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Fast and Robust Stereo Matching Algorithms for Mining AutomationJasmine BanksSpace Centre for Satellite Navigation,Queensland University of Technology /Centre for Mining Technology and EquipmentEmail: j.banks@qut.edu.au Mohammed BennamounSpace Centre for Satellite Navigation,Queensland University of TechnologyEmail: m.bennamoun@qut.edu.auPeter CorkeCSIRO Manufacturing Science and Technology/Centre for Mining Technology and EquipmentEmail: pic@cat.csiro.auKEY WORDS: stereo vision, image matching, rank transform, census transformABSTRACTThe mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. Theobjective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor shouldbe able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance forthis investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, andtheir zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps withthe highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all theiroperations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametrictechniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and censustransforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps witha high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability tofast hardware implementation.1 INTRODUCTIONPerception of the three-dimensional environment is a pre-requisite for mine equipment automation, since autonomousvehicles and robot devices need to be aware of the surround-ing environment in order to plan their actions and carry outtasks. A number of techniques exist for discerning three-dimensional information from scenes[Jarvis, 1983], including:Active range �nding methods in which a controlled en-ergy beam is applied to the scene and reected energydetected. These techniques, although well suited tostatic scenes and underground situations, are too slowfor real-time applications[Corke et al, 1997].Structured lighting approaches which include striped, gridand patterned lighting. These tend to be useful intightly controlled domains such as industrial automa-tion, and usually are not useful for more general envi-ronments[Barnard and Fischler, 1987].Monocular image based techniques which use informationfrom a single image, and include depth from focus,shape from shading, depth from occlusion cues anddepth from texture gradient[Sonka et al, 1993]. Depthand object orientation are typically inferred from sta-tistical assumptions.Stereo vision which involves taking two (or more) imagesfrom di�erent perspectives, and computing depth fromstereo disparity.Both range �nding and structured lighting methods fall intothe category of active methods, which require an externallight or energy source to be applied to the scene. In contrast,both stereo and monocular techniques are known as passivetechniques, which require only the presence of ambient light.Our work is primarily concerned with stereo vision, since it has

the potential to produce results within real-time constraintsand is suited for irregular environments.The mining environment, being complex, irregular and timevarying, presents a challenging prospect for stereo vision. Ourobjective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor shouldproduce a dense depth map within real-time constraints. It isalso desired that the system be robust, ie, in the case of aninvalid match, an answer of NO MATCH should be returned,rather than an erroneous result. However, a high level ofaccuracy is not of foremost importance for this application,since it is desired to obtain information concerning the pres-ence and overall extent of obstacles, for example, rather thanthe precise location of their boundaries.A fundamental issue is to establish correspondence or match-ing of points in two images, such as the rock stereo pair ofFigure 1, in order to compute the disparity and subsequentlythe 3-D world coordinates. Image matching techniques aredivided into two main categories[Fua, 1993]:Area-based which are distinguished by the fact that actualgrey-level pixel values in the images are compared to�nd the best match. The information contained in asingle pixel is not su�cient for unambiguous match-ing, therefore regularly sized pixel neighbourhoods arecompared.Feature-based which are characterised by the use of imagefeatures such as edges, vertices and contours as thematching primitives. These methods rely on featureextraction. The representations of these features arethen compared to �nd the best match.Feature-based matchers tend to be faster than area-basedmethods, since only a small subset of pixels are used. How-



