as the frequency-domain derivative of the phase spectrum,
modified to attenuate the effect of zeros in the z-plane of the fre-
quency representation. This approach was shown to outperform
MFCC speaker verification using a GMM-UBM modelling ap-

proach. [3].

An alternative approach to constructing phase-based fea-
tures was introduced by Wang et al. by looking at the time-
domain derivative of the phase spectrum, termed the instanta-
neous frequency deviation (IFD) [4]. This work was further ex-
tended by McCowan et al. to develop the mel-frequency delta-
phase (MFDP) representation [2] and demonstrated its perfor-
mance to be similar to that of MFCC using a modern GMM-
supervector-based SVM approach, but only without channel
compensation. When feature warping and nuisance attribute
projection (NAP) were applied to both the MFCC and MFDP
systems, the MFDP system was found lacking in comparison
to the MFCC. However, even though the channel-compensated
MFDP system was not comparable to the MFCC approach in-
dividually it was still shown to provide complementary infor-
mation in fusion with the MFCC, with a score fusion approach
outperforming both individual approaches.

In this paper, we study the use of MFDP features introduced
by McCowan et al. [2], in a modern JFA-based speaker verifi-
cation system in order to investigate the ability of the explicit
speaker and channel modelling to cope with phase-based fea-
tures. Initially both MFDP and MFCC features will be stud-
ied individually within a JFA speaker verification system with
a combination of experimental parameters to determine the best
individual approach for both sets of features. Thereafter the best
configuration of MFDP and MFCC features will be combined
to analyze the fused JFA system.

Throughout this paper, both medium length and short ut-
terances will be evaluated to determine if the performance of
MFDP features vary according to the amounts of speech avail-
able for enrolment and verification. This approach has been
taken before for MFCC features in both JFA [5], SVM [6], and
i-vector [7] speaker verification systems but no similar studies
have been performed on phase-based features.

2. Mel-frequency delta-phase features
The process of extracting MFDP features from the acoustic
speech is designed to attempt extract speech information from
the phase-domain through calculating a phase difference be-
tween successive frames separated by a short time interval [2].
The delta-phase spectrum can be calculated from the Fourier
transform of two successive frames X̃m(k) and X̃m−1(k), as
follows:

Δφm(k) = arg

[
X̃m(k)e−jωkmD

X̃m−1(k)e−jωk(m−1)D

]
(1)

|Δφm(k)| = |arg
[(

X̃m(k)

X̃m−1(k)

)
e−jωkD

]
| (2)
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(a) rectangular window, frame length 256
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(b) Hamming window, frame length 256
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(c) rectangular window, frame length 512
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(d) Hamming window, frame length 512
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(e) rectangular window, frame length 1024
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(f) Hamming window, frame length 1024

Figure 1: The delta-phase spectrum of a single frame of sample speech file (thbn.wav) from NIST 2008 evaluation, captured at a range
of window sizes for both the rectangular and Hamming windowing functions

where m is the frame index, and D is the number of samples
between successive analysis frames.

In order to correctly analyze the delta phase, several fac-
tors have to be considered, including the choice of windowing
function and the size of the window. Earlier research in phase
spectrum has suggested that phase-domain features are gener-
ally better segmented using a rectangular windowing function
which can provide a higher frequency resolution at a tradeoff
against higher spectral leakage, but this spectral leakage does
not appear to be as serious a problem as in magnitude-based
features [8]. The choice of window-length for phase-based fea-
tures also appears to generally be much larger than that expected
in magnitude-based approaches, with McCowan et al. suggest-
ing that higher is generally better [2].

A selection of delta-phase spectrum of a single frame of
speech are shown in Figure 1 for both the rectangular and Ham-
ming windowing functions at 256, 512 and 1024 samples/frame.

The process of calculating the MFDP features was mod-
elled closely on a typical MFCC feature extraction process. The
acoustic samples were first passed through pre-emphasis filter-
ing, followed by framing using the chosen windowing function
and frame size with a small step size resulting in many over-
lapping frames (particularly for the large frame size of MFDP).
Following the windowing, the windows were transferred to the
frequency domain for delta-phase calculation, then accumulated
using a a triangular filter bank based upon the mel-frequency
scale. Finally the output of the filter bank is reduced to the cho-
sen dimensionality by taking the top N features from a DCT
transformation.

