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ABSTRACT 

Background: Melanoma is the most lethal form of skin cancer, but recent advances in molecularly 

targeted agents against the Ras/Raf/MAPK pathway demonstrate promise as effective therapies. 

Despite these advances, resistance remains an issue, as illustrated recently by the clinical experience 

with vemurafenib. Such acquired resistance appears to be the result of parallel pathway activation, 

such as PI3K, to overcome single-agent inhibition. In this report, we describe the cytotoxicity and 

anti-tumour activity of the novel MEK inhibitor, E6201, in a broad panel of melanoma cell lines (n = 

31) of known mutational profile in vitro and in vivo. We further test the effectiveness of combining 

E6201 with an inhibitor of PI3K (LY294002) in overcoming resistance in these cell lines. 

Results: The majority of melanoma cell lines were either sensitive (IC50 < 500nm, 24/31) or 

hypersensitive (IC50 < 100nM, 18/31) to E6201. This sensitivity correlated with wildtype PTEN and 

mutant BRAF status, whereas mutant RAS and PI3K pathway activation were associated with 

resistance. Although MEK inhibitors predominantly exert a cytostatic effect, E6201 elicited a potent 

cytocidal effect on most of the sensitive lines studied, as evidenced by Annexin positivity and cell 

death ELISA. Conversely, E6201 did not induce cell death in the two resistant melanoma cell lines 

tested. E6201 inhibited xenograft tumour growth in all four melanoma cell lines studied to varying 

degrees, but a more pronounced anti-tumour effect was observed for cell lines that previously 

demonstrated a cytocidal response in vitro. In vitro combination studies of E6201 and LY294002 

showed synergism in all six melanoma cell lines tested, as defined by a mean combination index < 1.  

Conclusions: Our data demonstrate that E6201 elicits a predominantly cytocidal effect in vitro and in 

vivo in melanoma cells of diverse mutational background. Resistance to E6201 was associated with 

disruption of PTEN and activation of downstream PI3K signalling. In keeping with these data we 

demonstrate that co-inhibition of MAPK and PI3K is effective in overcoming resistance inherent in 

melanoma.
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BACKGROUND 

Melanoma is the most lethal form of skin cancer. The prognosis for patients with metastatic disease is 

poor, with a median survival of 4-6 months and 5-year survival of 16% for patients with distant 

metastases [1, 2]. This, together with the escalating incidence of melanoma around the world [2, 3], 

highlights the urgent clinical need for the elucidation of effective pharmacologic and biologic agents 

to approach melanoma treatment. 

Almost all melanomas harbour mutations in the Ras/Raf/mitogen-activated protein kinase (MAPK) 

pathway [4, 5]. As such, pharmacologic inhibitors of this pathway constitute a promising approach to 

the treatment of melanoma. This was demonstrated recently by the specific inhibitor of mutated 

BRAF, vemurafenib (PLX-4032), which produced a dramatic response in patients with BRAF-mutant 

metastatic melanoma, albeit tempered by the rapid emergence of resistance [6]. Unfortunately, 

specific targeting of the oncogenic kinase does not guarantee long term clinical success and this study 

and others [7-9] highlight the plasticity of oncogenic signalling in melanoma cells to overcome drug 

sensitivity. 

It has been proposed that melanomas demonstrate oncogenic addiction to the Ras/Raf/MAPK 

pathway. With selective BRAF inhibition, melanoma cells can undergo a “kinase switch” allowing the 

addicted cells to maintain high MAPK signalling and continued malignancy even in the presence of 

inhibitor [7-9]. For example, Villanueva and associates [9] demonstrated switching to ARAF and 

CRAF mediated extracellular signal-regulated kinase(ERK)1/2 activation, and upregulation of 

insulin-like growth factor 1 receptor (IGF-1R)/phosphoinositide 3-kinase (PI3K) survival signalling 

with chronic BRAF inhibition in melanoma cells. Consistent with these in vitro results, they also 

observed high IGF-1R and phosphorylated Akt in post-relapse tumour biopsies from patients whose 

metastatic melanoma developed resistance to BRAF inhibition. These findings underscore the 

importance of not only MAPK signalling but also parallel signalling cascades, like 

PI3K/Akt/mammalian target of rapamycin (mTOR), in melanoma survival and progression and, as 

such, the presumed power of combinatorial pathway inhibition. 
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Pharmacologic inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase 

kinase (MEK1/2) show clear anti-tumour activity in preventing melanoma cell line growth and 

survival in vitro [10-14] and in vivo [13, 15]. Despite this, they demonstrate little or no improvement 

over traditional chemotherapy in a clinical setting, although it should be noted that these patients were 

not pre-screened for specific mutations [16-18]. Interestingly, subanalysis of results from phase II 

trials in melanoma [17, 18] have hinted at a greater efficacy of MEK1/2 inhibition in BRAF-mutant 

patients albeit in small patient numbers (15 and 67 BRAF mutant patients). As such, the clinical 

outcome of future MEK1/2 trials may be improved by identifying markers like BRAF to enrich the 

study with patients more likely to respond [19]. As Ras is thought to provide resistance to BRAF and 

MEK inhibitors by activation of additional downstream pathways, MEK inhibitors might be best 

utilised in combination. Interestingly, combined BRAF (GSK2118436) and MEK (GSK1120212) 

inhibition was recently shown to overcome NRAS-mediated resistance to BRAF inhibition in 

melanoma cells already harbouring BRAFV600 mutations [20]. The combination therapy potently 

abrogated ERK signalling, inhibited cell growth and upregulated markers of apoptosis [20]. 

Furthermore, this drug combination was recently shown to induce tumour regression or stable disease 

in roughly two-thirds of BRAFV600 mutant melanoma patients refractory to single-agent BRAF 

inhibition [21].As such, sequential targeting of the MAPK pathway at multiple nodes in BRAF mutant 

patients (irrespective of their RAS mutational status) or targeting of parallel pathways, such as PI3K, 

in RAS mutant patients, may also improve the therapeutic response of melanoma patients to MEK1/2 

inhibition [20, 22, 23]. 