Figure 1: Stereo pair ROCK.ever, they typically yield very sparse depth maps, since match-ing only takes place at image locations where features occur,and results for intermediate points must be obtained by inter-polation[Grimson, 1981; Li, 1995]. This interpolation processrelies on assumptions about the scene geometry between fea-tures. Feature-based matchers are also highly accurate sincefeatures may be located with sub-pixel precision. They arebest suited to images where features are relatively sparse,such as scenes containing planar surfaces delineated by edges.Such scenes would typically be comprised of man-made ob-jects. Area-based matchers are usually unsuitable to use onthese images, since their smooth surfaces lack su�cient tex-ture for an area-based matcher to match on.Area based techniques, on the other hand, are best suitedto highly textured scenes, in contrast to feature-based tech-niques which tend to be confused by a large amount of surfacetexture[Hannah, 1989]. Area-based matchers can also poten-tially yield matching results for every image pixel and henceyield a dense depth map. The advantages of area-based algo-rithms include their simplicity and straightforward implemen-tation, as well as their amenability to hardware realisation.However, their accuracy is not as high as the feature-basedmethods. This is due to the \smoothing" e�ect introducedby using a square window of pixels for matching[Cochran andMedioni, 1992].Our work to date has investigated area-based matching tech-niques, for the following reasons:1. Scenes comprised of rocks usually have a large amountof surface texture, and are therefore well suited to areabased matching.2. They have the potential to yield a dense depth map.3. They are amenable to fast hardware implementation.Section 2 discusses area-based matching metrics, and also de-scribes some of the problems which can make matching moredi�cult. Validation techniques to identify incorrect matchesare also discussed. Section 3 outlines the theory of non-parametric transforms, in particular, the rank and the censustransform. An implementation of area-based matching met-rics, the rank transform, and the census transform are de-scribed in section 4. The disparity results obtained from thisimplementation are included in Section 5. Section 6 discussesthe robustness of each approach to radiometric distortion,

template window shifting candiate windowFigure 2: Epipolar constrained area based matching.and recommends an algorithm as being most suitable for fasthardware implementation.2 AREA-BASED MATCHINGIn area-based matching, a point to be matched essentiallybecomes the centre of a small window of pixels, and thiswindow is compared with similarly sized regions in the otherimage. Matching metrics are used to provide a numericalmeasure of the similarity between a window of pixels in oneimage and a window in another image, and hence are used todetermine the optimum match.Epipolar geometry [Barnard and Fischler, 1987] is used toimprove the e�ciency of the matching process by constrainingthe search to one dimension. Stereo images may be recti�edsuch that the epipolar lines correspond to the horizontal scanlines[Ayache, 1991]. A simple approach used in area basedmatching is to compute the value of the matching metricusing a �xed window in the �rst image and a shifting windowin the second image, as illustrated in Figure 2. The shiftingwindow is moved in integer increments along the epipolar line,where the amount of shift is the test disparity. The disparityhaving the optimum value for the matching metric is thenchosen.2.1 Matching ProblemsAll area-based matching algorithms must deal with at leastthe following problems:Occlusions caused by portions of a scene being visible inonly one image.Repetitive patterns which can potentially result in invalidmatches.



