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Abstract 

There remains a substantial shortfall in treatment of severe skeletal injuries. The current gold 

standard of autologous bone grafting from the same patient, has many undesirable side effects 

associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this 

problem. The primary requirements for tissue engineered scaffolds have already been well 

established, and many materials, such as polyesters, present themselves as potential 

candidates for bone defects; they have comparable structural features, but they often lack the 

required osteoconductivity to promote adequate bone regeneration. By combining these 

materials with biological growth factors; which promote the infiltration of cells into the 

scaffold as well as the differentiation into the specific cell and tissue type, it is possible to 

increase the formation of new bone. However cost and potential complications associated 
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with growth factors means controlled release is an important consideration in the design of 

new bone tissue engineering strategies. This review will cover recent research in the area of 

encapsulation and release of growth factors within a variety of different polymer ic scaffolds. 

 

1. Introduction 

Skeletal injuries are some of the most debilitating types of injury known, and can lead to 

severe long-term effects without surgical intervention. These injuries may occur via trauma, 

disease (degenerative diseases, tumour excisions) or growth defects (such as cleft palette). 

Cost of treatment in the US exceeded $17 billion in 2005, and is predicted to rise to $25 

billion per year by 2025 [1]. Importantly, demographic data reveals that due to the ageing 

population, complications associated with the musculoskeletal system will increase over the 

coming years [2]. It is therefore vital to have the best technologies available to orthopaedic 

surgeons to assist bone repair.  

Over the last 30 years extensive work has been carried out on the development of biomaterial 

scaffolds for the promotion of bone growth and to assist in regenerating wounds that would 

otherwise not heal. Advancements have led to the development of composite scaffolds, 

consisting of materials that have good structural characteristics combined with materials 

which promote bone growth; and one group of molecules for this enhancement are growth 

factors (GFs). 

 “Growth factor” is a term for several families of intracellular signalling proteins which have 

a number of different defined roles, such as recruitment of cells, as well as the promotion of 

migration [3] and differentiation [4, 5] of these cells. Specific GFs are responsible for the 

formation, maturation and maintenance of tissues throughout the body.  

Several GF families play a role in the generation and repair of bone, some stimulate pathways 

specific for the formation of bone; such as promoting osteoinduction [6], others such as 

vascular endothelial growth factor (VEGF) [3] and platelet derived growth factor (PDGF) 

promote angiogenesis, the sprouting of new blood vessels from existing ones.  

While many GFs play an extensive role in the de novo formation of bone, in the field of 

tissue engineering there has been particular interest in using bone morphogenetic proteins 

(BMPs) for the treatment of bone defects [4, 7, 8]. BMPs are a family of GFs closely 
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associated with the growth, maturation and regulation of bone, and they are considered the 

most potent stimulator of new bone formation.  

Currently, the most commonly used clinical technique using BMPs is the relatively 

straightforward method of combining reconstituted BMP with collagen scaffolds just prior to 

implantation [9, 10]. The scaffold and BMP are supplied separately and the scaffold is soaked 

in the GF solution before implantation. This technique, while clinically accepted, exhibits 

poor GF release characteristics, eluting BMP rapidly and presenting the wound site with a 

BMP concentration far above those found in normal physiological conditions. Due to the 

short half- life of GFs in situ, the high concentrations are needed to maintain a therapeutical 

release profile. This technical shortfall not only increases the cost of the therapy, but also 

generates serious concerns over long-term complications associated with the high dosage of 

GFs [11]. It would be more favourable to have a smaller therapeutic dose delivered, at 

appropriate physiological levels over the time period of the wound healing process.  

Several techniques have been employed to control the release profiles of GFs from scaffolds. 

Many of these techniques involve encapsulating the GFs within degradable polymer 

networks, such that they are slowly released from the degrading scaffold into the wound site. 

By understanding the release kinetics, this process has the potential to maintain a therapeutic 

dose for longer than the currently available rapidly releasing scaffolds. Microspheres and 

hydrogels are the most commonly studied matrices for this type of encapsulation.  

Delivery systems for GFs [12, 13] as well as other therapeutics [14] have already been 

reviewed several times over the last decade. Thus this review will focus on providing an in-

depth discussion on the most recent strategies and techniques being utilised for the 

production of GF-eluting scaffolds providing sustained release of GFs, thus moving towards 

providing a more physiologically relevant environment for the promotion of bone 

regeneration. 

 

2. Basic structure of bone 

The skeletal structure of mammals plays many important roles throughout the body, ranging 

from structural support, protection of organs, and the maintenance of homeostasis via the 

release and storage of calcium [15]. Human bone can be classified as two forms; cancellous 

and cortical bone. Cancellous bone, also known as spongy bone, is formed from a highly 
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porous (50%-90%) 3D lattice and compromises approximately 20% of all bone found in the 

body. Cancellous bone is predominantly found in the ribs and the epiphysis of long bones. 

Cortical bone, also known as compact bone, is a much more dense (10% porosity) making up 

the remaining 80% of bone found in the human body. Cortical bone itself is surrounded by 

the periosteum, a thin fibrous membrane. 

Bone has a remarkable ability to regenerate damaged regions back to full functionality with 

no scarring. However if the trauma is too large, defect healing cannot occur without surgical 

intervention, with the sheer size of the defect exceeding the bones natural healing ability. 

This is often the case during complex fractures and large tumour excision [16]. Defects 

occurring in different regions of the body can lead to a number of different complications. 

For example, cranial defects do not naturally heal well and often require surgical interventio n 

for satisfactory healing [17]. When dealing with a cranial defect, issues arise due to contour 

irregularities, but when dealing with spinal fractures another set of fundamental problems 

arise revolving around the need to provide more robust mechanical support, whilst 

maintaining movement [18]. 

Autologous bone grafting (transplant from the same patient) is the „gold standard‟ treatment 

for bone defects. Cancellous bone sourced from the iliac crest is usually used, and has the 

potential for facilitating de novo bone formation due to the natural presence of GFs which 

promote angiogenesis and osteogenesis [19]. While effective, the use of autologous bone has 

severe limitations; mainly revolving around the need for a donor site from the same patient 

which causes a secondary wound site, in addition to limited available supply, and risk of 

infection [20]. In a recent review, Dimitriou et al. revealed that 19.4% of iliac crest donor 

sites have complications ranging from: infection, fracture, nerve injuries, chronic donor site  

pain, hernias, and haematoma [21]. It should be noted that techniques are being developed to 

reduce the rate of complications with a Reamer/Irrigator/Aspirator system developed by 

Synthes Inc. (West Chester, PA) which has shown reduction in complications of the donor 

site down to > 6%. However the total number of completed studies with this system are still 

small [21]. 

Allografting (transplant from a different patient) has been successfully used, predominantly 

in hip surgery where major femoral bone loss has occurred [22], but this technique has 

similar limitations to autografting, with difficulty in sourcing the grafting materials, as well 

as the potential for infection from donor to host.  
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Due to the shortcomings of the current clinical approaches, there remains an important niche 

to fill; as such, the field of tissue engineering has emerged to develop methods to bridge the 

existing gap in clinical treatments for severe bone loss.  

 

3. Tissue engineering of bone 

Tissue engineering is a multi-disciplinary research field which combines aspects of 

conventional biology, engineering, medicine and chemistry to create functional solutions for 

the treatment of clinical problems. Due to the aforementioned problems associated with 

allografting and autografting, there remains a need for an improved clinical solution for the 

treatment of bone trauma to improve on the current gold standards. Tissue engineering 

strategies have thus emerged as alternative treatments and most approaches involve the 

combination of a scaffold/matrix with living cells and/or biologically active molecules 

(biomolecules). 

Tissue-engineered scaffolds often comprise polymers to provide structural support to the 

defect/wound site during repair. Polymers are often used due to: ease of synthesis, 

adaptability to a wide number of structural conformations, biodegradability, and low 

associated immune response. Although both synthetic [23] and natural polymers [24-26] have 

been used in the development of tissue-engineered solutions for bone healing, using synthetic 

matrices is advantageous; it avoids the problems associated with grafts and allows for 

tailoring of the physicochemical properties required for a particular application. The main 

problem associated with these synthetic matrices however is their lack of biological 

recognition, since the matrix is often „tissue-conductive‟ and not „tissue- inductive‟, 

consequently impairing complete morphogenesis inside the matrix [27], which is why the 

incorporation of growth factors in matrices has been proposed. 

Despite extensive research into the field of bone regeneration over the last 30 years, there still 

remains a requirement for an efficient tissue-engineered substitute for autologous bone 

grafting; one which provides both an adequate environment for influx of tissue growth and 

maturation of bone formation, whilst concomitantly providing structural support as these 

processes take place. 

Polyesters are commonly used in tissue engineering. These plastics provide structural support 

in a similar manner to commonly used metallic implants. Unlike steel or titanium, these 
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polymers are bioresorbable [28, 29], breaking down into soluble oligomeric chains, and 

eventually principle monomers; which are biologically metabolised via the citric acid cycle. 

This gives the potential to produce a scaffold which will be mechanically robust for a certain 

time period, gradually breaking down at a rate whereby it can be replaced with newly formed 

bone. The most commonly used polyesters are polylactide derived. Polylactide (PLA) is a 

polymer of the chimerical lactide monomer which has a well-established history in the field 

of tissue engineering spanning back to the 1960s [30]. Polylactide-glycolide (PLGA) is an 

FDA-approved polymer, and has a long history of use as a biomaterial owing to its 

biodegrability profile on a time-scale commensurate with tissue remodelling and non-toxic 

degradation products. It is often used in preference to pure PLLA, P(D,L)LA and PGA 

because there is a greater degree of control of the degradation rate by altering the ratio of 

glycolide to lactide, with increased ratio of glycolide increasing the speed of breakdown. 

Several studies have investigated the biocompatibility and degradation rates of PLGAs both 

in vitro and in vivo with good results [29]. 

