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Abstract 

In this paper, we present the outcomes of a project on the exploration of the use of Field 

Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a 

custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well 

suited for applications that require many independent tri-diagonal system solves, such as finite 

difference methods for solving PDEs or applications utilising cubic spline interpolation. The 

selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). 

Our solver supports user specified precision thought the use of a custom floating point VHDL 

library supporting addition, subtraction, multiplication and division. The variable precision TDMA 

solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully 

in hardware using a simplified solver model. The details of implementation, the limitations, and 

future work are also discussed. 

Keywords: FPGA, Matrix Factorisation, Hardware Acceleration, RASC, Tri-Diagonal Matrix 

Algorithm, Reconfigurable Computing  

Introduction 

Tri-diagonal linear systems arise in many areas of computational science which involve models of 

mechanics. For example, some partial differential equations (PDEs) result in a tri-diagonal system 

under discretisation (Mallik, 2001). In the context of computational fluid dynamics (CFD), tri-

diagonal systems arise from a system of PDEs which need to be solved many times per simulation 

time-step. Repeated solving of tri-diagonal systems represents a large percentage of the total 

runtime of such simulations (Oliveira, 2008). 

 

Reconfigurable hardware such as field programmable gate arrays (FPGAs) can be used as co-

processors for high performance computing applications. A user application can reconfigure an 

FPGA at runtime with a custom circuit designed to achieve hardware acceleration for an application 

specific task. This can improve application performance considerably with very little increase in 

power consumption (Sundararajan, 2010).  

 

In this paper, we discuss our experiences in using an FPGA as a co-processor for scientific 

applications. As a test case, we implemented a tri-diagonal linear system solver for FPGAs. The 



design of our solver pipeline allows a user application to stream a new tri-diagonal system to the co-

processor before a solution to previous system in complete; this feature is unique to our design. The 

design takes advantage of the fine and coarse grain parallelism available on an FPGA. The solver 

utilises our custom floating point arithmetic circuits that can be set to a user specified precision. In 

simulation, a speedup of ~2x over a naïve C implementation is seen (~70x speedup if data transfer 

overhead is ignored).  

 

We have designed our tri-diagonal solver co-processor for applications which require many 

independent (relatively small) tri-diagonal systems to be solved. Such applications would arise from 

some numerical models defined on regular lattices (including CFD application). Applications 

involving cubic spline interpolation could also benefit since this operation can be formulated as 

solving a tri-diagonal system (Press, 1992).  

Background 

Reconfigurable Computing 

Reconfigurable computing devices are integrated circuits (ICs) in which the user has some control 

over the data path at runtime (Azarian, 2009). These devices provide a platform for the design of 

accelerators which are specific to an application, possibly even being reconfigured for different 

tasks throughout application execution.  

 

Though reconfigurable computing devices have historically been used for computationally light 

tasks (due to low potential computing densities for their cost), recent advances in technology have 

seen these devices become more applicable to high performance computing (HPC) systems (Zhuo, 

2008). Particularly as power utilisation (i.e. FLOPS/Watt) is becoming an increasing concern for the 

HPC community (Lee, 2010). 

 

Field programmable gate arrays (FPGAs) are a type of programmable logic device that can be used 

for reconfigurable computing. FPGAs consist of an array of configurable logic blocks (CLBs), and  

block RAM (BRAM) which can all be connected through programmable interconnects (Azarian, 

2009; Compton, 2002). CLBs consist of a number of look-up tables (LUTs), multiplexers and logic 

gates which can be configured by the user to implement custom logic operations. The output from 

one CLB could be connected to the input of another CLB or stored in BRAM. This architecture 

provides a platform for massive scale parallelism, which is a main attraction for use in HPC 

(Sundararajan, 2010). 

 

The target system for our design was SGI’s reconfigurable application-specific computing (RASC) 

RC100 blade (SGI, 2007) operating with an SGI Altix 4700 server. The RC100 contains two Xilinx 

Virtex-4 LX200 FPGAs. Each of these FPGAs is connected to five 8MB QDR SRAM DIMMs. A 

host application can copy data to these SRAMs via the NUMAlink using SGI RASC API function 

calls. For our application two SRAMs per FPGA are dedicated for input and two for output. Each 

FPGA may therefore read and write 128 bits per clock cycle. 