The aim of the current study was to utilize a diverse melanoma cell line panel (n = 31) of known 

mutational status (BRAF, HRAS, NRAS, and phosphatase and tensin homolog (PTEN)) to aid in the 

identification of a patient population most likely to respond to MEK inhibition. We utilized E6201, a 

potent, novel inhibitor of MEK1 and MEK kinase-1 [24, 25] currently under development as an anti-

cancer agent. E6201 is in a Phase I clinical trial for advanced solid malignancies that had an 

expansion phase to specifically include patients with BRAF mutant tumours (including brain 

metastases) (NCT00794781, ClinicalTrials.gov), and outcome analysis is currently maturing.  
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RESULTS 

Sensitivity to E6201 in a Melanoma Cell Line Panel 

Sensitivity to E6201 was assessed in a panel of 31 cell lines for which the mutation status of common 

melanoma genes was known (Table 1). These lines were chosen to represent different mutational 

profiles from a larger panel of more than one hundred melanoma cell lines. Western blots in 

Supplementary Figure 1 confirm that E6201 efficiently inhibits MEK1/2 activity by virtue of its 

ability to abrogate phosphorylation of ERK1/2 in our entire panel of melanoma cell lines. 

The majority (24/31) of the melanoma cell lines were sensitive to E6201 (IC50<500nM) (Figure 1). 

MAPK activation due to mutations in BRAF and NRAS was not significantly associated with 

increased sensitivity to E6201. In the 26 cell lines carrying mutations in BRAF, NRAS, or HRAS, 

sensitivity to E6201 was statistically associated with wildtype PTEN status (p = 0.02). Specifically, of 

the 18 cell lines with wildtype PTEN, 17 were sensitive whereas in the 8 cell lines with mutant PTEN, 

only 4 were sensitive. Moreover, even if PTEN status alone is examined, E6201 sensitivity is 

associated, albeit non-significantly, with wildtype PTEN status; 23/31 cell lines are wildtype for 

PTEN and of these 20 are sensitive (whereas only 4/8 cell lines with mutant PTEN are sensitive) (p = 

0.053). Interestingly, 18 of the 24 sensitive cell lines also demonstrated hypersensitivity to E6201, 

with an IC50 < 100 nM. Using this criterion, BRAF mutation status correlated with E6201 

hypersensitivity (p < 0.03), with 15 out of the 18 hypersensitive cell lines possessing a BRAF 

mutation.  In contrast, of the 11 cell lines with wildtype BRAF, only 3 were hypersensitive. In those 

cell lines carrying mutations in BRAF (21 cell lines), sensitivity to E6201 was not statistically 

associated with wildtype PTEN status. NRAS/HRAS mutation status correlated with E6201 resistance, 

where none of the 5 NRAS/HRAS mutant cell lines were hypersensitive to E6201 and 18 of the 26 

NRAS/HRAS wildtype cell lines were hypersensitive (p < 0.01). Neither CDKN2A, CDK4 or TP53 

mutational status in our panel of melanoma cell lines, irrespective of their BRAF and RAS mutational 

status, was associated with E6201 sensitivity. 
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E6201 Sensitivity and Downstream Pathway Activation 

To determine whether E6201 responsiveness correlated with direct Akt or ERK1/2 activation, the 

phosphorylation status of Akt and ERK1/2 proteins was evaluated following serum starvation (Figure 

2). Phosphorylated (p)Akt (Ser473) was detectable in 7/7 cell lines with mutant PTEN. In addition, 

pAkt was present in 5/23 cell lines with wildtype PTEN although the mechanism responsible for 

phosphorylation of Akt in these cell lines is unknown.  Phosphorylated (p)ERK1/2 was detected in all 

cell lines with mutant BRAF (20/20).  Consistent with previous reports [13, 26], elevated pERK1/2 

was detected in 3/5 cell lines with mutant NRAS or HRAS.  All five cell lines with wildtype BRAF and 

NRAS also had elevated ERK1/2 phosphorylation, as reported previously [26, 27], although the 

mechanism responsible for ERK1/2 activation in these cell lines is unknown.  When the cell lines 

were classified based on phospho-ERK levels rather than BRAF mutation status, there was no 

correlation with the degree of cell growth inhibition. In contrast, high levels of pAkt (3+) in 

BRAF/RAS mutant cell lines were strongly suggestive of insensitivity to E6201 (p = 0.057).  

Furthermore, high levels of pAkt (3+) significantly correlated with E6201 insensitivity independent of 

BRAF or PTEN status (p < 0.02). PTEN protein was present in 20 of the melanoma cell lines tested 

with a lack of the tumour suppressor being suggestive of resistance to E6201 in not only BRAF/RAS 

mutant lines (p = 0.12) but also if all lines are considered (p = 0.14). 

Characterization of E6201 Response in vitro 

MEK inhibitors have been previously shown to have a predominantly cytostatic effect on melanoma 

cells, although some clinically relevant inhibitors, such as CI-1040, PD0325901 and AZD6244, have 

been shown to induce cell death [10, 12, 13]. We sought to further evaluate the mechanism of 

sensitivity to E6201, as an equivocal cytocidal response in vitro may equate to the poor clinical 

response observed with current MEK inhibitors. Fifteen melanoma cell lines were selected such that 

13 cell lines demonstrated sensitivity to E6201 and 2 cell lines were insensitive to E6201. Of these 

cell lines, seven were mutant for BRAF but wildtype for PTEN, five were mutant for both 
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BRAF/NRAS and PTEN, and three were wildtype for both BRAF and PTEN. E6201 treatment induced 

G1 arrest in all of the sensitive cell lines and had little to no effect on cell cycle progression in the two 

insensitive cell lines (Figure 3A). E6201 treatment resulted in a greater than 2-fold increase in 

Annexin-positive staining in eleven out of fifteen cell lines, including eleven out of thirteen sensitive 

cell lines (Figure 3B).  Two sensitive cell lines, SKMEL13 and BL, did not demonstrate E6201-

induced Annexin staining although both of these cell lines underwent cell cycle arrest with E6201 

treatment and were hypersensitive to E6201 (IC50 < 100 nM). These experiments were repeated in 

duplicate to confirm this finding. E6201 induced a less than two fold increase in Annexin staining in 

the E6201-insensitive cell lines (IC50 > 500 nM) (Figure 3B). Three of the five PTEN-mutant cell 

lines exhibited a cytocidal response to E6201, demonstrating that PTEN mutation does not preclude a 

cytocidal response to E6201. E6201 also induced cell cycle arrest and cell death in cell lines with 

constitutively active Akt, suggesting that although high pAkt correlates with E6201 insensitivity, cell 

lines with high pAkt can still undergo a cytocidal response to E6201.  