Many types of polyesters are FDA approved and have seen clinical use for treatment of bone 

defects/wounds, although they were initially introduced to the market in the form of 

resorbable sutures. For example Lactosorb®, a lactide rich PLGA cranial plate substitute to 

titanium implants [31] has had over 50,000 surgical procedures to date (source Lactosorb® 

website). Lactosorb® is just one of a number of biodegradable plate/screw systems in current 

clinical use for maxillofacial applications, other examples include Inion [31], MacroPore 

[32], Biofix [33], Resorb X [34] and Rapisorb [31].  

These polymers offer potentially superior clinical outcomes to conventional materials, as they 

degrade within a time frame of 12 to 24 months, a rate-dependent upon the specific 

composition of the polyester. However while these polymers are generally good as plates and 

rods, they lack any osteoinductive capacity to make them suitable for bone replacement. 

Current common materials for promoting osteoinduction are based on hydroxyapatite (HA), 

and β-Tri-Calcium-Phosphate (TCP) - see Kamitakahara et al. for a review on the area [35]. 

These products, ceramic in nature, are quite brittle when used alone. Compared to polymeric 

materials such as polyesters ceramics lack structural robustness, but promote bone formation. 

As such combining osteoinductive materials with structurally supportive polymers is a 

popular avenue of research. 
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Composite scaffolds, consisting of a structural support phase and a second phase for 

promoting cellular infiltration and differentiation offer the potential to facilitate more rapid 

wound healing. Several different composite scaffolds are currently being investigated. 

Examples include the previously mentioned combination of TCP and HA to promote 

mineralisation with a structural support scaffold [36]. Another common composite scaffold 

approach is the addition of GFs, signalling molecules found in natural bone and wound sites. 

This is the focus of this review. 

In the field of tissue engineering bone substitutes, the most commonly used growth factors 

are BMPs, specifically BMP-2 and BMP-7. It should, however, be noted that BMPs are not 

bony tissue specific [37] – all mammalian cells have receptors for BMPs and the effects of 

BMP stimulation on a large number of cells types is unknown. Therefore there is need for 

caution when delivering BMPs to defect/wound sites to ensure that the dosage is not 

adversely affecting areas away from the trauma site, as BMP is a potent inducer of new bone 

and has been shown to stimulate ectopic bone formation (outside the expected area of bone)  

[11]. 

BMPs  are a dimeric subset of cytokines from the TGF-β superfamily [38]. It has been 

established that BMPs have a wide variety of different signalling roles, most prominently in 

de novo bone formation [39] but are also involved in cartilage [40] and neural crest formation 

[41]. More than 20 different BMPs have been identified, but in the field of tissue engineering, 

BMP-2, usually made by recombinant human technology of mammalian cell lines; most 

frequently derived from Chinese hamster ovaries, is by far the most commonly studied and is 

commercially available for surgical use on a collagen sponge carrier [42] for a variety of 

different bone-related applications. BMP-2 is known to promote differentiation of cells into 

the osteoblast lineage and up-regulate the calcification of bone defects thereby increasing 

bone formation [4, 38].  

Current scaffolds for BMP delivery are either based upon loaded collagen sponges or direct 

injection into wound sites, a technique which has been reviewed by Geiger and co-workers in 

2003 [24]. The two most common commercial products have been available for about a 

decade now for lumbar repair are Medtronic‟s Infuse (a BMP-2) and Olympus Biosciences 

OP1™ (BMP-7), both are strikingly similar products which use a collagen sponge in which a 

BMP solution is soaked into prior to implantation. BMP-7 (OP-1™) was developed as a 

commercial product by Stryker, but is now licensed by Olympus Biosciences, it comprises a 
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mix of OP-1 in a purified bovine collagen type I forming a putty which can be used for non-

union bone injuries and spinal fusion. The kit comprises BMP-2, a collagen sponge and a 

surrounding support structure. Recently both companies have released products for the 

treatment of critical-sized long bone defects. 

The fundamental principles for the use of BMPs in bone regeneration and repair has recently 

been outlined in a review in 2009 by Haidar et al. in terms of the current challenges faced 

[43]. BMPs play a central role in most bone regeneration strategies [44] and are involved in 

the entire complex cascade of bone formation, from migration of mesenchymal stem cells to 

differentiation into osteoblasts. Tissue engineering strategies for supplying BMPs to wound 

sites revolve around delivering the GF in gels or solid scaffolds in a ceramic, polymeric 

(natural or synthetic) or composite carrier. Excess quantities of BMP can cause a phenomena 

whereby bone grows beyond its conventional boundaries (ectopic bone formation), and can 

cause serious long-term complications, especially in treatment of the spinal cord [11]. Due to 

this danger, controlling the levels of BMP in an implant, and the rate of release of BMP from 

the implant is a critical step. 

Collagen sponges loaded with GFs such as BMP-2 and BMP-7 exhibit poor release kinetics 

of adsorbed molecules making them inefficient [24, 45]. These scaffolds have a high initial 

burst release of GF, leading to poor long-term sustained release and use a very simple method 

of incorporating BMPs into the scaffold, namely pH-induced anionic binding.. This is a very 

inefficient delivery system as only a small percentage of the BMP which is released interacts 

with the appropriate cells. The remainder is simply washed away from the defect site via the 

circulation, or becomes inactive after a certain period of time in contact with physiological 

fluid.  

To summarise, the current FDA-approved systems only involve the delivery of recombinant 

BMPs (rhBMPs) from a simple reconstituted collagen matrix (OP-1™ and INFUSE®) and 

raise safety and cost concerns owing to supraphysiological doses present in these products. 

By using a degradable polymeric system to encapsulate BMPs, we can potentially overcome 

this issue by delivering overall smaller, more effective doses over longer time periods, 

preventing high doses leaking from the wound site and therefore targeting only the tissue of 

interest.  
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4. Desirable characteristics of growth factor-eluting scaffolds  

Because natural bone has a number of different roles within the body, scaffolds for bone 

tissue engineering require a number of different characteristics in order to effectively function 

as a scaffold in a bone environment. For several years the basic desirable characteristics for 

biomaterial scaffolds have been well defined [24] and are summarised in table 1. All tissue-

engineering scaffolds should exhibit a low immunogenic and antigenic response, while still 

facilitating rapid infiltration of the host cells throughout the margins of the scaffold to the 

centre. When loading GFs into a scaffold, both high encapsulation e fficiency as well as a 

release rate allowing a sustained therapeutic dose is also required. Additionally these 

scaffolds should break down into non-harmful products at a rate where host tissue can 

successfully take over the mechanical features.  
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Table 1. Desirable characteristics of drug eluting scaffolds adapted and updated from [24]. * 

We use the Williams definition of “biocompatibility” found in reference [46]. 

Desirable characteristics of growth factor-eluting scaffolds (adapted from [24]) 

Low immunogenic and antigenic response. 

Controllab le breakdown into benign biodegradable products occurring contemporaneously with new bone 

formation. 

Good mechanical properties during breakdown, while retain ing a porous structure capable of cellu lar infiltration  

Good „b iocompatib ility‟*. 

Ability to load a growth factor with high efficiency and elute a therapeutical dosage over a sustained period of 

time relevant to the application 

Ability to be readily sterilised without either loss of mechanical function or denaturation of delivered drug . 

Adaptability to wound site, surgical malleability. 

Relatively long shelf-life, allowing fo r ease of access to a surgeon. 

 

5. Techniques for assessing the potential of growth factor-eluting scaffolds 

It is important to develop a fundamental understanding of how a GF may be loaded and 

released from a scaffold prior to further in detailed studies. Encapsulation efficiency (the 

actual amount of GF incorporated into the scaffold compared to the amount of GF used), 

plays a key role in GF delivery strategies, this is driven by their high cost.  

The controlled release of GFs from implanted scaffolds is one of the most important fields of 

study within the context of GF therapies. Release kinetics can be studied in a variety of 

different ways; The release of the GF is frequently measured by enzyme linked 

immunosorbent assay (ELISA) assays. This method has the advantage of being simple to 

setup, provided the level of released GF is readily detectable. Other techniques include 

measuring auto-fluorescence of the GF [47] or measuring fluorescently-tagged GFs [48, 49]. 

Another advantage of release kinetic experiments is that cheaper analogues of growth factors 

can be used as a model system. For example bovine serum albumin has often been used as a 

substitute to model release of proteins from scaffolds [49-51], as has soya bean trypsin 

inhibitor [52].  

Beyond basic release kinetics, in vitro cellular models allow for more detailed study of GF 

release profiles. They enable us to determine bioactivity of the released GF and to gain 

insight into appropriate therapeutic dosage of the GF by the inclusion and monitoring of 
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relevant cells into the system in response to released GF. This gives the ability to evaluate 

any potential damage to the GF which may have occurred during the formation of the 

scaffold as we can assume that the GF is damaged if there is no measurable cell response 

[53].  

Conventional bioactivity assays such as the (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, a yellow tetrazole), (MTT) [50, 54, 55], (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), 

(MTS) [56] and Alamar blue [57]; assays which all measure the metabolic activity of a cell 

population, have been commonly used to assess the ability for cells to be cultured in the 

presence of GF-loaded scaffolds, thereby assessing any cytotoxicity effects of either the 

scaffold or the released GFs. More specific assays test for the effects GFs have upon 

differentiation of certain cell types.  

For example, when assessing BMP-2 activity, monitoring the up-regulation of alkaline 

phosphatise (ALP); a cell surface enzyme associated with the maintenance of bone turnover, 

is a common tool [48, 55, 57-60]. C2C12 myofibroblast cells have routinely been used as 

they are prone to BMP-2 mediated osteoinduction [4, 48, 49, 54, 60] due to their low baseline 

ALP activity. Stimulation via BMP-2 will cause up-regulation of ALP thus showing 

bioactivity of the GF. Other osteoinductable cells such as MC3T3-E1 [56, 61] and bone 

marrow stromal W20-17 [55] have also been used. ALP activity is often used in conjunction 

with Alizarin Red assays [57, 60, 61] as a collective measurement of matrix mineralisation; a 

key component in the maturation of new bone. Another technique used to measure 

osteoinduction is quantitative real time PCR [52]. 

While in vitro studies allow for demonstration of release kinetics and enable basic 

biocompatibility testing of the scaffolds with different cell populations, they cannot hope to 

model the extreme complexity of a wound site in sufficient depth to provide a complete 

picture of the scaffold‟s bone regenerative potential. As such, animal models are still very 

much an important part of pre-clinical research and are essential prerequisite for the 

translation of any scaffold technology into the clinical.  