 

Tri-diagonal Linear Systems 

Linear algebra operations such as matrix factorisation are the backbone of many scientific 

applications (Datta, 2010). As such, it is not surprising that a great deal of reconfigurable HPC 

research is dedicated to the accelerating these tasks. Efficient LU decomposition designs have been 

shown to achieve performance increases over a traditional CPU-based system (Johnson, 2008; Wu, 



2012). For BLAS level 1 and 2 operations GPUs have been shown to achieve high performance, but 

at a much higher energy cost than FPGA-based solutions (Kestur, 2010). 

 

Tri-diagonal systems arise in many areas of science and engineering, often through the application 

of finite difference methods to boundary value problems (Fischer, 1969; Usmani, 1994; Mallik, 

2001). For our research, we investigated the design of an FPGA-based solution for solving multiple 

tri-diagonal linear systems. The algorithm we applied was the Thomas algorithm, commonly 

referred to as the tri-diagonal matrix algorithm (TDMA). Oliveira et. al. (2008) designed a TDMA 

co-processor for a CFD application; however their solution was very specific to that particular CFD 

model. We proposed a general TDMA co-processor. Our co-processor was designed to pipeline 

multiple tri-diagonal system, thus maximising throughput.  

 

The flexibility of an FPGA platform allows one to deviate from standard floating point 

specifications. This provides more opportunity for performance gains if a particular application 

does not require full single or double precision floating point, as less of the FPGAs logic fabric is 

utilised by the floating point operations. We have designed a library for floating point arithmetic 

where the individual bit-widths of the exponent and mantissa can be set by the user. 

Pipelined TDMA Solver Design  

TDMA Implementation 

TDMA is a special case of LU-decomposition, in which the coefficient matrix is a banded matrix 

with a bandwidth of 1. That is, the system has the following form: 
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Typically Eq (1) is stored as four arrays of n elements, 
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where L, U, and D store the lower, upper, and diagonal bands of the coefficient matrix respectively. 

The array x will store the right hand side vector, but as the algorithm progresses it will be updated 

with the solution vector. 

 

Using the data structures from Eq (2), the TDMA algorithm can be expressed as a 

factorisation/forward substitution step followed by a backward substitution step (see Fig 1). 
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Figure 1.  Factorisation and forward substitution (left) and backward substitution (right) 

 

We designed a hardware module for both these steps which implement the inner portion of the loop. 

In each case, a new row of the matrix is loaded into the module at the rising edge of each clock 

cycle. Values of the new row that will be required in the next iteration are stored in internal 

registers. The data flow diagrams of these modules are some in Fig 2 and Fig 3 respectively. 

 

 
Figure 2.  Factorisation and forward substitution module 

 

 
Figure 3.  Backward substitution module 

 

Because of the flexibility of the FPGA platform, we are able to perform independent operations in 

the same clock cycle. 

Variable Precision Floating Point 

One key feature of our solver design is that is utilises VHDL generic statement to allow 

implementation at variable precisions. Our floating point designs can be set to user specified bit 



widths for the exponent and mantissa, and then re-synthesised for that specific application. 

Although in practice IEEE-754 32-bit or 64-bit interchange formats are used, it may be that a 

specific application does not require such precision (or requires more).  

 

Our design is minimalistic, in that all rounding is simplified with truncation and no special cases 

such as NANs and Infinities handled. This allows for more floating point units to be placed on the 

FPGA, resulting in a higher compute density. Due to numerical errors introduced through 

truncation, the application has to be able to operate given the accuracy constraints, which are 

discussed in more detail in the Results section.  

The Solver Pipeline 

For a single linear system, the dependence the backward substitution step has on the 

factorisation/forward substitution step cannot be removed. The factorisation/forward substitution 

loop must completely execute before the backward substitution can begin. If we naively assume that 

a user cannot load a new system onto the FPGA co-processor until the previous system is solved 

then we require ctotal clock cycles given by 

 2totalc N M   , (3) 

where M is the number of systems and N is the number of equations per system (assumed to be 

constant for the sake of simplicity.).  

 

In the naive approach resulting in Eq (3) the factorisation/forward substitution loop sits idle while 

the backward substitution completes. This results in a waste of logic fabric. Instead, we have 

designed a solver pipeline that allows an application to load as soon as the factorisation/forward 

substitution step has completed on the previous system, as shown in Fig 4. This provides coarse 

gain parallelism which effectively cuts the number of cycles required in half. We have our new 

equation for ctotal., 

 (1 )totalc N M   . (4) 

This has an improvement of ( 1)M N  fewer cycles. However, it does require that two complete 

systems are stored on the FPGA board. In our case, all remaining logic fabric was used to 

implement two banks of registers. These two register banks are connected to the 

factorisation/forward substitution module output via a de-multiplexer (DEMUX), and to the 

backward substitution module input via a multiplexer (MUX). 