To confirm our Annexin V results we also performed an enzyme-linked immunosorbent assay 

(ELISA) to determine the degree of DNA fragmentation as an indicator of cell death with E6201 

treatment (Figure 3C). The results from the cell death ELISA were very similar to that obtained from 

the Annexin studies with 10 out of 13 sensitive melanoma lines demonstrating a greater than two-fold 

increase in DNA fragmentation with E6201. Of the three sensitive lines that did not exhibit a 

cytocidal response by ELISA, SKMEL13 and BL also demonstrated no induction of cell death with 

E6201 by Annexin positivity, as stated previously. There was no significant induction of DNA 

fragmentation in any of the E6201-resistant melanoma cell lines. 

Characterization of E6201 Response in vivo in Melanoma Xenografts 

We evaluated the in vivo activity of E6201 in two melanoma cell lines that exhibited a cytocidal 

response (MM540, MM604) and two melanoma cell lines that exhibited a cytostatic response 

(SKMEL13, BL) to E6201 in vitro (Figure 4).  Given that the majority of sensitive melanoma cell 

lines in our cell line panel exhibited a cytocidal response to E6201 in vitro, we hypothesized that 
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E6201 would induce tumour regression in a xenograft model of these cell lines as well, and to a 

greater extent in those cell lines that demonstrated a cytocidal response to E6201 in vitro compared to 

those with a cytostatic response. 

Administration of E6201 at all doses (10, 20 and 40 mg/kg) to MM540 tumour-bearing mice 

completely abrogated tumour growth and caused transient, partial tumour regression for the two 

weeks of drug treatment, although tumour growth recommenced following drug withdrawal, 

indicating not all cells were killed in this two week period (Figure 4A). E6201 at 40mg/kg in MM604 

and SKMEL13 xenografts prevented tumour progression for the two weeks of drug treatment, with 

tumour growth recommencing following drug removal, while lower doses of drug (10 and 20 mg/kg) 

only attenuated, rather than prevented, tumour growth in vivo (Figure 4B and C). Only the highest 

dose of E6201 (40mg/kg) had any significant inhibitory effect on tumour growth in BL tumour-

bearing mice, while lower drug doses had little or no effect on tumour progression (Figure 4D). As 

such our hypothesis was confirmed, with E6201 inhibiting xenograft tumour growth in all four 

melanoma cell lines studied, and enhanced in vivo activity observed for those cell lines that 

demonstrated a cytocidal response in vitro. 

E6201 and LY294002 

Given our previous data suggesting that E6201 resistance is associated with mutation of PTEN and 

high levels of pAkt, we hypothesized that combining E6201 with an inhibitor of the PI3K pathway in 

these cell lines might result in either an additive or synergistic effect. Supplementary Figure 2 

demonstrates that LY294002 effectively inhibits PI3K by evidence of reduced phosphorylated AKT 

protein levels in the four PTEN-mutant melanoma cell lines that normally express high levels of 

pAKT (UACC647, UACC558, UACC903 and MM622). In addition, Supplementary Figures S3 and 

S4 show the concentration-effect curves for single-agent LY294002 and E6201 respectively, where 

both drugs were added 24 hours following plating. The six melanoma cell lines tested displayed 

similar trends in E6201 sensitivity compared to our previous experiments, with MM622, MM540, 

UACC903, and WM35 being the most sensitive (IC50=40-61nM) and UACC558 and UACC647 
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being less sensitive (302 and 2310 nM, respectively).  Surprisingly, all cell lines showed similar 

sensitivity to LY294002, with IC50 ranging from 11µM to 17µM.  This was unexpected, as one 

would predict MM540 and WM35 cells to be relatively resistant to PI3K inhibition given the lack of 

detectable levels of pAkt indicating no constitutive PI3K activation in these cell lines. A previous 

study by Smalley and others [26], however, reported a similar sensitivity of WM35 cells to 

LY294002. 

The concentration response curves for E6201 and LY294002 combinations, normalized to a dimethyl 

sulfoxide (DMSO) control are given in Supplementary Figure S4. As differences in synergy may exist 

at different drug effect levels, we graphed individual combination index values for LY294002 with 

increasing concentrations of E6201 for each cell line (Figure 5A). As shown in Figure 5A, evaluating 

the individual combination index for all combinations tested revealed that E6201 and LY294002 

exhibit synergistic activity in all six melanoma cell lines, irrespective of E6201 sensitivity or PTEN or 

pAkt status. Interestingly, different patterns of synergy were observed among the groups of cell lines 

tested. While most (4/6) of the cell lines showed an increasing combination index (and thus 

decreasing synergy) at higher concentrations of E6201, UACC647 and UACC558 cells showed a 

decreasing combination index or enhanced synergy with increasing concentrations of E6201. Notably, 

this pattern observed for UACC647 and UACC558 cells occurs within the context of high pAkt and 

relative resistance to E6201, supporting the hypothesis that administration of a PI3K inhibitor can 

sensitize E6201-resistant cells with high pAkt levels to E6201.  

In summary, the combination of E6201 and LY294002 resulted in synergistic activity in all six 

melanoma cell lines tested, as defined by a combination index < 1.  Interestingly, enhanced synergy of 

E6201 with LY294002 treatment in the E6201-resistant cell lines UACC647 and UACC558 was 

observed at high concentrations of E6201. 

DISCUSSION 

E6201 is a novel MEK1/2 inhibitor which inhibits selected cancer-specific kinases that is currently in 

clinical trials for solid tumours and, as a result of the data presented herein, is undergoing Phase I 
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expansion in BRAF-mutant malignancies (NCT00794781, ClinicalTrials.gov). In the current study, 

we established a diverse cell line panel to not only represent the known genetic heterogeneity in 

melanoma, but also to enrich for rare mutations or genotypes in which to test the effectiveness of 

E6201 in vitro and in vivo.  From this genetically diverse panel, we demonstrate for the first time that 

sensitivity to MEK1/2 inhibition in vitro correlated with wildtype PTEN suggesting parallel signalling 

of the PI3K/Akt/mTOR pathway may play a role in the resistance of melanoma cell lines to E6201 

and MEK1/2 inhibitors in general. To this end we demonstrate that concurrent targeting of the 

Ras/Raf/MAPK and the PI3K/Akt/mTOR pathways was more effective than targeting either of the 

pathways alone in all six cell lines studied with the greatest synergy observed in E6201 resistant cell 

lines. These results underscore the power of heterogeneous cell line panels, such as the NCI60, to 

identify potential biomarkers of sensitivity and resistance in a clinical setting [28]. 