3. Joint factor analysis
A significant contributor to the degradation of traditional
GMM-UBM speaker verification is the presence of session vari-

ability between the training and test conditions. One of the
more successful approaches to combating this train/test mis-
match has been the explicit modelling of speaker and chan-
nel factors through JFA. This factor analysis technique intro-
duced by Kenny [9] is based on the decomposition of a speaker-
dependent GMM supervector, μ, into separate speaker and
channel dependent parts (S and C respectively):

μ = S + C. (3)

The speaker dependent and channel dependent components can
then be represented by

S = m + Vy + Dz, (4)

C = Ux. (5)

In the speaker dependent component, m is a session
and speaker independent supervector (extracted from a UBM
trained on a large development set), V is a low rank matrix
representing the primary directions of speaker variability, or
eigenvoices, and D is a diagonal matrix modelling the residual
variability not captured by the speaker subspace. The speaker
factors, y, and speaker residuals, z, are both independent ran-
dom vectors having standard normal distributions. Similarly,
the channel dependent component contains a low rank matrix,
U, representing the primary directions of channel variance, or
eigenchannels, multiplied by the channel factor vector x, a nor-
mally distributed random vector.

JFA speaker enrolment is performed by calculating the full
speaker-dependent GMM supervectors and discarding the chan-
nel dependent component. During verification, the channel-
dependent component can be estimated directly from the testing
utterances, and the entire supervector can be efficiently scored
using the linear dot-product approach pioneered by Glembek et
al. [10].
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Table 1: Comparison of MFDP-based JFA speaker verification
performance with different configurations on the common set
of the 2008 NIST SRE standard conditions. The best perform-
ing systems by both EER and DCF are highlighted within each
column.

(a) frame length 512, rectangular window, with/without feature
warping

MFDP features short2-short3 10sec-10sec
EER DCF EER DCF

feature warping 11.19% 0.0505 31.04% 0.0972
no feature warping 10.64% 0.0479 27.56% 0.0961

(b) frame length 512, feature warping, rectangular vs. Hamming
window

MFDP features short2-short3 10sec-10sec
EER DCF EER DCF

rectangular window 11.19% 0.0505 31.04% 0.0972
Hamming window 14.00% 0.0611 31.04% 0.0999

(c) rectangular window, without feature warping, different frame
lengths

MFDP features short2-short3 10sec-10sec
EER DCF EER DCF

frame length 256 17.13% 0.0676 32.36% 0.0987
frame length 512 10.64% 0.0479 27.56% 0.0961
frame length 1024 9.32% 0.0406 26.06% 0.0950

4. Methodology
Both the MFCC and MFDP JFA systems were developed and
evaluated identically, with the choice of feature extraction tech-
nique being the only difference between the two systems.

For both MFCC and MFDP feature extraction, 13 coeffi-
cients were captured for each frame with appended delta coeffi-
cients. Two gender dependent GMMs containing 512 Gaussians
are used throughout our experiments to represent the UBM,
and were trained on the NIST 2004 SRE corpus. Speaker
and session variability subspaces of dimension Ry = 400 and
Rx = 100 are applied for JFA experiments. These speaker
and channel variability subspaces were also trained on the NIST
2004 SRE, as well as data from the NIST 2005 SRE and Switch-
board II.

Enrolment and verification of the MFDP and MFCC sys-
tems were performed using NIST 2008 SRE telephone ut-
terances from the short2-short3, and 10sec-10sec conditions.
These conditions were chosen to allow the performance of
MFDP speaker representations in both a typical utterance length
of around 2 minutes (short2-short3) and the more difficult task
of enroling and verifying speakers in only 10 seconds (10sec-
10sec).

In addition to investigating the MFDP and MFCC JFA sys-
tems individually, this paper will also investigate the perfor-
mance of both systems combined in a score fusion configura-
tion to determine if there is complementary information in the
two speaker representations. For this paper a simple weighted
fusion approach will be taken where the final score of combined
system, Scombined, will be calculated as follows,

Scombined = α ∗ SMFCC + (1− α) ∗ SMFDP (6)

where SMFCC and SMFDP are the individual systems scores
for a given utterance, and α is a weighting coefficient, chosen

Table 2: Comparison of MFCC-based JFA speaker verification
performance with different configurations on the common set
of the NIST 2008 SRE standard conditions. The best perform-
ing systems by both EER and DCF are highlighted within each
column.

(a) frame length 256, Hamming window, with/without feature
warping

MFCC features short2-short3 10sec-10sec
EER DCF EER DCF

feature warping 3.37% 0.0149 16.69% 0.0686
no feature warping 4.94% 0.0197 17.86% 0.0701

(b) frame length 256, with feature warping, rectangular vs. Ham-
ming window

MFCC features short2-short3 10sec-10sec
EER DCF EER DCF

rectangular window 3.05% 0.0148 16.54% 0.0679
Hamming window 3.37% 0.0149 16.69% 0.0686

(c) hamming window, with feature warping, and different
frame-length

MFCC features short2-short3 10sec-10sec
EER DCF EER DCF

frame length 256 3.37% 0.0149 16.69% 0.0686
frame length 512 3.29% 0.0146 16.99% 0.0732
frame length 1024 3.31% 0.0164 21.22% 0.0806

prior to evaluation.