 

 
Figure 4.  Coarse grain parallelism due to pipelining 

 

When the factorisation/forward substitution output is routed to one register bank, the other register 

bank is routed to the backward substitution input. The MUX and DEMUX are switched when an 

"end-of-system" symbol is encountered (i.e., i = N). The data flow for this design is shown in Fig 5. 

 



 
Figure 5.  Full TDMA pipeline 

 

In Fig 5, the input data is read from the dedicated input SRAM, and output is written to the output 

SRAM. The user host application simply writes to and reads from these SRAM via SGI API 

functions. 

Results 

In this section, we discuss the results of our analysis of our TDMA FPGA co-processor. We 

particularly focus on the accuracy and performance aspects of the design.  

Accuracy 

There is a trade-off between speed and accuracy, and accuracy is particularly important for us to 

discuss since we used our own custom floating point units. We compared the average and maximum 

relative errors of our floating point operation with the same operations applied in a standard C 

program. To make this a meaningful comparison with IEEE-754 32-bit operations, the exponent 

and mantissa bit widths in our design were configured to be the same as specified in IEEE-754 (i.e. 

8 and 23 bits respectively). We evaluated the accuracy of each operation for 180 randomly 

generated operand pairs. The results (see Table 1.) indicate that even with the minimalistic approach 

we have taken the maximum error seen is approximately 6e-07 for division.  

Table 1. Floating Point Error for 180 Random Operand Pairs 

Floating Point  

 Operation            

Relative Error 

Mean                    Maximum 

+ 3.01e-08                     2.91e-07 

− 2.40e-08                     4.36e-07 

× 4.44e-08                     1.12e-07 

÷ 3.33e-08                     6.21e-07 

 

 



While the worse performance was for division, this could be improved by operating in a slightly 

higher precision internally, or adding more iterations of Goldschmidt's algorithm (Goldberg, 2007). 

 

The accuracy of the TDMA pipeline was not as good as that of the individual floating point 

operations, but it would still be acceptable for many applications (see Table 2). 

Table 2. Overall TDMA Pipeline Error 

Relative Error 

Mean                    Maximum 

1.79e-05 1.79e-04 

Simulation 

FPGA vendors (e.g. Xilinx) provide tools for engineers to simulate the behaviour and performance 

before implementing the design on the FPGA hardware itself. We compared the theoretical 

performance against an ANSI C TDMA implementation. Comparisons were made for both the Intel 

C compiler (icc) and the GNU C compiler (gcc). Comparisons of performance for 16 MB of 5x5 tri-

diagonal systems are shown in Table 3. 

Table 3. Performance CPU Vs FPGA Simulation 

Compiler and 

Flags           

Runtime Speedup 

icc -O0  375 ms                     560x 

gcc -O0 142 ms                     212x 

gcc -O3 50 ms                     75x 

gcc -O2 48 ms                     72x 

icc -O2 7 ms 10x 

icc -O3 3 ms 4.5x 

FPGA simulation 0.671 ms 1x 

 

 We have applied deep data paths in our design. As a result, the board needs to be clocked very low 

(< 5 MHz). Despite this, our tests in simulation displayed speedup of around 560x over C code 

compiled with no optimisation flags and around 4.5x over the highest optimisation level. 

Considering that the C code executes on a CPU core clocked in the GHz (Intel X5650), this is 

theoretically quite good. As discussed in the following section, these theoretical results were not 

indicative of the real performance, however, further improvements could be made to our design to 

increase the minimum clock period and improve the real performance.  

Implementation 

 Our design required a clock frequency that was lower than the minimum setting of the RC100 

Blade (which is 5 MHz).  Clearly our design needs to be refined further. However, for the purposes 

of comparing theoretical performance with actual runtimes, we used a very cut-down division 

module (as this module had the deepest data path, and was responsible for the lower clock 

frequency constraint). Surprisingly the actual performance in hardware was significantly poorer 

than that of the simulations prediction. The execution took around 590 ms! This is slower than all of 



the CPU runs. Certainly some degradation in performance was expected due to memory transfer 

over heads, but our estimates predicted this to be around 20 ms as a maximum.  