Bland regions which do not contain enough information formatching, eg, a featureless wall.Perspective distortion which occurs because the shape ofobjects will change when they are viewed from di�erentvantage points.Radiometric distortion which may result in a constant o�-set between pixel values in the two images, and/or pixelintensities in one image being multiplied by a gain fac-tor with respect to the other image. These e�ects arecaused by di�erences in camera parameters, such asgain, bias and gamma factor.Specular reection caused by the reectance properties ofthe object. Matching algorithms usually assume Lam-bertian reection model, in which an object reectslight equally in all directions. It is therefore assumedthat a particular point will have the same intensity re-gardless of the direction from which it is viewed. How-ever, this is often not the case, with specular (mirror-like) reection being the most dramatic departure fromthe Lambertian case.Noise which is introduced by the image acquisition and digi-tisation process.As discussed in the remainder of this section, matching met-rics such as the ZSAD, ZSSD, NCC and ZNCC are designedto be robust with respect to radiometric distortion, while val-idation techniques such as left-right consistency checking areable to identify most of the invalid matches due to occlusionsand bland regions. Non-parametric techniques, discussed inSection 3, are invariant to radiometric distortion and smallamounts of random noise.2.2 Matching MetricsA number of classical matching metrics are listed in Table 1.All these metrics use a square window of pixels as the basisfor comparison. The SAD and the SSD are intuitively thesimplest, and computationally the least expensive of all thematching measures[Hannah, 1974]. Two areas which con-sist of exactly the same pixel values would yield a score ofzero. However, these measures will no longer yield the cor-rect results in the case of radiometric distortion. The ZSADand the ZSSD have been devised to deal with this problem,by subtracting the mean of the match area from each inten-sity value. However, the improved performance of the ZSADand ZSSD over the SAD and SSD is o�set by substantiallyincreased computational complexity.The NCCmeasure deals with a possible gain factor by dividingby the variances of each window, while the ZNCC measureadditionally deals with the o�set problem by �rst subtract-ing the mean from each pixel value. For grey level images,these metrics will have a value ranging from -1 to 1, where 1represents the best match.2.3 Validation of MatchesOnce the \best" match is selected using a matching metric,a number of simple validation techniques may be applied inorder to identify incorrect matches.One such technique is left-right consistency checking [Han-nah, 1989; Fua, 1993], which involves reversing the roles ofthe two images and performing matching a second time, asillustrated by Figure 3. Firstly, epipolar constrained match-ing is carried out using a template window centred on I1,
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inconsistentconsistent Figure 3: Consistent and inconsistent matches. The matchon the left is consistent, while the match on the right isinconsistent[Fua, 1993].and the point I2, which is the best match for I1, is found.Matching is then performed again, this time using a templatewindow centred on I2. If this match leads back to the originalpoint I1, then the match is consistent, otherwise, it is aggedas inconsistent. This validity test is likely to detect invalidmatches which may result from bland areas, and also fromocclusions. The pixels which comprise an occluded area arelikely to match, more or less at random, with locations in theother image. However, these locations are unlikely to matchback to the pixels in the occlusion area, rather, they are morelikely to match with their own corresponding points. Thisvalidation technique can be fooled by repetitive patterns.The number of correct matches can be further increased byremoving isolated matches from the matches which remainafter left-right consistency checking. This heuristic is basedon the assumption that isolated matches are more likely tobe incorrect[Fua, 1993; Faugeras et al, 1993].3 NON-PARAMETRIC TECHNIQUESNon-parametric techniques are based on the relative orderingof pixel intensities within a window, rather than the intensityvalues themselves. Consequently, these techniques are robustwith respect to radiometric distortion, since di�erences in gainand bias between two images will not a�ect the ordering ofpixels within a window. In addition, these transforms aretolerant to a small number of outliers within a window, andare therefore robust with respect to small amounts of randomnoise[Bhat and Nayar, 1996].Two non-parametric transforms which are suited to fast im-plementation are[Zabih and Wood�ll, 1994]:Rank Transform This is de�ned as the number of pixels inthe window whose value is less than the centre pixel.The images will therefore be transformed into an arrayof integers, whose value ranges from 0 to N�1, whereN is the number of pixels in the window. A pair ofrank transformed images are then matched using oneof the matching metrics of section 2.2. For hardwareimplementation, it is advantageous to use a matchingmetric based on integer arithmetic, such as the SADor the SSD.Census Transform This transform maps the window sur-rounding the centre pixel to a bit string. If a particularpixel's value is less than the centre pixel then the cor-responding position in the bit string will be set to 1,otherwise it is set to zero. Two census transformedimages are compared using a similarity metric basedon the Hamming distance, ie, the number of bits thatdi�er in the two bit strings. The Hamming distance is



