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ABSTRACT

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The
objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should
be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for
this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and
their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with
the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their
operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric
techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census
transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with
a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to

fast hardware implementation.

1 INTRODUCTION

Perception of the three-dimensional environment is a pre-
requisite for mine equipment automation, since autonomous
vehicles and robot devices need to be aware of the surround-
ing environment in order to plan their actions and carry out
tasks. A number of techniques exist for discerning three-
dimensional information from scenes[Jarvis, 1983], including:

Active range finding methods in which a controlled en-
ergy beam is applied to the scene and reflected energy
detected. These techniques, although well suited to
static scenes and underground situations, are too slow
for real-time applications[Corke et al, 1997].

Structured lighting approaches which include striped, grid
and patterned lighting. These tend to be useful in
tightly controlled domains such as industrial automa-
tion, and usually are not useful for more general envi-
ronments[Barnard and Fischler, 1987].

Monocular image based techniques which use information
from a single image, and include depth from focus,
shape from shading, depth from occlusion cues and
depth from texture gradient[Sonka et al, 1993]. Depth
and object orientation are typically inferred from sta-
tistical assumptions.

Stereo vision which involves taking two (or more) images
from different perspectives, and computing depth from
stereo disparity.

Both range finding and structured lighting methods fall into
the category of active methods, which require an external
light or energy source to be applied to the scene. In contrast,
both stereo and monocular techniques are known as passive
techniques, which require only the presence of ambient light.
Our work is primarily concerned with stereo vision, since it has

the potential to produce results within real-time constraints
and is suited for irregular environments.

The mining environment, being complex, irregular and time
varying, presents a challenging prospect for stereo vision. Our
objective is to produce a stereo vision sensor suited to close-
range scenes consisting primarily of rocks. This sensor should
produce a dense depth map within real-time constraints. It is
also desired that the system be robust, ie, in the case of an
invalid match, an answer of NO MATCH should be returned,
rather than an erroneous result. However, a high level of
accuracy is not of foremost importance for this application,
since it is desired to obtain information concerning the pres-
ence and overall extent of obstacles, for example, rather than
the precise location of their boundaries.

A fundamental issue is to establish correspondence or match-
ing of points in two images, such as the rock stereo pair of
Figure 1, in order to compute the disparity and subsequently
the 3-D world coordinates. Image matching techniques are
divided into two main categories[Fua, 1993]:

Area-based which are distinguished by the fact that actual
grey-level pixel values in the images are compared to
find the best match. The information contained in a
single pixel is not sufficient for unambiguous match-
ing, therefore regularly sized pixel neighbourhoods are
compared.

Feature-based which are characterised by the use of image
features such as edges, vertices and contours as the
matching primitives. These methods rely on feature
extraction. The representations of these features are
then compared to find the best match.

Feature-based matchers tend to be faster than area-based
methods, since only a small subset of pixels are used. How-



Figure 1: Stereo pair ROCK.

ever, they typically yield very sparse depth maps, since match-
ing only takes place at image locations where features occur,
and results for intermediate points must be obtained by inter-
polation[Grimson, 1981; Li, 1995]. This interpolation process
relies on assumptions about the scene geometry between fea-
tures. Feature-based matchers are also highly accurate since
features may be located with sub-pixel precision. They are
best suited to images where features are relatively sparse,
such as scenes containing planar surfaces delineated by edges.
Such scenes would typically be comprised of man-made ob-
jects. Area-based matchers are usually unsuitable to use on
these images, since their smooth surfaces lack sufficient tex-
ture for an area-based matcher to match on.

Area based techniques, on the other hand, are best suited
to highly textured scenes, in contrast to feature-based tech-
niques which tend to be confused by a large amount of surface
texture[Hannah, 1989]. Area-based matchers can also poten-
tially yield matching results for every image pixel and hence
yield a dense depth map. The advantages of area-based algo-
rithms include their simplicity and straightforward implemen-
tation, as well as their amenability to hardware realisation.
However, their accuracy is not as high as the feature-based
methods. This is due to the “smoothing” effect introduced
by using a square window of pixels for matching[Cochran and
Medioni, 1992].

Our work to date has investigated area-based matching tech-
niques, for the following reasons:

1. Scenes comprised of rocks usually have a large amount
of surface texture, and are therefore well suited to area
based matching.

