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2.1 Introduction 

After a drug has been administered and absorbed into the systemic circulation, it has to be 

distributed in the blood, to its site of action, where the pharmacodynamic process 

(mechanism of action, actions in the body) will take place.  The drug is then usually 

metabolised and excreted.   Distribution, metabolism and excretion are discussed in the 

following chapters.  Absorption, distribution, metabolism and excretion are all important 

determinants of the plasma levels of drugs.   The plasma levels of drugs are also discussed.  

 

2.2. Drug Distribution 

 2.2.1 Introduction 

Blood is aqueous, and only hydrophilic (water soluble) drugs will dissolve in it.  For 

absorption, most drugs have to be lipid soluble.  Lipophilic drugs are transported in the blood 

attached to proteins. 

 

 2.2.2 Protein binding 

Plasma proteins, such as albumin and globulin, were not designed to carry drugs, but are 

quite effective at doing so.  Acidic drugs bind to albumin, whereas basic drugs bind to 

globulin.  In the plasma there is equilibrium between the protein-bound and free drug (Figure 

2.1).   

 
Figure 2.1 Protein binding and distribution (Copyright QUT, Sheila Doggrell) 

 

The bound drug cannot leave the blood stream whereas the free drug can leave the 

circulation, often to have its pharmacodynamic effect.  When free drug leaves the blood 

vessel, more drug is released from the binding, to maintain the equilibrium.  Thus, drug is 

gradually being released from plasma proteins. 

 

Bilirubin is a yellow breakdown product from red blood cells.  Bilirubin binds to albumin.  In 

liver disease, the levels of bilirubin may be high, giving the condition known as jaundice.  

High levels of bilirubin will also displace drugs from binding to plasma proteins.  Thus, the 

blood levels of free drug may increase in jaundice, with the effect of the drug going from 

therapeutic to toxic.  Thus, in jaundice, the doses of some drugs have to be decreased. 

 

In addition to bilirubin, drugs can compete for the same site on the plasma protein (Figure 

2.2).  



 
Figure 2.2 Drugs competing for binding site (Copyright QUT University, Sheila Doggrell) 

 

Figure 2.2 shows drugs A and B competing for the same binding site on a plasma protein.  

Aspirin and warfarin are examples of drugs that have the same binding site on a plasma 

protein.  Aspirin and warfarin are often used together in cardiovascular disease.  Warfarin is 

used as an anti-coagulant, and the anti-coagulant effect is dependent on the free concentration 

of warfarin.  When aspirin displaces warfarin from their binding site, the free concentration 

of warfarin will be increased, and there may be  too much anti-coagulation, which may lead 

to haemorrhage.  Thus, when aspirin and warfarin are given to a person, it may be necessary 

to reduce the dose of warfarin. 

 

2.2.3 Factors that modify protein binding and drug distribution? 

A decrease in blood proteins leads to an increase in free drug concentration and effects, and 

the effects may go from therapeutic to toxic.  Blood proteins are decreased by dietary protein 

insufficiency (malnutrition), liver disease causing decreased synthesis of proteins, and by 

burns.  When there are decreased plasma proteins, it may be necessary to decrease the dose 

of drug, to decrease the free concentration of a drug, to go from a toxic effect to a therapeutic 

effect. 

 

Conversely, when there is an increase in blood proteins, there may be a decrease in the free 

drug concentration and the effect of the drug may be lost, as the free plasma concentration 

goes below that needed for a therapeutic effect.  For instance, in multiple myeloma, there is 

excessive production of immunoglobulin proteins, which bind and inactivate certain drugs.  

Thus, in multiple myeloma, it may be necessary to increase the dose of a drug to increase 

the free concentration, and get a therapeutic effect. 

 

The lipid solubility of a drug is an important factor determining distribution.  Lipophilic 

drugs are accumulated in fat tissue, and are only slowly released from fat tissue.  For 

instance, the anti-arrhythmic drug amiodarone is very lipophilic, and is accumulated to a 

great extent in lipids.  When the administration of amiodarone is stopped, amiodarone 

continues to be released out of the fat tissues for weeks.  Amiodarone can be a toxic drug.  