A critical-sized bone defect is defined as „the smallest size intraosseous wound that will not 

spontaneously heal completely with bone tissue, or the defect will heal by connective tissue 

during the lifetime of the animal‟ [62]. Typically, models for bone regeneration will utilise 

bone defects, but occasionally people have worked on simpler  in vivo models such as 



13 
 

13 
 

subcutaneous regions in the flanks of rats [63] or muscles [64]. The ectopic model can 

provide insight on the effect GFs can have on the differentiation of tissue, as well as immune 

responses, away from the ultimate intended site of implantation. For example Hulsart-

Billström et al. used a rat thigh muscle model to determine the ectopic bone formation of a 

number of rhBMP-2 loaded hydrogels [64]. Briefly, an aldehyde-modified hyaluronic acid 

and hydrazide-modified polyvinyl alcohol were mixed to form a stable injectable hydrogel. 

The hydrogel was first loaded with rhBMP-2 and supplemented with a number of variations 

of HA prior to injection in a rat thigh. Ectopic bone formation was then assessed using 

radiographs and histology.  

A good blood supply is a critical step for all wound healing; this is one of the principle 

reasons for undertaking ectopic bone formation studies in muscle as opposed to a 

subcutaneous pocket. However another model involving the arteriovenous loop has been used 

in bone tissue engineering [65]. This technique involves looping an artery around the implant 

and connecting it to a vein, allowing for infiltration of blood vessels via angiogenesis [65-67]. 

Several animal models have been used to study in situ bone regeneration, these revolve 

around different models to test different types of injuries, such as maxillofacial and cranial 

defects where rats are frequently used [49, 55, 68-70]. Lumbar spine, where sheep are 

commonly used [26, 71], along with goats [72] and long bone, where rats are the most 

commonly used model [25, 45, 73-79]. Smaller animals such as mice and rats have been 

commonly used as models for tissue engineering applications due to their size making them 

more economical than the larger animals while still providing valuable information which 

cannot be gained via in vitro models. However there is a push towards using more relevant 

models in bone regeneration, such as the sheep model which have closer characteristics to the 

human body in terms of physical size and structure than smaller animals. An effective 3 cm 

tibial defect was for instance established, and now being extensively, reproducibly used, by 

Hutmacher et al to study scaffolds for large bone defect repair [16, 80].  

 

 

6. Current strategies for delivering bone growth factors  

The current methods for fabrication of GF- loaded scaffolds can be divided into two main 

categories: attachment of the GF (physical and non-physical) to the scaffold or entrapment of 



14 
 

14 
 

the GF within the scaffold, see figure 1 for a summary. The attachment may be achieved by 

adsorption of the GF onto the scaffold or through chemical cross- linking of the GF to the 

polymer scaffold. Fibrin-based matrices are popular biomaterials for this purpose. For 

instance, GFs with heparin binding sequences like basic FGF (bFGF) [81, 82] and BMP-2 

[83] have been covalently cross- linked to fibrin during the enzymatical coagulation of fibrin. 

This process has been further improved by the addition of heparin or hyaluronic acid to the 

fibrinogen mix prior to enzymatic coagulation. The release then occurs passively and through 

simultaneous fibrin/heparin degradation.  

 

Figure 1. Current methods for fabrication of GF-loaded scaffolds (adapted from [84]). 

 

It is however, often desirable to release GFs in a slower manner; as such, many methods of 

encapsulation have been investigated over the past decade. Encapsulation is a simple method 

of slowing the release, by creating a physical barrier, blocking the ability of a GF to diffuse 

away until the capsule in which the GF is contained has been sufficiently degraded; see figure 

2. By altering the composition of the capsule, the rate of degradation and the subsequent 

release of the entrapped GF can be somewhat controlled [85]. As previously mentioned 

bioresorbable polymers; most commonly aliphatic polyesters, are used for this purpose [28]. 

These polymers first undergo random hydrolytic breakdown of the ir more amorphous 

regions. As these polymers continue to breakdown they become soluble oligomers and 



15 
 

15 
 

undergo surface degradation. During this phase the surface of the polymer begins to erode 

away and GFs close to the surface begin to be exposed and release into the environment; ergo 

the rate of breakdown of the polymer is directly related to the release rate of the entrapped 

GF. 

Figure 2. Schematic illustrating the breakdown and release of GFs from polymeric 

encapsulation.  

 

Other approaches to supply GFs to a wound site include seeding a population of cells which 

have been genetically modified to elute specific GFs into their local environment. As an 

example, recent work by Saito et al. investigated the effect of adding BMP-7 transduced 

human gingival fibroblasts to phase deposition modelled PLLA and PLGA 50:50 scaffolds 

followed by subcutaneous implantation to assess bone formation [86]. The focus of the study 

was to investigate the effect pore size and polymer degradation rate had upon bone volume, 

and, as such, a rat subcutaneous pocket model was used to investigate this. Briefly two 

million transduced fibroblasts were seeded onto scaffolds using a fibrin gel; three different 

scaffold configurations were used per polymer (small pore, medium pores, and large pores), 

prior to implantation then assessed for de novo bone formation via micro CT. All samples 

were shown to produce new bone, suggesting that the fibroblasts had successfully survived 

the transfer procedure and were able to express BMP-7 which led to the differentiation of 

local progenitor cells into bone forming cells. As this method of cell transplantation digresses 

from the topic of this review, which aims to review scaffolds with entrapped GFs rather than 

scaffolds with entrapped cells which express GFs, we will focus the remainder of the review 

to this area. 

 



16 
 

16 
 

6.1 Porous solid scaffolds  

Entrapment of GFs has been achieved in porous solid scaffolds, through solvent 

casting/particulate leaching and supercritical fluid (SCF) processing [87-89]. SCF processing 

is attractive for GF delivery, since it does not require the use of harmful solvents which could 

adversely affect the GFs. In fact, protein denaturation during scaffold fabrication is the main 

problem associated with incorporation of proteins in various systems and leads to a 

considerable loss of their activity. As a solution, SCF processing allows preservation of 

biomolecules and supercritical CO2 is typically used as a solvent. Howdle et al. were able to 

successfully retain close to 100% enzymatic activity of ribonuclease processed via SCF 

within a PLLA scaffold [90]. Briefly, SCFs like CO2 are used above their critical point and 

enable the glass transition of the exposed polymer to be depressed. GFs are initially mixed 

within the polymer powder within a pressure chamber which can maintain the temperature 

and pressure conditions required for supercritical fluid formation; for CO2 this is 31oC and 

73.8 bar respectively [90]. Entrapment of GF then occurs during depressurization which 

under the reducing pressure also nucleates gas bubbles as the gas solvent attempts to escape 

from the polymer, leading to formation of a foamed structure. Several studies show good GF 

entrapment using this method, incorporating VEGF [87, 88] or BMP-2 [89] into PLGA and 

its derivative polymers.  

In a preliminary study by Kanczler, et al. entrapment of VEGF within a P(D,L)LA scaffold 

via supercritical CO2 demonstrated almost 100% entrapment rate, as assessed by ELISA, with 

a release rate of approximately 0.8% of the encapsulated VEGF after 21 days. The viability 

of the released VEGF was assessed by successful stimulation of human umbilical vascular 

endothelial cells (HUVECs) to form enclosed endothelial cell networks. The group followed 

this work by combining supercritical CO2 scaffolds with an alginate hydrogel to allow for 

two independent GF release curves in a single implant [91]; this work is discussed in detail 

later in the review in section 6.6: “Combining different loading techniques for delivering 

multiple GFs”. 

Another technique for binding GFs onto a porous scaffold is via Layer-by-Layer (LbL) 

polyelectrolyte multilayer films [92]. These films are created by dip coating scaffolds with a 

system of positively and negatively charged molecules, GFs can be introduced into a layer 

depending on its charge. For example MacDonald et al. used a LbL system comprised of a 

negatively charged Poly (β-aminoester) 2 layer, then a positively charged chondroitin 
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sulphate layer, followed by a negatively charged BMP-2 and finally another chondroitin 

sulphate. This tetra- layer structure was repeated 100 times onto polycaprolactone/β-

tricalcium phosphate printed scaffolds. Release profiles showed that 80% of the BMP-2 

attached eluted within 2 days, with the remaining 20% being released over 2 weeks.  

 

6.2 Fibrous scaffolds 

Similar to the SCF technique, biomolecules can also be directly incorporated into electrospun 

nanofibres. Electrospinning is a popular technique for the rapid fabrication of either 

microfibres or nanofibres. Briefly, the electrospinning concept lies with the interaction of an 

applied electric field and the surface charge of a polymer solution in a capillary. Mutual 

charge repulsion in the polymer solution generates a force directly opposite to the surface 

tension of the polymer solution. Once the electric charge is sufficient to overcome the surface 

tension of the polymer solution, a polymer jet is ejected and undergoes instabilities due to 

elongations and solvent evaporation before it hits the collector, leading to the formation of 

nanofibre electrospun scaffolds. GF may be incorporated into the produced fibers during the 

electrospinning process by mixing the biomolecules into a polymer solution prior to 

electrospinning the mixture [93], or by using co-axial electrospinning wherein a secondary 

polymer solution containing the biomolecules is electrospun within the core of the forming 

nanofibre surrounded by a shell polymer [94, 95].  

Nanofibre scaffolds applied to drug delivery has predominantly been focused upon the 

loading of antibiotics and anti-cancer agents [96], and only a relative few studies report the 

incorporation of GFs into these types of scaffolds [60, 68, 95, 97-103]. 

For bone regeneration purposes, BMP-2 has been incorporated into a number of different 

polymers and electrospun, including; PLLA [68, 102, 103], PLGA [97, 99] PCL [45], 

cellulose [60] and silk [98]. PLLA nanofibers loaded with BMP-2 has been achieved by 

dissolving BMP-2 in solvents such as acetic acid and then dispersing this mixture into a 

PLLA solution dissolved in dichloromethane (DCM) [68, 102, 103] before the mixture was 

loaded into a syringe and electrospun as loaded fibres.  