There is a general consensus that genomic analysis of tumours through The Cancer Genome Atlas 

(TCGA) and the International Cancer Genome Consortium (ICGC) will identify the core pathways 

activated in each tumour. Previous work in pancreatic cancer indicates that only 12 pathways need to 

be activated [29]. This has been interpreted as molecular targeting of only a few pathways may be 

needed to effectively treat cancer. Emerging BRAF/NRas/ERK data would suggest that some 

therapies will only work on pathways activated at a certain “node”. For example, melanoma cells 

demonstrate marked differences in response to MEK1/2 inhibition, with BRAF and RAS mutational 

status thought to predict sensitivity and resistance, respectively. Melanomas harbouring mutant BRAF 

and wildtype RAS are intimately dependent on ERK signalling for their growth and survival and 

selective RAF inhibition in these lines efficiently blocks ERK activation and growth. Conversely, 

RAF inhibitors paradoxically enhance ERK activation and proliferation in BRAF-wildtype, RAS-

mutant melanoma (and normal) cells through a mechanism that involves the interaction of these drugs 

with RAF dimers [7, 30, 31]. In this setting, concurrent treatment with a MEK inhibitor may prevent 

this paradoxical activation [21, 32]. 

The exquisite sensitivity of BRAF mutant cell lines to E6201 is consistent with that reported for other 

MEK inhibitors, including CI-1040 [13] and AZD6244 (ARRY-142886) [11]. Similar to these MEK 



11 
 

inhibitors, RAS mutant cell lines do not display the same sensitivity to E6201 as BRAF mutant cell 

lines [11, 13]. It is possible that the resistance of RAS mutant tumour lines in this study and others is 

the result of compensatory signalling by a parallel or non-canonical pathway, such as 

PI3K/Akt/mTOR. Indeed, the importance of intact PI3K signalling has recently been established for 

Ras-driven lung tumourigenesis in vivo [33]. Interestingly, those cell lines with wildtype BRAF and 

RAS were not all resistant to E6201 in contrast to previously published data [13], suggesting that these 

cell lines may carry activation of the MAPK pathway through additional mechanisms, such as 

receptor tyrosine kinase [34] or MEK1 activation [22]. Perhaps only the combination of genome-wide 

expression profiling, exome mutation data and phospho-protein status will allow us to unravel these 

complex pathway interactions and their relative roles in drug sensitivity. 

Strangely, despite correlating BRAF mutational status to anti-tumour activity with E6201, 

phosphorylated ERK1/2 levels did not correlate with the magnitude of cell growth inhibition. 

Similarly, the cytostatic response of melanoma cell lines to other MEK inhibitors has been shown 

previously not to correlate with pERK levels before or after treatment [26]. Taken together these 

results support the notion that the upstream mechanism of ERK activation is important in predicting 

sensitivity to MEK inhibition. These findings also suggest that the cytostasis induced by MEK 

inhibition may be the mediated by modulation of parallel signalling pathways potentially via ERK-

mediated autoregulatory processes. To this end, Gopal and co-workers [12] demonstrated reduced 

efficacy of MEK inhibition in melanoma cell lines as a result of PI3K pathway activation via a MEK-

IGF-1R-mediated feedback loop.  

Consistent with the role of the MAPK pathway in G1/S transition [35], E6201 exerted cytostatic 

effects, resulting in G1 arrest in vitro and tumour growth inhibition in vivo. E6201 also induced cell 

death in the majority of E6201-sensitive cell lines. It would be interesting to perform a functional 

genomics screen in those cell lines that only showed growth arrest but not cell death to identify the 

genes or pathways that could be targeted alongside MEK to induce synthetic lethality. There are 

previous reports of MEK inhibitors leading to cell death in a subset of sensitive melanoma cell lines.  

For example, CI-1040 treatment resulted in cell death in 1 out of 4 melanoma cell lines evaluated 
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[13], and cell death in melanoma cell lines has also been reported with its daughter compound, 

PD0325901 [10].  The MEK inhibitor UO126 has also been reported to lead to caspase-independent 

cell death in melanoma cell lines [14].  Thus, the cell death we see upon E6201 treatment reflects the 

potential for MEK inhibition to result in cell death in a specific subset of melanoma cell lines. The 

cytocidal activity of E6201, however, may also reflect the “multi-target” nature of E6201, such that 

the cell death observed is due to inhibition of other cancer-specific kinases, such as Src [36].  Indeed 

while treatment of melanoma cell lines with the Src inhibitor dasatinib has been shown to inhibit 

proliferation and invasion [37, 38], in some melanoma cell lines it did induce apoptosis [39]. 

Although clinical responses have been seen in a subset of patients in Phase I and II trials of Dasatinib, 

biomarkers that predict sensitivity have not yet been identified [40, 41].To validate our findings with 

E6201 in monolayer culture, we created mouse xenograft models. We hypothesized that E6201 would 

induce tumour regression in xenografts of sensitive melanoma cell lines, as most of the sensitive 

melanoma lines in our panel demonstrated cell death (Annexin positivity) in response to E6201 in 

vitro. To this end, we evaluated the in vivo activity of E6201 in two melanoma cell lines that exhibited 

a cytocidal response (MM540, MM604) and two melanoma cell lines that exhibited a cytostatic 

response (SKMEL13, BL) to E6201 in vitro. E6201 dose-dependently inhibited tumour progression in 

all four of these melanoma xenografts. Furthermore, transient regression was also observed in those 

cell lines that demonstrated a cytocidal response to E6201 in vitro. This is in accordance with 

previous work showing transient, partial tumour regression in BRAF mutant xenografted tumours with 

MEK1/2 inhibition [13, 15]. Furthermore, higher doses of inhibitor were required to limit tumour 

progression in BRAF wildtype and also NRAS mutant melanoma xenografts [13]. 