 

On further investigation we have found that the performance of the RC100 blade is significantly 

affected by its memory transfer settings from host to FPGA SRAM (Mitra, 2006; Wielgosz, 2009). 

It may be possible that there our system was not configured to allow for maximum throughput. 

Further tests could not be made as our Altix 4700 server was been decommissioned soon after we 

ran our hardware test. However, our design is modular enough that it would not be difficult to 

implement on an alternate platform. A future goal for this project is to re-implement the memory 

interface design to operate with our Nallatech PCIe-280 Virtex-5 board. This will also provide us 

with more logic fabric and faster data transfer rates. 

Conclusions 

We have presented our work in designing a custom variable precision TDMA co-processor for HPC 

applications. It is clear that more work needs to be done to get the design to a similar performance 

to that of the simulation predictions. However, if this performance could be achieved then this 

would provide a very low-powered accelerator solution to HPC applications requiring the solutions 

of multiple tri-diagonal linear systems (e.g., CFD, and spline fitting). Our future work will focus on 

further optimisation of our floating point modules, and the targeting of a more modern FPGA 

platform. 

References 

Azarian, A. and Ahmandi, M. (2009), Reconfigurable computing architechture survey and introduction. in ICCSIT 

2009, Beijing, pp. 269-274. 

Compton, K. and Hauck, S. (2002), Reconfiguable computing: a survey of systems and software. ACM Computing 

Surveys, 3, pp. 171-210. 

Datta, B. N. (2010), Numerical Linear Algebra and Application (2 ed.): SIAM, Philadelphia, Pa. 

Fischer, C. F., and Usmani, R. A. (1969), Properties of some tridiagonal matrices and their application to boundary 

value problems. SIAM J. Numer. Anal., 6(1), pp. 127-142. 

Goldberg, R., Even, G., and Seidel, P.-M. (2007), An FPGA implementation of pipelined multiplicative division with 

IEEE Rounding. in FCCM 2007, pp. 185-194. 

Johnson, J., Chagnon, T., Vachranukunkiet, P., Nagvajara, P., and Nwankpa, C. (2008), Sparse LU Decomposition 

using FPGA. in PARA’08. 

Kestur, S., Davis, J. D., and Williams, O. (2010), BLAS Comparison on FPGA, CPU and GPU. in ISVLSI 2010, pp. 

288-293. 

Lee, J., Sun, J., Peterson, G. D., Harrison, R. J., and Hinde, R. J. (2010), Power-aware Performance of Mixed Precision 

Linear Solvers for FPGAs and GPGPUs. in SAAHPC’10. 

Mallik, R, K. (2001), The inverse of a tridiagonal matrix. Linear Algebra and its Applications, 325, pp. 109-139  

Mitra, A., Yao, G., and Najjar, W. (2006), Performance Analysis of SGI RASC RC100 Blade on 1D DWT. in 

Reconfigurable Systems Summer Institute 2007 at UIUC, Urbana-Champaign, IL. 

Oliveira, F., Santos, C. S., Castro, F. A., and Alves, J. C. (2008), A Custom Processor for TDMA Solver on CFD 

Application. in ARC '08, pp. 63-74. 

Press, W. H., Flannery, J. D., Teukolsky, S. A., and Vetterling, W. T. (1992), Numerical Recipes in FORTRAN: The art 

of Scientific Computation (2 ed.): Cambridge University Press, Cambridge, England, pp. 107-109 

SGI (2007), Reconfigurable Application-Specific Computing User's Guide: Silicon Graphics, Inc. 

Sundararajan, P. (2010), High Performance Computiing Using FPGAs. Xilinx White Paper, pp. 1-15. 

Usmani, R. A. (1994), Inversion of Jacobi's Tridiagonal Matrix. Computers Math. Applic., 27(8), pp. 59-66 

Wielgosz, M., Jamro, E., and Wiatr, K. (2009), Accelerating Calculations on the RASC Platform: A Case Study of the 

Exponential Function. in ARC '0, pp. 306-311. 

Wu, G., Dou, Y., Sun, J., and Peterson, G. D. (2012), A High Performance and Memory Efficient LU Decomposer on 

FPGAs. IEEE Transactions on Computers, 61, pp. 366-378. 

Zhuo, L. and Prasanna, V. K. (2008), Scalable Hybrid Designs for Linear Algebra on Reconfigurable Computing 

Systems. IEEE Transactions on Computers, 57, pp. 1661-1675. 