The type of solvent used in the electrospinning process is important for the structural 

properties of the resultant scaffold, as shown in a study comparing the strength of PLLA 

when spun in DCM compared with hexafluroisopropanol (HFIP). The results indicated that 
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the use of HFIP solvent produced physically stronger scaffolds compared to those produced 

by DCM, with an increase in maximum load (~30%), tensile strain (~900%) and Young‟s 

modulus (~25%). However, the addition of BMP-2 reduced the strength of fibres so 

significantly, they were unable to be tested mechanically [102]. For this particular experiment 

BMP-2 loading was achieved by creating an emulsion of BMP-2 in acetic acid with the 

PLLA in DCM. A similar effect was observed with the addition of collagen to the PLLA 

fibres, suggesting that the tertiary structure of the polymer was significantly affected by the 

addition of “impurities”. Culturing MG36 cells on the PLLA fibrous meshes for 22 days 

maintained cell viability, but once again demonstrated a loss of mechanical strength in 

scaffolds prepared with BMP-2 or collagen vs. pure PLLA fibres [102].  

Electrospun PLLA scaffolds loaded with rhBMP-2 have been implanted for 12 weeks into 

critical-sized cranial defects in a mouse model.  Results showed a significant increase in the 

overall de novo bone formation with 45% of the defect filled with new bone within the BMP-

2 loaded scaffold vs. 10% with the unloaded PLLA scaffold. Up-regulation of osteogenic 

markers, Smad-5 and osteocalcin was also observed at the 12 week time point in the BMP-2 

loaded implant compared to both the unloaded BMP-2, and the collagen control [68]. µCT 

scans showed more mineralisation of the PLLA/BMP-2 scaffold than compared to the blank 

control, collagen and unloaded PLLA scaffolds (figure 3).  

 

 

Figure 3. 3D reconstructions of cranial CT-scans of defects used for quantification of 

radiological bone density in critical sized defects after 12 weeks either; left blank (a), 

collagen control filler (b),  electrospun PLLA (c) or electrospun PLLA/BMP-2 (d) [68]. 

 

rhBMP-2 has been incorporated into electrospun scaffolds in association with hydroxyapatite 

(HA) in order to mimic bone extracellular matrix [97-99]. The studies involved silk [98] or 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.Object name is pone.0025462.g004.jpg [Object name is pone.0025462.g004.jpg]&p=PMC3&id=3182232_pone.0025462.g004.
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PLGA [97, 99] and in the silk study by Li et al., poly(ethylene) oxide (silk:PEO 80% to 20% 

wt) was used to generate a stable and continuous spinning jet; which was not possible using 

silk alone. Five different groups of scaffolds with similar morphology were produced. A 

control group of silk/PEO, and a second control group of silk with the PEO extracted from 

the fibre prior to seeding were used along with scaffolds containing either rhBMP-2, HA 

nanoparticles or both. After 31 days of in vitro culture with human bone marrow-derived 

mesenchymal stem cells, all scaffolds supported proliferation and differentiation into bone 

forming cells, as shown by a calcium extraction assay (trichloroacetic acid), and total DNA 

content assay (Pico green). The calcium deposition was significantly higher in the rhBMP-

2+HA group than either rhBMP-2 or HA alone, but these groups were both higher than either 

control. However, no information on the loading and release profiles were mentioned for this 

system, which would be valuable additions to the study and would add value to the 

sustainability of the release system [98].  

In more detailed studies, Nie et al. and later, Fu et al. examined the release profiles of BMP-2 

from PLGA/HA scaffolds using both in vitro and in vivo assessment [97, 99]. Encapsulation 

efficiencies of scaffolds ranged from 49 to 66%. It was observed that increasing the contents 

of HA nanoparticles accelerated the release rate of rhBMP-2 from the scaffold. This might be 

explained by the hydrophilic nature of HA which served to increase the overall hydrophilicity 

of the scaffold, rendering it more easily degradable. However, the surface of scaffolds 

seemed weaker, with cracks and holes occurring when HA was incorporated [97]. 

Interestingly, in vivo studies (tibial bone defect in nude mice) demonstrated that PLGA 

scaffolds loaded only with BMP-2 had no significant effect on bone healing. However, when 

HA nanoparticles were incorporated into the PLGA during electrospinning, the BMP-2, 

released from either the scaffolds where BMP-2 was encapsulated inside the fibres or just 

coated on the surface of fibres, resulted in a greater bone healing [99]. These results 

suggested that the presence of HA was more determinant on sustained release of BMP-2 than 

the initial loading location of the GF. 

 

6.3 Nano-/Microspheres 

The term microspheres or nanospheres is a term used to describe small particles which are in 

the micro or nano scale. The use of microspheres loaded with GFs in bone TE has been 

investigated in various ways: microspheres can be incorporated into different types of 
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preformed matrices (solid, soft, polymeric, ceramic) or formed during the matrix fabrication, 

to generate composite scaffolds containing microspheres. They can also be fused together to 

form a microporous scaffold in itself. In all these techniques, the loading generally happens 

during the formation of microspheres. It is important to note that independent incorporation 

of microspheres in a preformed matrix holds great potential, since the particles a nd matrix 

can be made from different materials. This option enables the use of scaffold materials which 

may be manufactured to closely fit their intended anatomical site and affords the inclusion of 

separate microsphere systems which may contain different and site-specific GFs for the 

specific application. While nanospheres can be used in a similar manner, research into GF 

loading for bone TE has been extremely limited, compared to microspheres, with few groups 

looking at nanospheres[104].  

In bone tissue engineering, the scaffold needs to provide a structural support which often 

requires mechanical integrity, meaning that slow degradation is essential so as to maintain 

mechanical integrity whilst the tissue regenerates [14]. Bone scaffold materials are thus not 

optimal for direct loading of growth factors since their release will only be afforded through 

degradation of the scaffold matrix, which will be very slow. This supposes that growth 

factors are released when the scaffold starts to degrade, i.e. also losing its mechanical 

integrity. However, in order to maximise efficiency of bone tissue regeneration using a 

scaffold, GFs should preferentially be readily and constantly released whilst the scaffold can 

still provide sufficient mechanical support. This provides an interesting compos ite option: a 

material providing faster degradation for the nano-/microspheres with a material presenting 

lower degradation profiles for the scaffold. Furthermore, encapsulating GFs in microspheres 

rather than directly into the scaffolds leads to a better control of the GFs release, since 

microspheres can be optimized and tailored independently. Their release profiles can thus be 

studied before incorporation to the scaffolds and further optimized for incorporation [85, 105-

107]. Additionally it is possible to incorporate various GFs in differentially degrading 

polymer microspheres and give a “zonal” release of GF over time by including slow and 

faster degrading nano-/microspheres, a condition which is relevant in tissue regeneration 

where there is usually a temporal expression of GFs during healing [108]. 

Many different polymers, both natural and synthetic have been used in the production of GF-

loaded microspheres. The most commonly used natural material for microspheres is gelatine, 

often cross- linked with genipin [52, 72], while the most universally used synthetic polymers 

for the production of microspheres are PLGAs, commonly a 50:50 ratio of co-monomers 
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[109-111]. PLGA has widely been used for a number of reasons including: FDA approval, 

ease of formation of microspheres, reasonable encapsulation efficiencies and desirable 

release characteristics [112]. 

In recent years several GFs have been incorporated into microspheres for bone TE 

applications, the most studied GF is recombinant human BMP-2. See table 2 for a summary 

of recent publications utilising microspheres to deliver GFs which have a role in bone TE. 

 

6.3.1 Loading of Growth factors into microspheres 

 

Incorporating GFs into microspheres is usually performed during the formation of the 

microsphere. Table 2 summarises current research in microspheres, the techniques used to 

produce the microspheres, and the size of microspheres beings used. As shown by the table, 

the w/o/w continues to be the most popular technique for GF delivery.  

 

Table 2. Summary of the growth factor, polymer used, and size of microspheres studies 

recently released. 

Polymer Growth factor  Formation technique  Microsphere size Reference 

PEG-PLGA di-

block 
BMP-2 w/o/w 37 – 67 µm [48] 

PLGA/PLGA -

PEG-PLGA  
BMP-2 w/o/w 67 – 127 µm [61] 

Gelat ine cross-

linked with 

genipin 

BMP-2 w/o Undisclosed [72] 

Gelat ine cross-

linked with 

genipin 

BMP-2 w/o 
2 – 6 µm 

 

[52] 

PLGA  BMP-2 w/o/w 100 – 150 µm [63] 

PLGA  BMP-2 w/o/w Average of 50 µm [113] 

PLGA  BMP-2 w/o/w Undisclosed [114] 

PLGA  VEGF  w/o/w Undisclosed [115] 
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PLGA  VEGF  w/o/w 20 – 53 µm [116] 

PLGA  VEGF + FGF-2 w/o/w 
undisclosed (fused 

microsphere bridge) 
[108] 

PLGA  VEGF + FGF-2 s/o/w Undisclosed [67] 

Alginate VEGF  w/o/w 300 – 400 µm [47] 

PEG-CAM-

PEG 
VEGF + BMP-2 s/o/w 5 – 30 µm [117] 

PLGA  
VEGF, FGF-2, 

VEGF + FGF-2 

w/o/w ~20 – 100 µm [65] 

PLGA  PDGF w/o/w 7 – 31 µm 
[118] microsphere 

formation in [119] 

PLGA  BMP-2 + TGFβ Ultrasound o/w 
Undisclosed (fused 

microsphere bridge) 
[120] 

PLGA  LTB4  w/o/w 5 – 10 µm [107] 

Hyaluronanic 

acid 
BMP-2 w/o/w 710 nm – 1.7 μm [121] 

PLGA  BMP-2 w/o/w 120 – 470 µm [122] 

P(TMC-CL)2-

PEG 
BMP-6 + TGFβ3 Electrospraying o/w ~65-80 µm [51] 

Gelat ine cross-

linked with 

glutaraldehyde 

VEGF + BMP-2 w/o 50–100 µm [70] 

Silk fibroin  
BMP-2 BMP-9 or 

BMP-14 
Nano precipitation  2.4 – 3 µm [58] 

PLLA BMP-2 w/o 35 – 55 nm [104] 

 

 

The classical ways of forming microspheres are based on single or double emulsions; oil- in 

water (o/w), solid- in-oil- in-water (s/o/w), oil-oil (o/o) and water- in-oil- in-water (w/o/w) 

approaches [112, 123, 124]. Of these techniques, the w/o/w is the most commonly used 

method. As shown in figure 4, the first step involves mixing an aqueous solution containing 

the GFs with an organic solution (generally ethyl acetate or dichloromethane [81]) containing 

the dissolved polymer intended for the matrix material. This leads to the formation of the 

primary water- in-oil (w/o) emulsion. This emulsion is then dispersed in an aqueous medium 

under continuous mechanical agitation to form the secondary oil- in-water emulsion (o/w). 