Unfortunately, the toxic effects of amiodarone are slow to reverse, as reversal requires the 

removal of amiodarone, and that may take weeks.   

 

Another example of a highly lipophilic drug is marijuana.  After a single use of marijuana, 

marijuana accumulates in the fat and is slowly released.  As a result of this, marijuana can be 

detected in blood 6 weeks after a single use. 

 

 2.2.4 Blood brain barrier 



In the systemic circulation, there are gaps between endothelial cells lining blood vessels 

(Figure 2.3) and, as the basement membrane is freely permeable, this allows most free water 

and lipid soluble drugs to move out of the systemic circulation (Figure 2.3). 

 
Figure 2.3 Distribution across blood vessels (Copyright QUT University, Sheila Doggrell) 

 

In the cerebral circulation, there are no gaps between the endothelial cells, and this forms a 

barrier (referred to as the blood brain barrier) mainly to water soluble drugs.  Because of this 

barrier, water soluble drugs cannot get into the brain from the cerebral circulation.  Only 

lipophilic drugs, and drugs that are actively transported, can cross the blood brain barrier.  

Most drugs used for central nervous system effects are lipophilic.  The sedative diazepam is 

a lipophilic drug that moves across lipid membranes into the brain.  L-dopa is an example of 

a drug that it is actively transported into brain.  The barrier is deficient in chemoreceptor 

trigger zone, and some drugs act in this zone to exert emetic (vomiting) effects. 

 

For central nervous system effects, we need drugs that cross the blood brain barrier.  

Alternatively, drugs can be administered into the cerebral spinal fluid to bypass the blood 

brain barrier.  For instance, penicillin does not cross the blood brain barrier, which is fine 

when we have a peripheral infection, but not if the infection is within the central nervous 

system.  For central infections, penicillin has to be administered into the cerebral spinal fluid 

(CSF) by the intrathecal route of drug administration. 

 

For peripheral effects, drugs that do not cross the blood brain barrier are preferred.  This is 

because, any central effects of a drug administered for a peripheral effect, may be adverse 

effects.  For instance, the anti-histamine diphenhydramine was developed to treat allergy, a 

peripheral condition, but diphenhydramine crossed the blood brain to have central effects, 

notably a central sedative effect.  Thus, subjects given diphenhydramine for allergy were at 

risk of falling asleep.  The second generation anti-histamines (e.g. fexofenadine) were 

developed to have a reduced ability to cross the blood brain barrier and, consequently, do not 

exert a sedative effect.  Presently, only the second generation anti-histamines are used to treat 

allergy, and diphenhydramine has been developed as a mild sedative.  

 

2.2.4 Volume of distribution 

The volume of distribution of a drug or the (apparent) volume of distribution, as it is 

sometimes called, is not a real distribution, but a parameter that is useful in determining 

whether haemodialysis can be used to rid the body of a particular drug or whether a loading 

dose of a drug is necessary (loading doses are discussed in chapter 6.4).  The (apparent) 

volume of distribution Vd is defined as the volume of fluid required to contain the total 

amount of drug in the body, at the same concentration as in the plasma.  The volume of 

distribution will be calculated for us when the drug is first developed.  Thus, we don’t need to 

know how to calculate it, but we do need to know how to interpret it.  For instance, compare 

Drugs A and B, each administered at 100 mg. They may have different distributions and 

therefore different volumes of distribution.  If after administration Drug A has a plasma level 



of 20 mg/ml, and Drug B has a plasma level of 2 mg/ml – it is obvious that Drug B is more 

widely distributed than Drug A. That is, more of Drug B is distributed outside of the plasma.  

For Drug A, Vd is 100 mg/20 mg = 5 L, and for Drug B, Vd is 100 mg/2 mg = 50 L. 

 

The plasma volume in a 70 kg adult = 3L (i.e. ~0.04 L/kg).  Any drug that is confined to 

plasma will have similar volume of distribution to the plasma (0.04 L/kg).  Drugs that are 

evenly distributed throughout body (go everywhere at same concentration as plasma) have a 

Vd of 0.57 L/kg.  Drugs that are accumulated in tissues have a greater volume of distribution. 