The cell line panel in this study was selected to include a subset of melanoma cell lines with PTEN 

mutations so that we could evaluate whether PTEN mutational status was associated with resistance to 

E6201. PTEN is a tumour suppressor protein and an important negative regulator of PI3K signalling 

as it inhibits Akt phosphorylation and activation indirectly by hydrolysing the secondary messenger 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) [42]. Indeed, using this cell line panel, we found that 

insensitivity to E6201 was not only associated with mutant PTEN but also high phospho-Akt levels. 
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This finding is consistent with the pro-survival function of Akt signalling [43] and has been observed 

previously in lung cancer [44] as well as melanoma [12].  Interestingly, two of our resistant cell lines 

demonstrated no basal PI3K/Akt activation, suggesting an alternative pathway to resistance. It is 

possible, however, that these resistant cell lines simply activated PI3K/Akt in response to MAPK 

inhibition, as observed by Gopal et al. [12] in melanoma cell lines. Conversely, E6201 induced cell 

cycle arrest and cell death in some cell lines with constitutively active Akt, suggesting that although 

high pAkt does correlate with E6201 insensitivity, cell lines with high pAkt (as well as mutant PTEN) 

can still undergo a cytocidal response to E6201. Nonetheless, our findings highlight the possible 

clinical utility of mutational and oncogenic pathway screening to stratify patients to particular 

treatments.  

PI3K inhibitors have previously been shown to be effective in melanoma cell lines not only in 

combination with MAPK inhibitors [9, 12, 45, 46], but also in monotherapy [47]. In a mouse model of 

cutaneous melanoma, Bedogni and colleagues [48] demonstrated that combined targeting of MAPK 

and PI3K significantly decreased tumour development and incidence more so than either agent given 

alone. Our findings confirm and expand on this previous work. We show that inhibition of the PI3K 

pathway in E6201-resistant cell lines with high levels of phosphorylated Akt can sensitize these cell 

lines to E6201. Indeed, synergy between the PI3K inhibitor, LY294002, and E6201 was evident in all 

6 cell lines tested, irrespective of PTEN mutation status, pAkt levels, or E6201 sensitivity.  

Interestingly, the greatest enhancement of E6201 activity by LY294002 occurred in those cell lines 

that were resistant to E6201 alone. On this note, multiple pharmaceutical companies are testing the 

effectiveness of combined MEK inhibition and PI3K or AKT inhibition in solid tumours including 

melanoma. There is also a Phase II trial testing the efficacy of the AZD6244 MEK inhibitor and MK-

2206 AKT inhibitor in patients with relapsed BRAF V600E melanoma (NCT01510444, 

ClinicalTrials.gov). 

Recent experience with vemurafenib has demonstrated that personalized cancer therapy can have a 

significant impact on patient response in this emerging era of molecularly targeted therapy. It is yet to 

be determined, however, whether MEK inhibitors can also impart meaningful clinical benefits to 
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melanoma patients. To this end, recent preliminary results from a phase I clinical trial of the MEK1/2 

inhibitor GSK1120212 in selected solid malignancies with a high frequency of BRAF mutation 

(melanoma, pancreatic, non-small cell lung and colorectal cancers) were impressive with just under 

three quarters of BRAF mutant melanoma patients demonstrating either a partial response or stable 

disease with therapy [49]. Furthermore, several phase I trials (NCT01271803, NCT01072175 and 

NCT01231594, ClinicalTrials.gov) are currently assessing dual BRAF and MEK inhibition to target 

this oncogenic pathway at multiple levels.  

 

CONCLUSIONS 

MEK inhibitors are been extensively evaluated in melanoma patients both as a single agent and in 

combination with chemotherapy with thus far equivocal results. From our panel of melanoma cell 

lines we identified expression of wildtype PTEN as a potential genetic marker that may predict 

sensitivity to MEK1/2 inhibition in melanoma patients. Consistent with this finding, we further  

implicate involvement of PI3K/Akt/mTOR signalling in modulating sensitivity to MEK1/2 inhibition 

in melanoma, which is consistent with previous studies [9, 12, 45, 46]. As such, PI3K inhibition may 

overcome resistance when given in combination with a MEK inhibitor as we have shown here. Our 

findings confirm the notion that refining patient selection based on the mutational and signalling 

status of relevant oncogenes and tumour suppressors such as PTEN is a powerful clinical tool for the 

targeted application of emerging agents in melanoma treatment. 
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METHODS 

Drugs 

LY294002 (PI3K inhibitor) was purchased from Calbiochem (La Jolla, CA). E6201 was a kind gift 

from Eisai Inc.  (Andover, MA). E6201 and LY294002 stock solutions were all dissolved in DMSO 

and used at the concentrations described. 

Cell lines 

The melanoma cell lines used in this study and their mutational status are listed in Table 1. This panel 

was chosen from a larger cohort of well characterized melanoma cell lines to enrich for common and 

“rare” mutation genotypes, such as joint BRAF and Ras wildtype status and wildtype PTEN status, in 

order to increase the likelihood of detecting significant associations. Cells were grown in DMEM plus 

10% foetal calf serum.  

Melanoma cell lines prefixed with “MM”, as well as BL, NK14, WSB, A375 and SKMEL13, were 

kindly provided by Dr Nick Hayward of the Queensland Institute of Medical Research, Brisbane, 

Australia. Those cell lines prefixed with “UACC” were originally obtained from the Arizona Cancer 

Center Tissue Culture Shared Resource, University of Arizona, Tucson, USA and were kindly 

provided by Dr Jeffrey Trent (National Human Genome Research Institute, NIH, Bethesda, USA) 

along with the WM35, M91-054 and M92-001 cell lines. We would also like to thank the Australasian 

Biospecimen Network and Chris Schmidt (Queensland Institute of Medical Research, Brisbane, 

Australia) for the D17 and D35 cell lines. 

Mutational Analysis 

Mutational analysis was “generally” performed as previously reported using Sanger sequencing. 

Sequencing primers for each gene were as previously reported; BRAF [50], NRAS [50], KRAS [51], 
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PTEN [51], CDKN2A [52] and TP53 [53]. Those primers used to sequence HRAS and CDK4 in this 

study are available on request.  

The accession numbers for the protein and coding DNA sequences used in our mutational analysis 

were taken from GenBank and are as follows: BRAF; NM_004333.4 and NP_004324.2, NRAS; 

NM_002524.4 and NP_002515.1, KRAS; NM004976.2 and NP_004976.2, HRAS; NM_005343.2 and 

NP_005334.1, CDKN2A p16INK4A; NM_000077.4 and NP_000068.1, CDKN2A p14ARF; 

NM_058195.3 and NP_478102.2, CDK4; NM_000075.3 and NP_000066.1 and TP53; NM_000546.5 

and NP_000537.3. 