The aqueous medium generally contains stabilizers such as PVA or PEG to promote the 
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formation of microdroplets. The subsequent solvent evaporation allows the microdroplets to 

turn into microspheres. Finally, microspheres are harvested by centrifugation or filtration of 

the solution followed by being washed and freeze-dried [123, 125-127]. This technique is 

commonly used for incorporation of GFs mainly within PLGA copolymer matrices [127]. 

 

Figure 4. Schematic showing the four principal steps in GF-loaded microsphere preparation 

by the water-in-oil-in-water emulsion (followed by solvent extraction) technique. 

 

A common problem with these methods of producing microspheres with encapsulated GFs is 

that they require exposure of the GF to organic solvents, which may cause denaturation The 

addition of protective agents, such as bovine serum albumin (BSA) (acting as a carrier 

protein) [117, 128], and polymers such as polyethylene glycol (PEG) [129] are often 

incorporated to reduce denaturation of growth factors via organic solvents. Acidic 

degradation is another issue to be considered. When  polyesters like PLGA degrade, they do 

so into monomers which can potentially lower the local environmental pH if not properly 

buffered, Crotts and Park determined that the localised environment in the centre of PLGA 

microspheres could be as low a pH 4.0 [130].  
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A variant of the w/o/w double emulsion is the solid- in-oil- in-water (s/o/w) emulsion, also 

called the single or spontaneous emulsion. This variant skips the first w/o emulsion involving 

the dissolution of GFs directly in the organic solution containing the dissolved polymer. 

Microdroplets are then formed by adding the organic solution to the aqueous medium under 

mechanical agitation to form the o/w emulsion directly and then the same steps as for the 

w/o/w are followed [123, 125, 126].  

In terms of techniques, the s/o/w technique –although quite similar to the w/o/w approach– is 

generally used less frequently for GF encapsulation. However, there is an upward trend in 

literature showing that s/o/w might be a better option than w/o/w. For example, when 

encapsulating brain-derived neurotrophic factor (BDNF) in PLGA microspheres (50:50, 10 

kDa), it was observed that 2.4 times more GFs were released from microspheres prepared by 

s/o/w than prepared by w/o/w with a more sustained delivery over the period of the study (60 

days) [131 ]. A variant of the s/o/w method has also been shown to enhance encapsulation 

efficiency by micronization of a model protein with PEG before emulsion [132]. This same 

approach was also used for encapsulation of trypsin, horseradish peroxidise (HRP) and 

rhBMP-2. In this study, the results for the “model proteins” demonstrated encapsulation 

efficiencies and retention activities of more than 75% with s/o/w compared to 25% and 13% 

for w/o/w, although it should be mentioned that encapsulation effic iency for rhBMP-2 was 

not discussed [133]. 

Another method of producing microspheres which is available but not commonly used is 

micro precipitation. An example is the production of silk fibroin microspheres (Cao et al.) 

[134]. Briefly regenerated silk fibroin solution was prepared by first washing the silk in 

Na2CO3 solution at 95oC, followed by dissolving in Li Br solution. This solution was then 

dialysed against pure water to remove the salt. Finally the solution was centrifuged and the 

supernatant was then collected and diluted as required. The GF was then added to this 

solution at room temperature under agitation. At this point a none miscible solution (in Cao‟s 

example absolute ethanol, which causes precipitation of regenerated silk fibroin) was added 

drop wise under gentle agitation to form microspheres. Following this step the samples were 

first frozen and then lyophilised to produce dry microspheres. By using different ratios of the 

two solutions, particle size may be altered; by increasing the ratio of ethanol to fibroin 

solution from 1/10 to 1/4 the average particle size was decreased from ~1100 to 400 nm in 

diameter. 
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In addition to the classical techniques for formation of microspheres, electrospraying has 

emerged as an effective technique for the formation of microparticles [50]. Electrospraying is 

a similar technique to electrospinning, using identical apparatus. When compared to 

electrospinning, electrospraying requires polymer solutions with lower viscosity; these can be 

obtained by using lower molecular weight polymers, or more often using lower polymer to 

solvent concentrations. GFs can be incorporated into the polymer solution prior to 

electrospraying resulting in particles with GFs trapped throughout. There are several 

advantages to electrospraying compared to the classical techniques including that the use of 

an emulsion is optional but not required. This is very advantageous since the interface 

between the organic and aqueous phases may result in GF denaturation and aggregation, 

which is established as the main drawback of all emulsion-based methods [135]. In addition, 

in electrospraying there is no use of high temperature such as in spray-drying; there is no 

further drying step required since particles are dried during the spray process; and there is an 

enhanced control over the size distribution of particles produced in classical ways, with the 

possibility of producing near monodispersion of particles by choosing optimal processing 

parameters. For instance relative standard deviations as narrow as 2% of the average size 

have been obtained when encapsulating inhalation drugs into electrosprayed PLLA 

submicron particles [136]. This is advantageous in drug delivery since degradation rates and 

diffusion of drugs from the polymeric matrix can be controlled to a better precision for sizes 

of particles within a narrow distribution, allowing a desired application to be obtained. 

However, this requirement is rarely achieved for microparticles made from emulsion 

fabrication methods, known to provide very broad distributions with relative standard 

deviation of up to 110% [137].  

To date, the encapsulation of GFs in electrosprayed particles has been  successfully achieved 

in the production of PLGA microcapsules loaded with IGF-1 via coaxial electrospraying 

[138], and in electrosprayed droplets comprising a hyaluronic hydrogel containing VEGF and 

PDGF-BB [139]. Both studies showed that the released growth factors were bioactive and  

that they enhanced angiogenesis in vitro. Recently Sukarto and Amsden [51] trialled an 

exotic electrosprayed poly(1,3-trimethylene carbonate-co-ε-caprolactone)-b-poly(ethylene 

glycol)-b-poly(1,3-trimethylene carbonate-co-ε-caprolactone), P(TMC-CL)2-PEG polymer 

which was tested for dual release of 2 GFs associated with bone fo rmation; BMP-6 and TGF-

β. This polymer was chosen due to: biodegradability, slow breakdown and limited production 

of acidic by-products, and due to the low melting point of the polymer (in the region of 
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40oC). Briefly the 2 GFs were mixed with BSA in a sucrose solution, which was mixed with 

the P(TMC-CL)2-PEG polymer prior to electrospraying. The solution was then 

electrosprayed into an ethanol collection bath. They report two release profiles, with 80% of 

the TGF-β being released within 20 days, while only 40% of the BMP-6 was released over 

the same time, taking over 80 days for 80% to be released.  

 

6.3.2 Growth factor delivery from microsphere-based scaffolds  

Nano- and microspheres containing BMPs are rarely used in isolation for bone regeneration 

purposes. Usually they are immobilised within/on a matrix to form a composite scaffold 

containing microspheres or they are fused together to form a microsphere scaffold. Most 

scaffolds incorporating microspheres showed significant differences in bone formation 

compared to having the BMPs adsorbed on the scaffold surface. For instance, one study 

showed rhBMP-7 delivery from PLGA nanospheres incorporated into a PLLA scaffold 

induced significant ectopic bone formation while failure of bone formation was observed 

with passive adsorption of rhBMP-7 onto the scaffold, likely due to significant loss of 

biological activity of the GF and diffusion away from the implantation site [140].  

The benefit of incorporating nano-/microspheres into scaffolds is less evident when compared 

to direct entrapment of the GF in the bulk scaffold matrix as discussed in [141]. In an 

interesting study, PLGA microspheres containing rhBMP-2 were incorporated into a 

polyurethane (PU) scaffold and the release kinetics and bone formation in a rat femoral defect 

were compared with a PU scaffold containing free rhBMP-2. It was shown that rhBMP-2 

delivery from the microsphere-containing scaffold presented a reduced burst release 

compared to free rhBMP-2 in PU, but showed less new bone formation at the early time 

points, in particular for smaller microspheres (1.3 µm compared to 114 µm). This 

phenomenon was compensated later between weeks 2 and 4 after implantation, with the 

PLLA rhBMP-2 microspheres provoking similar bone formation when compared to the 

rhBMP-2 freely loaded into PU [141]. This study linked the burst release to new bone 

formation, suggesting that an initial burst release followed by sustained release is actually 

preferential for promoting new bone formation. This can be explained by the fact that BMP-2 

plays an important role during the healing process to promote cell differentiation but is 

equally important at the early stages in the healing processes for the initial migration of 

progenitor cells and triggering the fracture healing cascade [8, 142]. As a consequence, burst 
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release is implied to have an initial beneficial effect on early bone formation. This burst 

release was controlled by the size of microspheres as shown by different sizes of 

microspheres enabling tailoring of the GF release for enhanced bone formation [141],  

It is important to note that care should be taken when translating in vitro results to in vivo 

studies. For instance, BMP-2 has been incorporated into PLGA microspheres through w/o/w 

and further cross- linked to various scaffolds: a gelatin hydrogel, a poly(propylene fumarate) 

PPF scaffold and a PPF scaffold surrounded by a gelatin hydrogel [53]. All the delivery 

systems used microspheres to deliver BMP-2 and were compared to a hydrogel matrix simply 

cross- linked with BMP-2. In terms of release, the latter case showed an in vitro burst release 

of 33% compared to less than 10% with all microsphere systems (figure 5a.). However, the 

burst release of the free BMP-2 system was increased to 92% in vivo while the microspheres 

systems showed no burst release but exhibited a much faster BMP-2 release upon 

implantation (figure 5b). The bone in-growth, assessed by µCT is presented in figure 5c. 