2. They have the potential to yield a dense depth map.

3. They are amenable to fast hardware implementation.

Section 2 discusses area-based matching metrics, and also de-
scribes some of the problems which can make matching more
difficult. Validation techniques to identify incorrect matches
are also discussed. Section 3 outlines the theory of non-
parametric transforms, in particular, the rank and the census
transform. An implementation of area-based matching met-
rics, the rank transform, and the census transform are de-
scribed in section 4. The disparity results obtained from this
implementation are included in Section 5. Section 6 discusses
the robustness of each approach to radiometric distortion,
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Figure 2: Epipolar constrained area based matching.

and recommends an algorithm as being most suitable for fast
hardware implementation.

2 AREA-BASED MATCHING

In area-based matching, a point to be matched essentially
becomes the centre of a small window of pixels, and this
window is compared with similarly sized regions in the other
image. Matching metrics are used to provide a numerical
measure of the similarity between a window of pixels in one
image and a window in another image, and hence are used to
determine the optimum match.

Epipolar geometry [Barnard and Fischler, 1987] is used to
improve the efficiency of the matching process by constraining
the search to one dimension. Stereo images may be rectified
such that the epipolar lines correspond to the horizontal scan
lines[Ayache, 1991]. A simple approach used in area based
matching is to compute the value of the matching metric
using a fixed window in the first image and a shifting window
in the second image, as illustrated in Figure 2. The shifting
window is moved in integer increments along the epipolar line,
where the amount of shift is the test disparity. The disparity
having the optimum value for the matching metric is then
chosen.

2.1 Matching Problems
All area-based matching algorithms must deal with at least
the following problems:

Occlusions caused by portions of a scene being visible in

only one image.

Repetitive patterns which can potentially result in invalid
matches.



Bland regions which do not contain enough information for
matching, eg, a featureless wall.

Perspective distortion which occurs because the shape of
objects will change when they are viewed from different
vantage points.

Radiometric distortion which may result in a constant off-
set between pixel values in the two images, and/or pixel
intensities in one image being multiplied by a gain fac-
tor with respect to the other image. These effects are
caused by differences in camera parameters, such as
gain, bias and gamma factor.

Specular reflection caused by the reflectance properties of
the object. Matching algorithms usually assume Lam-
bertian reflection model, in which an object reflects
light equally in all directions. It is therefore assumed
that a particular point will have the same intensity re-
gardless of the direction from which it is viewed. How-
ever, this is often not the case, with specular (mirror-
like) reflection being the most dramatic departure from
the Lambertian case.

Noise which is introduced by the image acquisition and digi-
tisation process.

As discussed in the remainder of this section, matching met-
rics such as the ZSAD, ZSSD, NCC and ZNCC are designed
to be robust with respect to radiometric distortion, while val-
idation techniques such as left-right consistency checking are
able to identify most of the invalid matches due to occlusions
and bland regions. Non-parametric techniques, discussed in
Section 3, are invariant to radiometric distortion and small
amounts of random noise.

2.2 Matching Metrics

A number of classical matching metrics are listed in Table 1.
All these metrics use a square window of pixels as the basis
for comparison. The SAD and the SSD are intuitively the
simplest, and computationally the least expensive of all the
matching measures[Hannah, 1974]. Two areas which con-
sist of exactly the same pixel values would yield a score of
zero. However, these measures will no longer yield the cor-
rect results in the case of radiometric distortion. The ZSAD
and the ZSSD have been devised to deal with this problem,
by subtracting the mean of the match area from each inten-
sity value. However, the improved performance of the ZSAD
and ZSSD over the SAD and SSD is offset by substantially
increased computational complexity.

The NCC measure deals with a possible gain factor by dividing
by the variances of each window, while the ZNCC measure
additionally deals with the offset problem by first subtract-
ing the mean from each pixel value. For grey level images,
these metrics will have a value ranging from -1 to 1, where 1
represents the best match.

2.3 Validation of Matches

Once the “best” match is selected using a matching metric,
a number of simple validation techniques may be applied in
order to identify incorrect matches.

One such technique is left-right consistency checking [Han-
nah, 1989; Fua, 1993], which involves reversing the roles of
the two images and performing matching a second time, as
illustrated by Figure 3. Firstly, epipolar constrained match-
ing is carried out using a template window centred on [,
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Figure 3: Consistent and inconsistent matches. The match
on the left is consistent, while the match on the right is
inconsistent[Fua, 1993].

and the point I>, which is the best match for [;, is found.
Matching is then performed again, this time using a template
window centred on I>. If this match leads back to the original
point I1, then the match is consistent, otherwise, it is flagged
as inconsistent. This validity test is likely to detect invalid
matches which may result from bland areas, and also from
occlusions. The pixels which comprise an occluded area are
likely to match, more or less at random, with locations in the
other image. However, these locations are unlikely to match
back to the pixels in the occlusion area, rather, they are more
likely to match with their own corresponding points. This
validation technique can be fooled by repetitive patterns.