E6201 IC50 Calculation 

Each cell line was plated in triplicate in 200uL DMEM containing 10% FBS at a density of 3, 000 

cells per well in 96-well plates. Six hours after cells were seeded, E6201 was added in half log 

dilutions (3 nM – 10 uM) in triplicate. An equivalent concentration of DMSO was added to untreated 

wells as a vehicle control. In vitro cell proliferation assays were performed using an MTS assay 

(CellTiter 96 AQueousOne Solution Cell Proliferation Assay, Promega) or SRB (Sulforhodamine B) 

assay four days after the addition of E6201.  IC50 values were calculated using nonlinear regression 

curve fit with Prism 4 software (GraphPad Software, San Diego, CA).  The MTS assay was used for 

all cell lines except MM329, as this cell line failed to effectively metabolize the MTS reagent; the 

SRB assay was used in place of the MTS assay in this case. We confirmed in several other melanoma 

cell lines that both proliferation assays produced comparable IC50 results. 

MTS Assay 

For the MTS assay, media was removed and 120 ul of media containing 20 ul of MTS (2 mg/ml) and 

PMS (0.92 mg/ml) was added to each well and incubated for 3 hours at 37°C.  Absorbance at 490 nm 

was measured using a BioTek Synergy HT Multiple Detection microplate reader.  

Sulforhodamine-B (SRB) Assay 
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One of the melanoma cell lines in the current study (MM329) was found not to metabolise the MTS 

reagent. Therefore, we performed an SRB assay to calculate an IC50 to E6201 for this line. The SRB 

assay was performed as previously described [51]. Briefly, after drug treatment cells were then fixed 

with 25 uL of cold trichloroacetic acid (50% w/v) for 60 minutes.  Cells were subsequently washed 

five times with H2O and air-dried.  Next, cells were stained with 50 uL of 0.04% SRB in 1% acetic 

acid and incubated at room temperature for 30 minutes. Unbound SRB was removed by washing five 

times with 1% acetic acid and air-dried.  Finally, bound SRB stain was solubilized in 100 uL of 

10mM Tris buffer before taking an optical density measurement at 570nm using the BioTek 

microplate reader.  

PI3K and MAPK Pathway Activation 

Cell lines in the panel were plated at a density of 500,000 cells per well on day 0 in a 6 well plate.  On 

day 1, cells were washed twice with PBS, serum starved in DMEM containing 0.2% FBS and protein 

lysates were collected 16 hours after serum starvation. 50ug of total protein were analysed on a 3-8% 

SDS PAGE.  Phosphorylated Akt and phosphorylated ERK1/2 proteins were probed for with 

phospho-specific antibodies from Cell Signaling Technology (Beverly, MA). Immunoblots were then 

stripped and re-probed for total Akt and ERK1/2 (Cell Signaling Technology, Beverly, MA).  The 

ratio of phosphorylated Akt or ERK1/2 to total Akt or ERK1/2 respectively was calculated by 

densitometry using Image J software and scored as follows: negative 0-15%; + 15-50%, ++ 50-100%; 

+++ >100% of phosphorylated protein relative to total protein levels. On additional western blots, 

PTEN and GAPDH proteins were probed for with antibodies from Cell Signaling Technology 

(Beverley, MA) and Abcam (Cambridge, MA) respectively. 

Cell Cycle Analysis 

Cells were plated in triplicate in 100-mm2 plates. The next day, cells were treated with 200nM E6201 

or 0.01% DMSO (vehicle control).  After 48 hours of treatment, cells were fixed in 80% ethanol for 2 

hours, washed with ice cold PBS, and then resuspended in 500 ul cell cycle staining buffer (5% FBS, 

0.5 mM EDTA, 0.1% Triton X-100, 200 ug/ml propidium iodide, 100 ug/ml RNase A, in PBS).  DNA 
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content was evaluated by flow cytometry as an indicator of cell cycle progression. Cell cycle analysis 

was performed using ModFit software (Verity Software House, Inc. Topsham, ME).  The percentage 

of G1 arrest was calculated as the percent increase in cells in G1 relative to the percent of cells in G1 

in DMSO control samples as follows: (% cells in G1 with E6201 - % cells in G1 with DMSO 

control)/(100-% cells in G1 with DMSO) x 100. 

Cell Death Analysis by Annexin V Staining 

Annexin V-FITC staining was used to measure phosphatidylserine exposure on cells undergoing 

apoptosis according to the manufacturer’s instructions (BioVision, Inc. Mountain View, CA). 2.5x105 

cells were plated per well in a 6 well plate.  Cells were treated with 200nM E6201 or 0.01% DMSO 

24 hours after plating. After 72 hours, floating and attached cells were collected and resuspended in 

Annexin binding buffer (10mM Hepes (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2). Following the 

addition of 500 ng/mL annexinV-FITC and 1 ug/mL propidium iodide (Sigma-Aldrich, St. Louis, 

MO), cells were analysed for annexin positive cells using a CyAn ADP flow cytometer and Summit 

software, version 4.3 (Dako Cytomation, Carpinteria, CA).   

Cell Death Analysis by ELISA 

In vitro determination of cytoplasmic histone-associated DNA fragmentation after E6201 treatment 

was performed using a 96-well based cell death assay (Cell Death Detection ELISA, Roche). Briefly, 

cell lines were plated in 200µL of DMEM plus 10% FBS at a density of 3,000 cells per well on day 0 

in two 96-well plates. One plate was used for the ELISA and the other for an SRB assay to estimate 

total cell number. The next day after plating, 0.01% DMSO vehicle control or 200nM E6201 was 

added in triplicate to the corresponding wells of the duplicate 96-well plates. After incubation for 72 

hours at 37oC in a humidified incubator, the Cell Death Detection ELISA was performed as per the 

manufacturer’s instructions. Absorbance was measured at 405nM using a BioTek microplate reader. 

The readings from the ELISA were normalized to cell number determined by an SRB assay, as 

described previously. 
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Murine Xenograft Melanoma Models 

Female athymic NU/NU mice were inoculated subcutaneously with 1 x 106 cells from four different 

BRAF mutant (V600E) human melanoma cell lines (MM540, MM604, SKMEL and BL). Once 

tumours developed to ~100-150 mm3, animals were randomized to either vehicle control, or one of 

three E6201-treated groups, with six mice per group.  Vehicle (20% sulfobutylether beta-cyclodextrin 

in water), or E6201 was administered intravenously via the tail vein at 10, 20 or 40 mg/kg on 3 times 

per week for 2 weeks.  Tumour volume was calculated by calliper measurement (mm) and using the 

following formula: (l x w2)/2  = mm3 where “l” and “w” refer to the larger and smaller dimensions 

obtained at each measurement. All animal studies were approved by Eisai Animal Care and Use 

Committee. 