Microspheres/PPF scaffolds gave significantly better results with more bone formation 

observed via µCT, when compared to other gelatin scaffolds at 6 weeks. But this result was 

statistically equivalent to the microsphere/PPF surrounded by gelatin at 12 weeks as shown in 

figure 5c-d. Similarly to other studies [141], the use of microspheres with gelatin did not 

provide significantly better results than the BMPs directly loaded in the gelatine hydrogel. 

Only the use of another material (PPF) alone (no gelatine hydrogel) was able to provide 

significantly more bone formation after 6 weeks of implantation [53] when compared to PFF 

with gelatine- loaded implant. 
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Figure 5. Normalized release profiles of 125I-BMP-2 from the four different implants (% of 

the initial loading) a) in vitro b) in vivo in a rat subcutaneous implantation model. c) New 

bone formation after 6 and 12 weeks of implantation. Image reconstruction was derived from 

µCT scans using standardized thresholds. d) Average volumes of newly formed bone in the 

four different scaffolds after 6 and 12 weeks of implantation (left axis), and normalized to an 

8 mm long, 3.5 mm diameter cylindrical scaffold (right axis). Significant difference relative to 

(a) all other implants, (b) Mps/gelatin implant and (c) gelatin implant at the same time point. 

(d) Significant increase in bone formation relative to the previous time point. [53] 

Recent work has included microspheres dispersed within a hydrogel or in bone cements [26, 

72] or combined PLGA/PLGA-PEG-PLGA microspheres with a fused deposition PCL and 

20% w/w β-tricalcium phosphate scaffold [61]. Other materials used as the mechanical 

support matrix include PFF [78, 143], brushite [122], coralline hydroxyapatite [113] 

Combining microspheres with other scaffolds is a common approach, but it is also possible to 

fuse microspheres into solid scaffolds themselves with functional mechanical properties via 

sintering effects [56, 108, 120]. The general technique of creating a sintered scaffold is to 

compress microspheres in a mold and chemically sinter.  

One interesting study by Dormer et al. established a gradient of GF loading (TGF-β)  and 

BMP-2 into PLGA 50:50 microspheres where a high concentration of TGF-β was present at 

the top of the implant to promote chondrogenesis; the formation of cartilage, and a high 
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concentration of BMP-2 at the bottom to promote osteogenesis; the formation of bone [120]. 

Microspheres suspended in water were introduced into a mold via syringe pumps, creating a 

BMP-2 rich region, a transition gradient region leading from a high concentration of BMP-2 

and a low concentration of TGF-β to a low concentration of BMP-2 and a high concentration 

of TGF-β. Ethanol was used as the sintering agent to fuse the microspheres together, and the 

scaffold was tested with and without cells in vivo in a rabbit osteochondral knee defect vs a 

sham (empty) control, and an unloaded scaffold. Infiltration of cellular tissue was assessed 

using histology, mineralisation was assessed using alizarin red and von kossa staining. 

Although in this study the sham control arguably had the most superior tissue infiltration and 

superior bone mineralisation, it was theorised that this result was due to the rate of 

degradation of the microspheres. They concluded that a more rapidly degrading scaffold 

would have a superior cell infiltration and tissue maturation. However it should be noted that 

they were able to create zonal differentiation of cells into cartilage and bone within their 

loaded scaffold. 

Loading of BMPs onto microspheres may be approached after production of the microspheres 

by dipping into a BMP solution. PLGA/HA microspheres for potential use as an injectable 

system for bone defects have been prepared in this manner, by treating the surface of the 

microspheres with an alkali treatment followed by dipping into rhBMP-2 to allow better GF 

adsorption. The system released 80% of rhBMP-2 after 3 weeks in vitro but did not show a 

significant effect on cell attachment and proliferation, although it was shown to affect 

osteoblast differentiation [109]. Another study by Woo et al. involved preparation of PLGA 

microspheres through a w/o/w process and further treatment in an rhBMP-2 solution [144]. 

The GFs attached through adsorption and the loaded microspheres were lyophilised before 

incorporation into a carboxymethyl-cellulose for implantation into rat calvarial defects. 

Several immediate and sustained release systems were compared and the best bone 

regeneration was observed with a sustained-release implant able to heal 75-79% of the defect 

in 6 weeks as compared to the 45% recovery from the immediate-release implant. In vitro, 

the microspheres used in the sustained-release implant first showed a 45 to 55% burst release 

over 24 hours, before steadily reaching 70% release after 3 weeks. This supports the theory 

that both an initial burst and sustained release are required for optimal bone formation. 

However, it must be kept in mind, in this case, that 63% of rhBMP-2 was not physically 

bound to the microspheres with this method of loading, i.e. that a consequential amount of 

GF was still free in the matrix [144].  
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6.4 Hydrogels  

Hydrogels are widely used within tissue engineering due to the highly versatile nature of their 

construction and the ability to entrap molecules within their hydrated matrix with relative 

ease. A hydrogel is a cross-linked, insoluble hydrophilic polymer, highly swollen in water. 

Hydrogels swell in contact with water, forming an insoluble 3D network, and as such certain 

polymers can be surgically injected into a wound site in a partially dehydrated state, and 

undergo swelling in situ, other techniques can use pH and temperature sensitive polymers 

which will gel following injection [145]. Hydrogels are commonly used in tissue engineering 

for drug delivery due to the ease of incorporating soluble and insoluble drugs into the 

hydrogel, often only requiring simple mixing the drug and hydrogel precursors [145]. The 

cross- linking of hydrogels can be; chemical like PEG cross- linking [146]; enzymatically such 

as hydrazone cross- linking of hyaluronic acid [55]; or physical, such as sonification of silk 

fibroin [147] in nature. 

Like microspheres, many different polymers have been used in the production of hydrogels 

including natural polymers like: silk [147], chitosan [79, 148], and alginate [148], as well as 

synthetic ones such as PEG [149]. Di-block and tri-block copolymers have also been studied 

as they can provide useful physical properites such as temperature dependent physical 

characteristics [145].  

 

6.4.1 Loading growth factors into hydrogels 

The most common method of loading GFs into hydrogels is to simply mix the GF into the 

hydrogel precursor. As the polymerisation occurs, the GFs become entangled in the polymer 

chains and are physically trapped within the hydrogel network. As the hydrogel begins to 

degrade, via hydrolysis or proteolytic degradation, GFs are able to freely move out and elute 

from the matrix, starting with GFs loaded on the outside of the gel and moving inwards (see 

figure 6.). Hydrogels pore size is often larger than the size of the GF, and hydrogels often 

release the majority of the contained GF within a few days. Hydrogels with nano-sized pores 

are known as nano-gels and provide increased retention of GFs over conventional hydrogels, 

with some gels retaining GFs for months, dependent upon the degradation of the polymer, 

although limited research has been conducted in the field [147, 150]. 
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 Figure 6. Schematic showing the formation of growth factor loaded hydrogel formation, 

breakdown and release.  

In addition to pore size affecting the release rate of GFs from the hydrogel, other factors such 

as the concentration of the polymer in the gel and the degree of crosslinking can have an 

effect upon the release rate of GFs, The polymers constituing hydrogels can also be modified 

to include specific cell-binding sites such as covalent attachment of the peptide sequence 

arginine-glycine-aspartic acid (RGD) [151, 152] to the polymer during synthesis to improve 

cell attachment. Zieris et al. combined amino end-functionalized four-arm star PEG with 

EDC/sulfo-NHS-activated carboxylic acid groups of heparin in addition to RGD 

functionalization of the carboxylic acid heads of the PEG chains to improve GF binding 

[153]. See table 3. for recent investigations into GF loading hydrogels.  

 

Table 3. Recent publications of GF-loaded hydrogels. 

Growth 

factor 
Polymer Quantity loaded Release Reference 

rhBMP-2 and 

VEGF  
Silk 

40 µg/ml VEGF 

60 µg/ml BMP-2 

~ 15% VEGF after 28 

days 

~ 15% BMP-2 after 28 

days 

[147] 

rhBMP-2 PEG 50 mg/ml 
~ 56% after 15 days for 

[154] 
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glycosilated rhBMP-2, 

~ 35% after 15 days for 

non glycosilated 

BMP-2 Alginate Up to 5 µg/ ~85% after 14 days [45] 

BMP-2 Alginate 40 μg/mL ~ 98% after 7 days [25] 

BMP-2 Hyaluronic acid  150 μg/mL Not disclosed [55] 

BMP-2 Hyaluronic acid  150 μg/mL 
Not conducted (animal 

study) 
[64] 

BMP-2 Chitosan 0.75 mg/mL 
Not conducted (animal 

study) 
[79] 

BMP-2 
Chitosan or Hyaluronic 

acid 
0.75 mg/mL 

Not conducted (animal 

study) 
[148] 

BMP-2 

collagen-

hydroxyapatite 

composite PEG 

200 μg/mL 
~ 72% after 3 days, ~95% 

after 7 days 
[149] 

BMP-2 and 

VEGF  
Hyaluronic acid  

0.01 mg/mL VEGF 

0.01 mg/mL BMP-2 

~ 100% after 4 days for 

fast degrading hydrogels 

~ 100% after 7 days for 

slow degrading hydrogels 

(VEGF releasing slightly 

slower than BMP-2) 

[49] 

BMP-2 Hyaluronic acid  200 µg/ml 

~ 10% after 24 hours 

~ 25% after 35 days 
[66] 

VEGF-A and 

PDGF-BB 
Alginate 

30 μg/ml PDGF-BB 

and/or 

3 μg/ml VEGF-A165 

~ 50% VEGF after 24 

hours, ~80% after 30 days 

~15% PDGF-BB after 24 

hours, ~75% after 30 days 

[155] 

FGF and VEGF PEG-heparin  1 or 5 µg/ml ~10% after 4 days [153] 

 

6.5 Growth factor delivery from hydrogel-based scaffolds  

The release of BMP-2 from hydrogels has been widely studied as shown in table 3. Other 

GFs such as VEGF and PDGF have received less attention, but have also been investigated to 

some extent [26, 139, 147].  