 

A low volume of distribution indicates that a drug is  largely confined to plasma, and can be 

removed by haemodialysis.  Conversely, drugs with a large Vd will be accumulated in fat or 

elsewhere, and cannot be removed by haemodialysis, which only removes drugs from blood.  

For instance, heparin is mainly confined to blood, has a Vd of 0.06 L/kg, and can be 

removed by haemodialysis.  Conversely, the antidepressant nortriptyline has a Vd of 14 

L/kg, due to tissue binding outside of the blood stream, and cannot be removed by 

haemodialysis.  Unfortunately, most lipid soluble drugs e.g. amiodarone have high volumes 

of distribution, due to accumulation in fat tissues, and cannot be removed by haemodialysis. 

 

2.3. Drug Metabolism 

 2.3.1 Introduction 

As we discussed previously (Section 2.2), absorption from the gastrointestinal tract is best for 

lipid soluble drugs.  Lipid soluble drugs are also readily reabsorbed from the kidney tubule.  

Thus, lipid soluble drugs are difficult to get rid of, as even when they get into the kidney 

tubule, they are reabsorbed rather than excreted.  Water soluble compounds are readily 

excreted from the kidney.  Thus, for excretion of a drug, it is necessary to turn a lipid soluble 

drug into a water soluble (hydrophilic) drug, which can then be excreted in the urine.  This 

change from a lipid soluble to a water soluble compound involves metabolism, which usually 

has two phases, Phase I and II metabolism.  In addition to increasing water solubility, 

metabolism usually produces metabolites that are inactive, and thus reduces the activity of the 

drug. 

 

Our enzyme systems are not designed to metabolise drugs.  However, the normal 

physiological enzyme pathways for metabolism of endogenous compounds (substances found 

in the body) are used in drug metabolism.  The body also has systems for metabolising 

xenobiotics (substances foreign to the body), as part of the body’s defence system.  These 

xenobiotic metabolising enzymes are also used in drug metabolism. 

 

The liver is the main site of metabolism.  Because of this, drug metabolism is changed in 

hepatic insufficiency.  However, the liver is not the only site of drug metabolism.  In addition 

to the liver, metabolising enzymes are present in high concentrations in the intestine, nasal 

mucosa and lung, and these tissues are all capable of metabolising certain drugs.  Most of the 

discussion of metabolism in this chapter is of liver metabolism. 

 

 2.3.2 Phase I 

The first phase of metabolism is Phase I.  Phase I reactions involve common chemical 

reactions such as oxidation (interaction with an oxygen), reduction (interaction with a 

hydrogen), and hydrolysis (interacting with water).   

 

The liver has a huge number of metabolising enzymes.  The best characterised metabolic 

pathways are those catalysed by cytochromes, which are haem proteins.  The Cytochrome 



P450 system (CYP) is a superfamily of distinct enzymes, known as CYP1, 2 and 3, with 

more than 50 haem-containing enzymes identified to date. 

  

The CYPs are found in the endoplasmic reticulum of the liver cell.  One of the most 

important of the CYPs for drug metabolism is CYP3A4.  In this nomenclature for CYP3A4, 3 

is for the family of enzyme, A for the subfamily, and 4 is the enzyme isoform. The 

classification of CYP enzymes into families, subfamilies and isoforms is based on the 

similarities of the genes encoding for them. CYP3A4 is the most abundantly expressed, and is 

involved in the metabolism of about 50% of clinically used drugs.  CYP2D6 and CYP2C8/9 

are also commonly involved in drug metabolism.  Drug interactions often occur at the level of 

these metabolising enzymes, and will be discussed in more detail in the section on drug 

interactions.  The levels of these enzymes are subject to induction and inhibition, and the 

activity of the enzymes may vary with a subject’s genetic makeup (see Chapter 11). 