Sum of AbsoluteDi�erences SAD X(u;v)2W jI1(u; v) � I2(x+ u; y + v)jZero mean Sum ofAbsolute Di�erences ZSAD X(u;v)2W ��(I1(u; v)� I1) � (I2(x+ u; y + v) � I2)��Sum of SquaredDi�erences SSD X(u;v)2W(I1(u; v) � I2(x+ u; y + v))2Zero mean Sum ofSquared Di�erences ZSSD X(u;v)2W((I1(u; v) � I1) � (I2(x+ u; y + v)� I2))2Normalised CrossCorrelation NCC X(u;v)2W I1(u; v) � I2(x+ u; y + v)s X(u;v)2W I21 (u; v) � X(u;v)2W I22 (x+ u; y + v)Zero mean NormalisedCross Correlation ZNCC X(u;v)2W(I1(u; v) � I1) � (I2(x+ u; y+ v)� I2)s X(u;v)2W(I1(u; v)� I1)2 � X(u;v)2W(I2(x+ u; y + v) � I2)2Table 1: Area based matching measures[Aschwanden and G�uggenbuhl, 1993]. In all cases, I1 denotes thetemplate window, I2 is the candidate window, andP(u;v)2W indicates summation over the window.
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imageFigure 6: Overall matching process using census transform.consistency criterion, in addition to �ltering to remove iso-lated matches, are then applied, in order to remove invalidmatches.4.2 Non-Parametric TransformsThe steps involved in matching using the rank and cen-sus transforms are shown in Figure 5 and Figure 6 respec-tively. The rank transformed stereo images are matched us-ing the SAD metric, while the census transformed images arematched using the Hamming measure of Equation 1. In eachcase, the disparity maps output from the matcher may thenbe input to the validity checking stage of Figure 4.5 RESULTSThe disparity results obtained for the stereo pair of Figure 1using a number of matching metrics, the rank transform, and



(a) (b)
(c) (d)
(e) (f)Figure 7: Disparity of ROCK stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC and(f) ZNCC metric. The ZSAD, ZSSD, NCC and ZNCC metrics result in the highest proportion of valid matches,however, these metrics have a signi�cantly higher computational overhead than the SAD and SSD.



(a) (b)Figure 8: Disparity of ROCK stereo pair, produced using (a) Rank transform followed by SAD and (b) Censustransform followed by the Hamming metric. The rank and census methods result in a higher proportion of validmatches than the SAD and SSD, and in addition, they do not introduce the computational overhead of theZSAD, ZSSD, NCC and ZNCC.the census transform, are shown in Figure 7 and Figure 8.In each case, the disparity map with respect to the rightimage is shown. Lighter regions in the result disparity mapscorrespond to larger disparities. A matching window size of11� 11 was used for each metric. The census transform wasperformed using windows of size 5�5, however, the matchingprocess used windows of size 11 � 11.The test stereo pairs, IROCKS1, J1 and K1, are shown inFigure 9, 12 and 15 respectively. These test pairs were usedin the JISCT stereo evaluation[Bolles et al, 1993], and are alla�ected by radiometric distortion, one image being brighterthan the other in each case. The disparity maps obtained forthese stereo pairs are shown in Figure 10, 13 and 16, whilethe results obtained using the rank and census transforms areshown in Figure 11, 14 and 17.For each of the test images, the proportion of matches re-maining after validity checking for each metric are shown inTable 2. 6 DISCUSSIONIt can be seen from Figure 10, 13 and 16 that the SAD andthe SSD are clearly not robust with respect to radiometricdistortion. These metrics have performed particularly poorlyin the case of the IROCKS1 pair, in which the left imageis approximately 28% brighter than the right. These met-rics also performed quite poorly in the case of the J1 and K1pairs, in which the right image is approximately 13% and 14%brighter than the left, respectively. Use of the ZSAD, ZSSD,NCC and ZNCC resulted in improved robustness and con-sequently a higher proportion of valid matches, as shown inTable 2. However, these metrics result in increased compu-tational complexity, since they consist of oating point oper-ations. The NCC and ZNCC are particularly computationallyexpensive due to the presence of oating point multiplication,division and square root operations.The proportion of matched pixels as shown in Table 2 ishighly dependent on the content of the images. For example,