The material used to compose the hydrogel has a significant effect upon the formation of new 

bone; a study by Ludmila et al. showed that an rhBMP-2 loaded hyaluronic acid hydrogel 

produced a more osteoinductive response when compared to a chitosan one of similar design 

[148]. However, it should be noted that although more bone formation was observed in the 
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hyaluronic acid hydrogel, the bone formed in the chitosan was described as being in a more 

mature state after three weeks with significantly higher levels of calcification, as observed by 

Massons trichrome staining and µCT imaging in a rat ectopic muscle model [148]. This 

increase in maturation within the chistosan hydrogels was attributed to the more rapid 

breakdown of the hydrogel leading to a more rapid release of the rhBMP-2. A further study 

conducted by the same group supplemented the rhBMP-2 chitosan hydrogel with β-tricalcium 

phosphate (β-TCP) which improved the osteoinduction at the cost of slower mineralisation, 

as shown histologically with more overall bone growth observed, but less mineralisation as 

assessed by a Masons trichrome staining. They attributed this effect to slower release of 

rhBMP-2 from the scaffold due to the affinity of rhBMP-2 to bind to β-TCP [79]. Therefore 

they were able to reduce the release rate of the rhBMP-2 while maintaining the more rapid 

hydrogel breakdown.  

Hänseler et al. compared the loading efficiency of a PEG hydrogel vs deproteinized bovine 

bone matrix (DBBM) for the release of rhBMP-2, both in a glycosylated and non-

glycosylated form [154]. The glycosylation of rhBMP-2 occurs during the production within 

an animal cell, such as transfected Chinese hamster ovary cells(CHO), while non-

glycosylated rhBMP-2 is sourced from a prokaryotic expression system in modified 

Escherichia coli. Eukaryotic cells glycosylate disulphide bonds, while proteins derived from 

E. coli source do not. However studies have shown that non glycosylated BMP-2 can 

stimulate bone growth in humans. RhBMP-2 was loaded by mixing thiol PEG in a 0.1 M 

triethanolamine solution in the presence of 25 µg of rhBMP-2 per 50 µl of un-reacted PEG 

gel. It should be noted that this simplistic method of encapsulating non-glycosylated rhBMP-

2 produced significantly lower levels of encapsulated rhBMP-2 than expected, with only 

~25% total active rhBMP-2. It was theorised that the thiol groups on the linear PEG could 

attack the disulfide bonds of the rhBMP-2 dimers, causing them to lose affinity for each other 

and thus inactivate the rhBMP-2. The use of glycosylated rhBMP-2 improved the 

encapsulation to ~68% within the PEG hydrogel alone; this value was still below the 

encapsulation level when DBBM was incorporated into the hydrogel. The release rate 

showed a burst over 3 days whereby nearly all of the rhBMP-2 both, glycosylated and non-

glycosylated was shown to be released from the gels. 

Kolambkar et al. [25] used an alginate hydrogel loaded with 500 ng rhBMP-2 which was 

injected into an electrospun PCL mesh tubes and the same tubes containing perforations, as a 

method for long bone regeneration. Day 0 evaluation suggested a ~55% encapsulation 



34 
 

34 
 

efficiency with ~275 ng of active rhBMP-2 detected. However in vitro release studies 

detected a burst release profile of bioactive rhBMP-2 over 7 days whereby ~70 ng of rhBMP-

2  was released as detected by ELISA, very little additional rhBMP-2 was detected as 

releasing after 21days (~71 ng total) and only 27 ng of the active rhBMP-2 was still 

detectable within the gel. The remaining undetected rhBMP-2 was theorised to have degraded 

during the 21 days of the release study. An in vivo model in critical sized rat femoral defects 

showed superior de novo bone formation in rhBMP-2 loaded hydrogels, when compared to 

unloaded alginate gels as examined by X-ray, µCT and torsion testing. An interesting result 

was observed when the electrospun meshes were perforated, an increase in the bone 

formation occurred vs. the unperforated mesh. It was hypothesised that the perforations 

allowed for superior infiltration of cellular material into the defect, and increased 

vascularisation which in turn increased wound healing.    

In a similar study, Boerckel et al. used rhBMP-2 (quantities of 0.1 µg to 5 µg) loaded alginate 

hydrogels combined with an electrospun PCL scaffold to provide physical support and retain 

alginate at the wound site, and compared the rate of healing of an 8 mm femur defect when 

compared to a collagen sponge [45]. In order to improve the rate of cellular migration into the 

alginate hydrogel, RGD binding sites were added to the alginate. However, µCT imaging 

showed that RGD binding sites were not sufficient, in isolation, to promote formation of bone 

(figure 7.). As shown by the scaffold without rhBMP-2 and the 0.1 µg rhBMP-2-loaded 

scaffold failing to elicit successful defect closure after 12 weeks. In contrast the 1 µg loading 

of rhBMP-2 in the alginate/mesh composite scaffold showed good bone formation within the 

defect, but not the collagen mesh. It was theorised that the addition of the slowly degrading 

alginate hydrogel acted as a diffusion barrier, allowing slower release of rhBMP-2 than the 

collagen sponge. It is also worth noting that alginate is negatively charged, and in theory 

should provide superior binding to the positively charged rhBMP-2, thus retaining more 

rhBMP-2 in the defect site compared to collagen [45]. 
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Figure 7. microCT reconstructions of 3D structure and sagittal cross-sections illustrating 

local mineral density mapping of critical sized femur defects of an alginate hydrogel rhBMP-

2 delivery system. Dose of BMP-2 delivered per implant as shown [45]. 

 

Another recent study examining release of rhBMP-2 in a dental application looked at two 

methods of delivering rhBMP-2, either bound to a sandblasted, acid-etched surface (SLA) 

titanium implant, which was then surrounded by an unloaded scaffold, or loaded onto the 

scaffold before being placed around the implant. The scaffold test groups were PEG 

hydrogels, Collagen/HA (Col/HA) sponges and combination of the PEG hydrogel and 

Col/HA sponge. This study found that the latter group, the PEG hydrogel and Col/HA 

exhibited what was deemed to be the best release characteristics reducing the level of burst 

release and providing a constant sustained release [149]. Using a single loaded PEG hydrogel 

led to a rapid initial burst of rhBMP-2 from the scaffold, while Col/HA prevented a large 

initial burst release of rhBMP-2 and the scaffold started to break down rapidly and rapidly 

released rhBMP-2 after 10 days in an in vitro model. The combined Col/HA PEG hydrogel 

revealed a slow initial release leading to a long sustained release, which was attributed to the 

rhBMP-2 bound to both the Col/HA and the PEG hydrogel. In the in vivo study, a rat 

mandible model, the Col/HA PEG hydrogel had approximately twice the de novo bone 

formation than that of the Col/HA alone, as measured by µCT (figure 8.). Although the 

rhBMP-2 loaded on the SLA implant surrounded by the PEG gel itself produced the most de 

 



36 
 

36 
 

novo bone formation in the study, when the rhBMP-2 was loaded into the PEG hydrogel itself 

it produced the least, suggesting it was mechanically unsuitable for the purpose.  

 

Figure 8. µCT images of de novo bone growth around a titanium screw implant [149], 

showing either unloaded scaffolds (A), BMP-2 loading onto the screw (B) or BMP-2 loaded 

onto the surrounding implant (C). 

 

6.6 Combining different loading techniques for delivering multiple growth 

factors  

Natural wound healing occurs as part of a cascade involving multiple different cell types and 

GFs. While many studies have investigated the potential for individual GFs to facilitate the 

reconstruction of damaged tissues, it stands to reason that complementary GF-loading may 

create a superior scaffold than loading a single GF. Multiple GF delivery has frequently been 

considered for bone formation studies, since several GFs are known to be involved in the 

complex process of bone repair/regeneration and the strategy to mimic this delivery seems 

logical, albeit not trivial.  

Alginate scaffolds, loaded with TGF-β3 and BMP-2, and transplanted with progenitor cells 

induced enhanced bone formation in mice compared to scaffolds loaded only with single GFs 

[156]. Similarly, bone formation was enhanced by incorporating TGF-β1 and IGF-1 in the 

PDLLA coating of titanium wires which were implanted in rats, showing synergistic effects 

of GFs [157]. However direct loading into scaffolds does not allow a precise control of the 

release kinetics and often when GFs are exposed to the medium, this may result in loss of 



37 
 

37 
 

bioactivity. Using micro- or nanoparticles overcomes this problem by protecting the GF, and 

allowing the use of various populations of particles with different degradation properties and 

thus different release kinetics of the encapsulated GF [105].  

Basmanav et al. prepared polyelectrolyte complexes for encapsulation of BMP-2 and BMP-7 

before further introduction into PLGA scaffolds and undertook in vitro testing with bone 

marrow-derived stem cells [158]. A release study was also undertaken using BSA as the 

BMP-2 substitute during the release assays. The authors selected the populations of 

microspheres that would rapidly release the BMP-2 then release the BMP-7 much later. It 

was shown that the delivery system had no effect on proliferation but enhanced osteogenic 

differentiation to a higher degree than with single administration of either BMP-2 or BMP-7 

alone [158]. In another study of dual delivery applied to cartilage regeneration, different 

populations of PLGA microspheres containing IGF-I and TGF-β1 were fused together to 

provide sequential release [159]. It was shown that the materials and additives used during 

processing had significant influences on burst release. The incorporation of BSA in the IGF-I 

formulation decreased the initial burst release from 80% to 20% while using uncapped PLGA 

containing a carboxylic acid terminal group for the TGF-β1 formulation did not produce any 

burst release compared to a 60% burst release using uncapped PLGA alone. Three types of 

scaffolds were further fabricated with the different microsphere formulations providing 

tailored release kinetics (either simultaneous, initial release of TGF-β1 followed by IGF-I, or 

initial release of IGF-I followed by TGF-β1). However neither in vitro nor in vivo studies 

were performed for assessment of the potential of these scaffolds for tissue regeneration 

[159]. 