5. Results and discussions
5.1. Individual performance

The performance of the MFDP and MFCC-based JFA speaker
verification on the common set of the NIST SRE 2008 short2-
short3 and 10sec-10sec conditions are shown over a range of
configurations in Tables 1 and 2 respectively.

It can be seen by comparing Tables 1(a) and 2(a), that while
feature warping provides an advantage for MFCC extraction as
is commonly known [11], no similar effect is found for MFDP.
This result is similar to that found by McCowan et al. [2] for
SVM, where feature warping did not provide a large improve-
ment for SVM-based MFDP speaker verification, although in
their application it did still provide a small improvement.

A comparison of Tables 1(b) and 2(b) shows that the choice
of a rectangular windowing function provides a clear improve-
ment for MFDP extraction, while the difference is unlikely to be
significant for MFCC. This is inline with previous findings that
rectangular windowing functions are more suitable for phase-
based speech feature extraction as the effects of spectral leaking
is less of in an issue than the loss of resolution in the frequency
caused by Hamming windowing [8].

Finally, looking at the performance change for different
window lengths in Tables 1(c) and 2(c), it can be seen that the
MFDP system performs better with longer frame lengths than
normally used in MFCC-based feature extraction.

One interesting comparison that can be drawn from these
results is that regardless of the choice of configuration, the
MFCC features provide a considerable increase in performance
over the MFDP features, with the best MFDP system having
an EER almost three times as large (9.32%) as the best MFCC
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Table 3: Comparison of score fusion speaker verification per-
formance on the common set of the NIST 2008 SRE standard
conditions, as the fusion parameter alpha is varied between
0.0 (MFDP only) and 1.0 (MFCC only). The best performing
systems by both EER and DCF are highlighted within each col-
umn.

Fused system short2-short3 10sec-10sec
EER DCF EER DCF

α = 0.0 (MFDP only) 9.32% 0.0406 26.06% 0.0950
α = 0.1 4.86% 0.0210 21.21% 0.0858
α = 0.2 3.64% 0.0157 17.42% 0.0754
α = 0.3 3.29% 0.0148 15.84% 0.0700
α = 0.4 3.21% 0.0141 14.96% 0.0664
α = 0.5 3.21% 0.0139 14.82% 0.0659
α = 0.6 2.96% 0.0144 15.09% 0.0650
α = 0.7 2.98% 0.0145 15.67% 0.0656
α = 0.8 3.03% 0.0146 15.81% 0.0656
α = 0.9 2.96% 0.0146 16.25% 0.0665
α = 1.0 (MFCC only) 3.05% 0.0148 16.54% 0.0679

approach (3.31%). This is particularly interesting in contrast
to the performance of MFDP matching the MFCC in the GMM
supervector SVM approach of McCowan et al. [2], at least prior
to channel compensation. From this comparison, it appears that
the MFDP features are not well suited to the explicit speaker
and session modelling approach of the JFA.

5.2. Fusion performance

While the previous set of experiments demonstrated that the
MFDP features do not perform well in comparison to tradi-
tional MFCC features for JFA-based speaker verification, it is
quite possible that both features can work together to provide
complementary information in a fusion configuration. Indeed,
this was found to be the case in McCowan et al.’s SVM super-
vector based system [2]. We wish to investigate in this paper if
similar complementary performance can be demonstrated in the
JFA speaker verification framework.

In order to test this, a simple weighted score fusion system
was set up with the two best performing JFA systems: no feature
warping, rectangular window of length 1024 for MFDP; and
feature warping, rectangular window of length 256 for MFCC.
The output scores of these two systems were then fused with a
weighting parameter α, that can vary from 0.0 (MFDP only) to
1.0 (MFCC only). The results of these experiments are shown
in Table 3.

From these results, we can see that while the MFDP-based
JFA speaker verification system is outperformed in all condi-
tions by the MFCC-based approach, the fusion of the two sys-
tems can provide better performance than the MFCC-based ap-
proach in both utterance lengths under evaluation. This effect
is particularly the case for the shorter 10sec-10sec condition,
suggesting that making use of phase information may allow for
the extraction of complementary information in short-utterance
speaker verification.

6. Conclusion
In this paper, we investigated the use of MFDP coefficients in
comparison to, and in fusion with, traditional MFCC features
within the JFA speaker verification framework. We found that,
while MFDP features could be shown to work reasonably well
for the task of JFA-based speaker verification, they were not

competitive with traditional MFCC features, which provided
a third the EER of MFDP in best conditions. However, we
did find that in score fusion between MFDP- and MFCC-based
JFA speaker verification systems, the MFDP features could pro-
vide complementary information to the MFCC, resulting in im-
proved performance in both the short2-short3 and 10sec-10sec
conditions on the common set of the NIST SRE 2008 evaluation
data. We found this to be particularly the case for the 10sec-
10sec condition, suggesting that there may be fruitful use for
phase-based features in providing complementary information
to improve the performance of short utterance speaker verifica-
tion.
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