The number of correct matches can be further increased by
removing isolated matches from the matches which remain
after left-right consistency checking. This heuristic is based
on the assumption that isolated matches are more likely to
be incorrect[Fua, 1993; Faugeras et al, 1993].

3 NON-PARAMETRIC TECHNIQUES

Non-parametric techniques are based on the relative ordering
of pixel intensities within a window, rather than the intensity
values themselves. Consequently, these techniques are robust
with respect to radiometric distortion, since differences in gain
and bias between two images will not affect the ordering of
pixels within a window. In addition, these transforms are
tolerant to a small number of outliers within a window, and
are therefore robust with respect to small amounts of random
noise[Bhat and Nayar, 1996].

Two non-parametric transforms which are suited to fast im-
plementation are[Zabih and Woodfill, 1994]:

Rank Transform This is defined as the number of pixels in
the window whose value is less than the centre pixel.
The images will therefore be transformed into an array
of integers, whose value ranges from 0 to N — 1, where
N is the number of pixels in the window. A pair of
rank transformed images are then matched using one
of the matching metrics of section 2.2. For hardware
implementation, it is advantageous to use a matching
metric based on integer arithmetic, such as the SAD
or the SSD.

Census Transform This transform maps the window sur-
rounding the centre pixel to a bit string. If a particular
pixel's value is less than the centre pixel then the cor-
responding position in the bit string will be set to 1,
otherwise it is set to zero. Two census transformed
images are compared using a similarity metric based
on the Hamming distance, ie, the number of bits that
differ in the two bit strings. The Hamming distance is
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Table 1: Area based matching measures[Aschwanden and Gliggenbuhl, 1993].
template window, I> is the candidate window, and Z(u v)

In all cases, I; denotes the

cw indicates summation over the window.

left left left
image Matching disp. eft-right disp.
using checking
SAD, SSD, .
right NCC, etc. right filtering right
image disp. disp.
Rectified Disparity Validated
Images Maps Disparity
Maps

Figure 4: Overall matching process using area-based match-
ing metrics.

summed over the window, ie,

>~ Hamming(7i (u,v), I3(x + u,y +v)) (1)
(u,v) EW

where I and I} represent the census transforms of I;
and [>. Two hardware implementations of this scheme
are discussed in [Woodfill and Herzen, 1993; Dunn and
Corke, 1997].

4 IMPLEMENTATION

A number of area-based matching metrics and non-
parametric transforms were implemented in software, in order
to investigate their suitability for scenes containing rocks. All
implementations accept a rectified stereo pair as input and
output disparity maps with respect to each image. Either of
the result disparity maps may then be used for 3-D recon-
struction.

4.1 Area-Based Matching Metrics

The overall algorithm used to test various area-based match-
ing metrics is shown in the block diagram of Figure 4. The
left and right images are input to the matching stage, which
uses one of the metrics from Table 1 to determine the initial
disparity maps with respect to each image. The left-right

left Rank e left
image Transform image disp.
SAD
. right .
right Rank right
image Transform _rank disp.
image
Rectified Rank transformed Disparity
Images images Maps

Figure 5: Overall matching process using rank transform.

left Census M left
image Transform ; disp.
image :
Hamming
- Measure
right Census right right
image Transform census disp.
image
Rectified Census transformed Disparity
Images images Maps

Figure 6: Overall matching process using census transform.

consistency criterion, in addition to filtering to remove iso-
lated matches, are then applied, in order to remove invalid
matches.

4.2 Non-Parametric Transforms

The steps involved in matching using the rank and cen-
sus transforms are shown in Figure 5 and Figure 6 respec-
tively. The rank transformed stereo images are matched us-
ing the SAD metric, while the census transformed images are
matched using the Hamming measure of Equation 1. In each
case, the disparity maps output from the matcher may then
be input to the validity checking stage of Figure 4.

5 RESULTS

The disparity results obtained for the stereo pair of Figure 1
using a number of matching metrics, the rank transform, and



Figure 7: Disparity of ROCK stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC and
(f) ZNCC metric. The ZSAD, ZSSD, NCC and ZNCC metrics result in the highest proportion of valid matches,
however, these metrics have a significantly higher computational overhead than the SAD and SSD.



Figure 8: Disparity of ROCK stereo pair, produced using (a) Rank transform followed by SAD and (b) Census
transform followed by the Hamming metric. The rank and census methods result in a higher proportion of valid
matches than the SAD and SSD, and in addition, they do not introduce the computational overhead of the

ZSAD, ZSSD, NCC and ZNCC.

the census transform, are shown in Figure 7 and Figure 8.
In each case, the disparity map with respect to the right
image is shown. Lighter regions in the result disparity maps
correspond to larger disparities. A matching window size of
11 x 11 was used for each metric. The census transform was
performed using windows of size 5 x 5, however, the matching
process used windows of size 11 x 11.