E6201 and LY294002 Combination Study 

Synergy between E6201 and LY294002 was evaluating using a non-fixed ratio method, such that 

fixed concentrations of LY294002 (1µM, 5µM, 10µM, 20µM, 30µM) were added with increasing 

concentrations of E6201 (3nM to 3µM). Briefly, each cell line was plated in 200µL DMEM 

containing 10% FBS and L-glutamine at a density of 3,000 cells per well on day 0 in 96-well plates.  

On day 1, 25µL of 10X concentrated serial half-log dilutions of E6201 were added in triplicate for 

final concentrations ranging from 3µM to 3nM.  After E6201 was added to each plate, 25µL of 10X 

concentrated LY294002 was added in triplicate for final concentrations of 30µM, 20µM, 10µM, 5µM, 

or 1µM.  Each plate contained control wells for vehicle (0.33% DMSO) alone, LY294002 alone, and 

E6201 alone, in triplicate. For single agent IC50 generation, E6201 was added in half-log serial 

dilution from 10µM to 3nM and LY294002 from 50µM to 1µM. After the addition of E6201 and 

LY294002, cells were incubated for 72 hours at 37oC and the SRB assay was then performed as 

described above. 

Statistics 
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Data from proliferation assays was imported into Excel and processed to subtract the SRB 

background from each data point. Each data point was then normalized to the average absorbance of 

the DMSO vehicle control wells on its same 96-well plate.  This ‘percent DMSO control’ data was 

used to graph the concentration response curves and to calculate the IC50 values for each drug alone 

using non-linear regression analysis with Prism software (GraphPad Software, San Diego, CA). 

Significant association was determined using the Fisher’s Exact Test. 

Synergy was analysed by the Chou and Talalay combination index method using CalcuSyn software. 

The ‘percent DMSO control’ data was averaged for each combination and converted to effect values 

using the following equation: [effect = 1 – (‘Average Percent of DMSO control’)/100] prior to being 

imported into CalcuSyn for calculation of the combination index. Any effect values that were less 

than 0 (i.e. the drug treated wells produced absorbance values greater than those seen in wells treated 

with DMSO alone) were set to 0.001 for analysis.  As these values were artificially set at 0.001, any 

combination index values that were generated from drug combinations that were set to 0.001 were 

excluded from graphs of the combination index values. A combination index value of 1 indicates 

additivity, values < 1 indicate synergism, and values > 1 indicate antagonism (Figure 5). 

 

LIST OF ABBREVIATIONS 

Akt: protein kinase B; CI: combination index; DMSO: dimethyl sulfoxide; ELISA: enzyme-linked 

immunosorbent assay; ERK: extracellular signal-regulated kinase; IGF-1R: insulin-like growth factor 

1 receptor; MAPK: mitogen-activated protein kinase; MEK: mitogen-activated protein 

kinase/extracellular signal-regulated kinase kinase; mTOR: mammalian target of rapamycin; PI3K: 

phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; Ras: rat sarcoma; SRB: 

sulforhodamine B 
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FIGURE LEGENDS 

Figure 1. Sensitivity of a melanoma cell line panel to E6201.  

The in vitro cell viability for all 31 cell lines studied was determined by MTS or Sulforhodamine-B 

(SRB) assay (for MM329). IC50 < 500nM was considered sensitive and IC50 < 100nM was 

considered hypersensitive.  

Figure 2. Downstream PI3K and MAPK pathway activation. 

Melanoma cells were starved in 0.2% FBS overnight and then protein lysates were collected and 

evaluated by Western blot analysis for activation of ERK1/2 and Akt. Numerical values for the IC50 

of E6201 for each cell line, as well as phosphorylation status scoring for both ERK1/2 and Akt is 

provided in tabular form. 

Figure 3. Characterization of E6201 response in a subset of melanoma cell lines. 

A. DNA content as a measure of cell cycle progression with E6201 treatment. A subset of sensitive 

and resistant melanoma cell lines were treated with 200 nM E6201 for 48 hours, after which cell cycle 

analysis was performed by propidium iodide staining and flow cytometry. The percent increase in 

cells in G1 phase with E6201 therapy is shown for 13 sensitive and 2 resistant melanoma cell lines. 

E6201 treatment resulted in an accumulation of cells in G1 phase of the cell cycle in all sensitive 

melanoma lines studied. No such accumulation was noted in E6201-resistant melanoma lines. 

B. Cell death as assessed by Annexin V positivity after treatment of E6201. After 72 hours of 200 nM 

E6201 treatment, melanoma cells were analysed for Annexin V-FITC–positive cells by flow 

cytometry. MEK inhibition by E6201 resulted in a greater than 2 fold increase in Annexin V–positive 

cells, indicative of apoptosis, in most (11 out of 13) sensitive melanoma lines. No such increase was 

observed in 2 melanoma cell lines previously shown to be resistant to E6201. 

C. Determination of DNA fragmentation after E6201-induced cell death.  After 72 hours of 200nM 

E6201 treatment, a Cell Death Detection ELISA (Roche) was performed as per the manufacturer’s 
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instructions. Treatment with E6201 resulted in increased DNA fragmentation (greater than 2 fold) in 

10 out of 13 sensitive melanoma lines and did not induce significant DNA fragmentation in any of the 

E6201-resistant melanoma cell lines. 

Figure 4. Anti-tumour effects of E6201 on melanoma xenografts. 

Growth curves of MM540 (A), MM604 (B), SKMEL13 (C) and BL (D) melanoma xenografts from 

mice treated with vehicle control  and E6201 (10, 20 and 40 mg/kg). Red arrows indicate the days at 

which mice were treated with vehicle or E6201. 