the ROCK pair contains a large area of pixels which are onlyvisible in one image. This results in an unmatched area on theright hand side of each disparitymap in Figure 7 and 8, whichin turn leads to a lower proportion of matched pixels for thispair. However, Table 2 shows that the SAD and the SSD areconsistently out-performed by all the other matching metricstested, as well as the rank and census transform techniques.Two matching algorithms based on non-parametric trans-forms have been tested | the rank transform followed bymatching with the SAD metric, and the census transformfollowed by matching with the Hamming metric. Both werefound to be robust with respect to radiometric distortion, asshown by Figure 8, 11, 14 and 17. As shown in Table 2,both algorithms produced disparity maps with a high propor-tion of valid matches. An additional advantage of both thesealgorithms is their amenability to fast hardware implementa-tion. Consequently, they are prime candidates for a real-time,robust stereo matching system for mining automation appli-cations. ACKNOWLEDGMENTSThis work was conducted as part of the \Automation" re-search program of the Cooperative Research Centre for Min-ing Technology and Equipment (CMTE).REFERENCES� Aschwanden, P. and Guggenb�uhl, W. (1993): Ex-perimental Results from a Comparative Study onCorrelation-Type Registration Algorithms. RobustComputer Vision, 268{289, Wickmann, 1993.� Ayache, N. (1991): Arti�cial Vision for Mobile Robots,MIT Press, 1991.� Barnard, S. and Fischler, M. (1987): Stereo Vi-sion. Encyclopedia of Arti�cial Intelligence, 1083{1090, John Wiley & Sons, 1987.
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(a) (b)
(c) (d)
(e) (f)Figure 10: Disparity of IROCKS1 stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCCand (f) ZNCC metric. Note the poor performance of the SAD and the SSD, due to radiometric distortion. TheZSAD, ZSSD, NCC and ZNCC result in improved robustness, however, they introduce additional computationalcomplexity.
(a) (b)Figure 11: Disparity of IROCKS1 stereo pair, produced using (a) Rank transform followed by SAD and (b)Census transform followed by the Hamming metric. The improvement of these results over the SAD and SSDresults of Figure 10 clearly illustrates the robustness of the rank and census transforms to radiometric distortion.An additional advantage of the rank and census methods is that they do not introduce the computationaloverhead of the ZSAD, ZSSD, NCC and ZNCC.



Figure 12: J1 stereo pair. The right image is approximately 13% brighter than the left.
(a) (b)
(c) (d)
(e) (f)Figure 13: Disparity of J1 stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC and(f) ZNCC metric. As with Figure 10, the poor performance of the SAD and the SSD is due to radiometricdistortion. The ZSAD, ZSSD, NCC and ZNCC result in improved robustness, however, they introduce additionalcomputational complexity.



(a) (b)Figure 14: Disparity of J1 stereo pair, produced using (a) Rank transform followed by SAD and (h) Censustransform followed by the Hamming metric. As with Figure 11, the rank and census transforms result inimproved robustness in the case of radiometric distortion, without introducing the computational complexity ofthe ZSAD, ZSSD, NCC and ZNCC.

Figure 15: K1 stereo pair. The right image is approximately 14% brighter than the left.



(a) (b)
(c) (d)
(e) (f)Figure 16: Disparity of K1 stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC and(f) ZNCC metric. As with Figure 10 and 13, the poor performance of the SAD and the SSD is due to radiometricdistortion. The ZSAD, ZSSD, NCC and ZNCC result in improved robustness, however, they introduce additionalcomputational complexity.
(a) (b)Figure 17: Disparity of K1 stereo pair, produced using (a) Rank transform followed by SAD and (b) Censustransform followed by the Hamming metric. As with Figure 11 and 14, the rank and census transforms resultin improved robustness in the case of radiometric distortion, without introducing the computational complexityof the ZSAD, ZSSD, NCC and ZNCC.