The test stereo pairs, IROCKS1, J1 and K1, are shown in
Figure 9, 12 and 15 respectively. These test pairs were used
in the JISCT stereo evaluation[Bolles et al, 1993], and are all
affected by radiometric distortion, one image being brighter
than the other in each case. The disparity maps obtained for
these stereo pairs are shown in Figure 10, 13 and 16, while
the results obtained using the rank and census transforms are
shown in Figure 11, 14 and 17.

For each of the test images, the proportion of matches re-
maining after validity checking for each metric are shown in
Table 2.

6 DISCUSSION

It can be seen from Figure 10, 13 and 16 that the SAD and
the SSD are clearly not robust with respect to radiometric
distortion. These metrics have performed particularly poorly
in the case of the IROCKS1 pair, in which the left image
is approximately 28% brighter than the right. These met-
rics also performed quite poorly in the case of the J1 and K1
pairs, in which the right image is approximately 13% and 14%
brighter than the left, respectively. Use of the ZSAD, ZSSD,
NCC and ZNCC resulted in improved robustness and con-
sequently a higher proportion of valid matches, as shown in
Table 2. However, these metrics result in increased compu-
tational complexity, since they consist of floating point oper-
ations. The NCC and ZNCC are particularly computationally
expensive due to the presence of floating point multiplication,
division and square root operations.

The proportion of matched pixels as shown in Table 2 is
highly dependent on the content of the images. For example,

the ROCK pair contains a large area of pixels which are only
visible in one image. This results in an unmatched area on the
right hand side of each disparity map in Figure 7 and 8, which
in turn leads to a lower proportion of matched pixels for this
pair. However, Table 2 shows that the SAD and the SSD are
consistently out-performed by all the other matching metrics
tested, as well as the rank and census transform techniques.

Two matching algorithms based on non-parametric trans-
forms have been tested — the rank transform followed by
matching with the SAD metric, and the census transform
followed by matching with the Hamming metric. Both were
found to be robust with respect to radiometric distortion, as
shown by Figure 8, 11, 14 and 17. As shown in Table 2,
both algorithms produced disparity maps with a high propor-
tion of valid matches. An additional advantage of both these
algorithms is their amenability to fast hardware implementa-
tion. Consequently, they are prime candidates for a real-time,
robust stereo matching system for mining automation appli-
cations.
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Figure 10: Disparity of IROCKS1 stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC
and (f) ZNCC metric. Note the poor performance of the SAD and the SSD, due to radiometric distortion. The
ZSAD, ZSSD, NCC and ZNCC result in improved robustness, however, they introduce additional computational

complexity.

Figure 11: Disparity of IROCKS1 stereo pair, produced using (a) Rank transform followed by SAD and (b)
Census transform followed by the Hamming metric. The improvement of these results over the SAD and SSD
results of Figure 10 clearly illustrates the robustness of the rank and census transforms to radiometric distortion.
An additional advantage of the rank and census methods is that they do not introduce the computational
overhead of the ZSAD, ZSSD, NCC and ZNCC.



o

Figure 13: Disparity of J1 stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC and
(f) ZNCC metric. As with Figure 10, the poor performance of the SAD and the SSD is due to radiometric
distortion. The ZSAD, ZSSD, NCC and ZNCC result in improved robustness, however, they introduce additional

computational complexity.



(b)

Figure 14: Disparity of J1 stereo pair, produced using (a) Rank transform followed by SAD and (h) Census
transform followed by the Hamming metric. As with Figure 11, the rank and census transforms result in
improved robustness in the case of radiometric distortion, without introducing the computational complexity of

the ZSAD, ZSSD, NCC and ZNCC.

Figure 15: K1 stereo pair. The right image is approximately 14% brighter than the left.



Figure 16: Disparity of K1 stereo pair, produced using (a) SAD, (b) ZSAD, (c) SSD, (d) ZSSD, (e) NCC and
(f) ZNCC metric. As with Figure 10 and 13, the poor performance of the SAD and the SSD is due to radiometric
distortion. The ZSAD, ZSSD, NCC and ZNCC result in improved robustness, however, they introduce additional

computational complexity.

Figure 17: Disparity of K1 stereo pair, produced using (a) Rank transform followed by SAD and (b) Census
transform followed by the Hamming metric. As with Figure 11 and 14, the rank and census transforms result
in improved robustness in the case of radiometric distortion, without introducing the computational complexity
of the ZSAD, ZSSD, NCC and ZNCC.