Figure 5. Combination of E6201 with an inhibitor of PI3K signalling 

Melanoma cells were treated with increasing concentrations of E6201 (3nM to 3μM) in combination 

with 1, 5, 10, 20 and 30 μM LY294002. Synergy with co-inhibition of MEK and PI3K was 

determined by calculation of a combination index at each concentration. A combination index value 

of 1 indicates additivity, values < 1 indicate synergism, and values > 1 indicate antagonism. All six of 

the melanoma cell lines studied showed synergy with the combination of E6201 and LY294002, 

particularly between an E6201 concentration of 10nM to 1µM. Interestingly the more resistant cell 

lines, UACC647 and UACC558, demonstrated decreasing CI, and hence increasing synergy, with 

increasing concentrations of E6201. 
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Table 1. Mutational Analysis of a Melanoma Cell Line Panel.  

 

wt = wildtype, * = homozygous, nd = not determined 

Cell Lines BRAF NRAS KRAS HRAS PTEN CDKN2A CDK4 TP53 
p16INK4
A 

p14ARF 

D35 wt wt wt wt wt c.151-
1G>A 
 

wt nd wt 

UACC1118 wt wt wt wt wt wt wt wt wt 

UACC2837 wt wt wt wt wt wt wt wt p.R342X 

MM329  wt wt wt wt wt wt wt wt wt 

UACC2534 wt wt wt wt wt Deletion* wt wt wt 

UACC1097 wt p.Q61K wt wt p.I50N p.H83Y p.A97V wt wt 

M92-001 wt p.G13R wt  wt wt Deletion* Deletion* wt wt 

UACC3074 wt p.G13R wt wt wt p.P114L wt wt Deletion 

UACC3093 wt p.Q61L wt wt wt wt wt wt wt 

UACC383 wt  wt wt p.Q61R wt Deletion*  Deletion* wt wt 

UACC647 p.V600E wt wt wt Deletion* wt wt wt Deletion 

UACC558 p.V600E wt wt wt c.802-
1G>C 

wt wt wt wt 

MM200 p.V600E wt wt wt p.F56I wt wt wt wt 

UACC903 p.V600E wt wt wt p.Y76X Deletion* Deletion* wt wt 

BL p.V600E wt wt wt p.Q298X p.E88K p.G102E wt p.I195T 

MM622 p.V600E wt wt wt p.L139X p.G67fs*5
3 

p.R122fs*
79 

wt wt 

NK14 p.V600E wt wt wt p.P38L p.R58X p.P72L wt wt 

M91-054 p.V600E wt wt wt wt wt wt wt wt 

D17 p.V600E wt wt wt wt wt wt wt wt 

MM604 p.V600E wt wt wt wt wt wt wt wt 

MM170 p.V600E wt wt wt wt Deletion* Deletion* wt wt 

UACC091 p.V600R wt wt wt wt Deletion* Deletion* wt p.R213X 

MM229 p.L597S wt wt wt wt Deletion* Deletion* wt wt 

WSB p.V600E wt wt wt wt Deletion* Deletion* wt wt 

A375 p.V600E wt wt wt wt p.E61X;  
p.E69X 

c.1_316de
l316 ;  
p.G75V; 
p.G83V 

wt wt 

MM540 p.V600E wt wt wt wt wt wt wt p.S366P 

SKMEL13 p.V600E wt wt wt wt Deletion* Deletion* wt p.R248W 

UACC257 p.V600E wt wt wt wt p.P81L wt wt wt 

WM35  p.V600E wt wt wt wt Deletion* Deletion* wt wt 

UACC1022   p.L597S wt wt wt wt wt wt wt p.R196X 

UACC1308 p.V600E wt wt wt wt wt wt wt p.F134S 
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Additional material provided: 

Additional File 1: “Supplementary Figure 1.pdf” 

Supplementary Figure 1. Efficacy of MEK1/2 inhibition with E6201 

Western blots demonstrating phosphorylated ERK1/2 levels in our panel of melanoma cell lines 

following treatment with either vehicle (0.05% DMSO) or 500 nM E6201. Briefly, 500 000 cells from 

each cell line were plated in duplicate in a 6-well plate on day 0. The next day cells were washed 

twice with PBS and serum starved in DMEM containing 0.2% FBS.  Sixteen hours after serum 

starvation, cells were treated with either 0.05% DMSO or 500 nM E6201. After 6 hours of treatment 

protein lysates were collected. 30ug of total protein were analysed on a 12% SDS PAGE gel.  

Phosphorylated ERK1/2 protein was probed for with a phospho-specific antibody from Cell Signaling 

Technology (Beverly, MA). Immunoblots were then stripped and re-probed for total ERK1/2 (Cell 

Signaling Technology, Beverly, MA) and tubulin (Sigma Aldrich, St Louis, MO). 

Additional File 2: “Supplementary Figure 2.pdf” 

Supplementary Figure 2. Efficacy of PI3K inhibition with LY294002 

Western blots demonstrating phosphorylated AKT (serine 473) levels in UACC647, UACC558, 

UACC903, MM622, WM35 and MM540 cell lines following treatment with either vehicle (0.15% 

DMSO) or 20 µM LY294002. Briefly, 500 000 cells from each cell line were plated in duplicate in a 

6-well plate on day 0. The next day cells were washed twice with PBS and serum starved in DMEM 

containing 0.2% FBS.  Sixteen hours after serum starvation, cells were treated with either 0.15% 

DMSO or 20 µM LY294002. After 6 hours of treatment protein lysates were collected. 30ug of total 

protein were analysed on a 12% SDS PAGE gel.  Phosphorylated AKT protein was probed for with a 

phospho-specific antibody from Cell Signaling Technology (Beverly, MA). Immunoblots were then 

stripped and re-probed for total AKT (Cell Signaling Technology, Beverly, MA) and GAPDH 

(Abcam, Cambridge, MA). 

Additional File 3: “Supplementary Figure 3.pdf” 
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Supplementary Figure 3. LY294002 Single Agent Concentration Response Curves 

Concentration response curves of UACC647, UACC558, UACC903, MM622, WM35 and MM540 

melanoma cell lines to the PI3K inhibitor LY294002. The IC50 of LY294002 for each cell line is 

provided in the legend. 

Additional File 4: “Supplementary Figure 4.pdf” 

Supplementary Figure 4. Concentration response curves for E6201 and LY294002 combinations 

normalized to DMSO 

Concentration response curves of UACC647, UACC558, UACC903, MM622, WM35 and MM540 

melanoma cell lines to increasing concentrations of E6201 (3nM to 3µM) in combination with 

LY294002 (1µM, 5µM, 10µM, 20µM and 30µM) treatment. 
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