BMPs are central to bone regeneration due to their osteoinduction potential. However, the 

formation of blood vessels (angiogenesis) is also essential for successful bone regeneration 

and in this context, vascular endothelial growth factor (VEGF) is known to be the key GF to 

regulate angiogenesis. VEGF has been shown to interact with BMPs and both types of GFs 

were shown to stimulate the proliferation of either endothelial cells or osteoblasts 

respectively and differentiation of osteoprogenior cells [7, 160]. VEGF has been successfully 

encapsulated in several types of devices to obtain a controlled release of the GFs such as; 

PLLA scaffolds using super critical CO2 (scCO2) processing [87, 161], PLGA scaffolds using 

gas foaming/particulate leaching process [88], and in microspheres (s/o/w processed PLLA 

microspheres [162, 163]) suggesting potential as part of a dual delivery system incorporating 

BMPs. For instance, Kempen et al. recently produced a dual delivery system and tested it 
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ectopically (subcutaneously) and orthotopically (critical sized femoral defect) in rats [44]. 

BMP-2 was loaded in PLGA microspheres through the w/o/w process (leading to an 85% 

encapsulation efficiency) and further embedded into a polypropylene fumarate rod by photo-

cross- linking. In parallel, a gelatin hydrogel was processed as a tubular implant and 

impregnated with VEGF before association with the PPF rod previously loaded with 

microspheres (see figure 9.). This system was aimed at giving a sequential release of the 

entrapped GF: an initial peak of VEGF, followed by a sustained release of BMP-2, since the 

same pattern has been observed in normal bone healing [142]. As expected, the in vivo 

profiles were faster than in vitro, showing a rapid release of VEGF in the first 2 weeks and a 

more sustained release of BMP-2 over the full 8-week period. In ectopic defects, the presence 

of VEGF with scaffolds loaded with BMP-2 was shown to significantly enhance bone 

formation compared to the BMP-2 only scaffolds. However, there were no significant 

differences in orthotopic defects. It was hypothesized that the peak release of VEGF occurred 

too early for orthotopic defects while it was sufficient for ectopic formation, since circulation 

could have enhanced blood flow and thus accessibility of the implantation site for cells [142].  

 

 

Figure 9. Schematic showing the composite scaffolds for the sequential release of VEGF and 

BMP-2. The PPF rod and the gelatin shell were prepared separately and combined just 

before implantation [44]. 
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In a similar study, BMP-2 and VEGF were loaded by diffusion into gelatin microspheres and 

further incorporated into PPF scaffolds for implantation into a rat cranial critical sized defect 

[164]. The dual release group showed significantly higher bone formation than other groups 

at 4 weeks but was equivalent to the BMP-2 group at 12 weeks, suggesting only a synergistic 

effect of the GFs for early bone regeneration. However, the dual delivery system showed 

enhanced bone bridging and union of the defect compared to the BMP-2 group at 12 weeks as 

detected by µCT.  

As previously discussed, the ability to inject a hydrogel into a wound site creates a system 

which is surgically minimally invasive. Zhang et al. have investigated the potential of silk 

fibroin as dual delivery system for rhBMP-2 and VEGF165 [147]. The experimental design 

compared the effect of loading either rhBMP-2 or VEGF165 or both GFs into the hydrogel 

then injecting them into a maxillary sinus floor model in rats. An in vitro release kinetics 

study on 100 µl of the dual loaded gel showed a steady sustained release over the 28 day 

study. No noticeable initial burst of both rhBMP-2 and VEGF165 was detected (ELISA), with 

approximately 70% as much VEGF165 being released as rhBMP-2. The presence of rhBMP-2 

in the hydrogel increased the level of sinus floor by an average of 11.5 mm (n = 6) compared 

to the unloaded silk hydrogel (7.5 mm). While rhBMP-2 elevated the sinus floor as much as 

the dual loaded scaffold (11.5 mm), µCT suggested that the dual loaded hydrogel had 

produced a more dense bone mineralisation, although this difference was not statistically 

significant. 

Kanczler et al. used scCO2 to produce P(D,L)LA scaffolds to load rhBMP-2, and combined 

this with an alginate hydrogel loaded with VEGF165 [91]. This technique was able to produce 

two independent release curves, with an initial release of VEGF165 from day 0 occurring in a 

linear fashion of ~100 pg/day. In comparison, there was very limited initial BMP-2 released 

from the PLLA implant, however the final release profile was exponential with more BMP-2 

released than VEGF165 after 7 days. Further in vitro testing showed that both GFs maintained 

bioactivity in culture and the implant was able to stimulate an osteogenic response from the 

BMP-2 in C2C12 cells and an angiogenic response from the VEGF165 in HUVECs. However, 

it should be noted, that in vivo work on mouse critical-sized femoral defects showed no 

significant effect of the loaded GFs in inducing bone formation without the addition of 

human bone marrow stromal cells to the implant [91]. 
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Certainly, these studies underline the complexity of dual delivery of VEGF and BMPs. 

VEGF remains an interesting option for complete bone formation and is certainly a key GF 

for angiogenesis in general, as shown in a dual delivery of w/o/w processed PLGA 

microspheres containing PDGF incorporated in a scaffold containing VEGF, for enhanced 

generation of mature vascular network [165]. The selection of the correct GF cocktail and the 

control of the relationship between concentration and timing considerations remain two major 

challenges in GF delivery [158]. However, the specific BMP-2 GF has multiple roles in bone 

healing, shown to play a role in both early and late time points, therefore it may be easier to 

achieve the optimization of its release through a single GF delivery perspective rather than a 

dual approach, and provide a considerable advance in bone TE with this optimized release of 

a single BMP. Nevertheless, such a release might not be easily achieved with the traditional 

encapsulation processes and new techniques need to be studied and optimized as better 

alternatives. 

 

Conclusion 

The currently available clinical treatments for bone-related deficiencies are not ideal for the 

healing of large bone defects. Tissue engineering has widely been acknowledged as a 

promising approach to tackle this issue, although with nearly 30 years of research, while 

much insight has been gained, an optimal solution has yet to be realised. A tissue engineering 

scaffold must provide a wide range of functions; including physical robustness, as well as 

promoting de novo bone formation. Polymeric scaffolds offer promising physical 

characteristics but alone they have proven to lack sufficient osteoinductive capacity. GFs 

such as rhBMP-2 have shown the ability to promote bone formation in a clinical 

environment, but due to short active lifespan in the defect environment, there remains a 

challenge of delivery. The ability to entrap within polymeric scaffolds offers a potential 

solution to this problem, producing a scaffold which would have both the structural capacity 

and osteogenic potential required for successful treatment. 

While no particular individual strategy has proven so far to be sufficient; see table 4 for a 

summary of advantages and drawbacks of the most popular techniques, entrapping GFs into 

scaffolds shows much promise. 
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table 4. Current strategies for growth factor delivery in bone tissue engineering and the 

associated advantages and drawbacks. 

Delivery system 
Release 

characteristics 
Advantages Drawbacks 

Supercritcal CO2 Sustained release 
Good encapsulation 

efficiency 

Limited availab le scaffold 

conformat ions suitable for bone 

tissue engineering 

  

Very high bioactiv ity 

retention 

Complex equipment require fo r 

manufacture  

  
Solvent less format ion 

 

Electrospinning Varying release 
Rapid fabricat ion of 

scaffold 

Limited availab le scaffold 

conformat ions suitable for bone 

tissue engineering 

  

Large number of 

polymers available for 

electrospinning 

Require organic solvents which 

can denature GFs and reduce 

bioactivity 

   

Limited information on 

encapsulation efficiency 

   

Limited information on release 

characteristics 

Nano/Microspheres 
Initial burst then 

slow sustain 

Several techniques 

available for fabrication 

Limited availab le scaffold 

conformat ions suitable for bone 

tissue engineering 

  

Easy to combine with 

other scaffold fabrication 

techniques 

Require organic solvents which 

can denature GFs and reduce 

bioactivity 

   

Classical format ion techniques 

have poor encapsulation efficiency  

Hydrogels Short term release 

Can be in jected into 

wound sites (in situ 

formation) 

Rapid degradation of most 

commonly used hydrogels 

  

Good encapsulation 

efficiency 

Unsuitable mechanical 

characteristics for bone tissue 

engineering 

  
Solvent less format ion 

 

  

Easy to combine with 

other techniques 
 

Functionalisation of 

surfaces 
Short term release 

Can be applied to 

scaffolds with good 

mechanical properties 

Technique is time intensive 

e.g. polyelectrolyte 

systems  

High bioactiv ity 

retention 
Alters existing surface chemistry 

Nano-coating etc.  
  

 

Future perspectives 

Wound healing is a complex process, and many current studies still only focus on the release 

of a single growth factor. Advancing knowledge through combining scaffolds with different 
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release profiles gives the potential to load different growth factors into a single constructed 

scaffold; which, when implanted will lead to a cascade of temporal GF release, for example 

providing VEGF early to a wound site, followed by a slower release of rhBMP2 after an 

established blood supply has formed. Such scaffold design shows promise to be a superior 

single step solution for the treatment of critical sized bone defects and may ultimately negate 

the need for autografting and permanent implants.  

While the biological activity of a scaffold can be enhanced by GFs, there are other techniques 

which when employed with GF loading could produce more rapid cellular infiltration and 

differentiation than either technique alone. The scope for co-delivery of GFs with other 

therapeutic agents such as short- interfering RNA sequences and other osteogenic promoters 

such as hydroxyl-apatite is another avenue which has great potential.  

For a complete clinical solution, a tissue engineered scaffold will have to be able fulfil a 

number of criteria, including mechanical suitability and biological activity. GF loading into 

polymeric scaffolds is a promising avenue of research. The technique both provides a 

mechanically robust scaffold, in addition to a system for controlling the release of GF into the 

defect, but there is still much work to be done.  

The rate of entrapment, denaturation rate, and release of the GFs from the scaffold must all be 

carefully considered when designing such systems; many recent studies are moving towards 

utilising far less overall GF than those currently used in the clinic and also provide the 

opportunity to maintain a therapeutic level for longer. This drive to avoid the 

supraphysiological loadings present in clinical setting will hopefully provide a safer, cheaper 

and more efficacious treatment. 
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