 

  2.3.2.1 Induction 

When there is induction of an enzyme, there is an increased rate of metabolism of drugs by 

that enzyme, and this leads to a decreased plasma concentration of drug, so that it may 

become ineffective.  Lowering the concentration of a therapeutic drug may lead to it 

becoming ineffective.  For instance, hyperforin (a component of St John’s Wort), an over-

the-counter medicine for depression, induces CYP3A4.  Use of St John’s Wort can lead to the 

failure of oral contraceptives, which are metabolised by CYP3A4.  To avoid adverse effects, 

low doses of oral contraceptives are used to prevent conception.  When the metabolism of 

oral contraceptives is increased by St John’s Wort, the levels of the oral contraceptives may 

fall below those needed for contraception, resulting in pregnancy. 

 

Cigarette smoke and charboiled meats induce CYP1A, which is involved in the metabolism 

of paracetamol.  Thus, smokers will have lower plasma levels of paracetamol for the same 

dose as non-smokers.  Lowering the levels of paracetamol will lower the pain relief. 

 

An example of autoinduction is alcohol, where chronic alcohol consumption induces the 

enzyme CYP2E1, which is involved in its metabolism.  This partly explains the tolerance to 

alcohol that develops with repeated administration, whereby the same dose of alcohol makes 

a alcohol-naïve person drunk, with little apparent effect on an alcoholic person, who has 

induced CYP2E1, and greater metabolism of alcohol.   

 

  2.3.2.2 Inhibition 

Conversely, the plasma levels of drugs may be increased when there is inhibition of 

enzymes.  Thus, inhibition of enzymes will lead to a decreased rate of metabolism, and 

increased plasma concentration of drugs.  Under these circumstances, a therapeutic drug may 

become a toxic drug.  It was recently discovered that components of grapefruit juice are 

potent inhibitors of CYP3A4, and this can lead to dangerously high levels of the many drugs 

that are normally metabolised by this enzyme.  Consequently, it is advisable not to take drugs 

at breakfast with a grapefruit or grapefruit juice, as this may lead to drug toxicity. 

 

Ketoconazole, a commonly used anti-fungal agent is a potent inhibitor of CYP3A4.  Thus, 

ketoconazole will increase the plasma concentrations of the drugs metabolised by this CYP, 

which includes the anti-HIV viral protease inhibitors.  The anti-HIV viral protease 

inhibitors have the potential to be quite toxic, especially if their levels are raised.   

 

 2.3.3 Phase II: Conjugation 



The second phase of drug metabolism is conjugation, which is a Phase I metabolite joining 

to another compound.  Conjugation is very important, as this is the phase that increases the 

water solubility of the drug, which is needed to allow excretion of the drug.  The conjugation 

substates are naturally occurring substances with the most common Phase II conjugation 

products being glucuronides and sulphates.  Glucuronic acid is a product of glucose 

metabolism, and conjugation with glucuronic acid forms glucuronide metabolites.  In 

addition to increasing water solubility, conjugation with glucuronic acid has another 

important function, it inactivates the drug.  This is because the glucuronide metabolites are 

inactivate. 

 

Some glucuronide metabolites are excreted by the kidney in the urine.  However, many 

glucuronide metabolites are transported in the bile to the gastrointestinal tract and undergo 

enterohepatic recycling (Figure 2.4).  In addition, some glucuronide metabolites are partly 

excreted from the kidney, and partly transported in the bile acid. 

 
Figure 2.4 Entero-hepatic recycling (Copyright QUT, Sheila Doggrell) 

 

In enterohepatic recycling, Drug C arrives at the liver in the circulation.  The metabolism of 

Drug C involves conjugation with glucuronic acid to form Drug C glucuronide that is 

transported in the bile to the gastrointestinal tract.  Once in the gastrointestinal tract, some of 

the glucuronide is excreted in the faeces, and some of it may be deconjugated by the bacterial 

enzyme β-glucuronidase to yield back the active Drug C, that can be reabsorbed, and taken 

to the liver, with some of the active drug re-entering the circulation. 

 

Many glucuronides undergo this recycling, and this alters their kinetics (the relationship 

between plasma concentration and time).  The plasma levels may be higher than expected 

because the drug is being recycled.  To counter this, the dose of a drug may need lowering.   

An example of a drug that undergoes this recycling is glicazide, which is used in the 

treatment of type 2 diabetes.  As type 2 diabetes is very common among indigenous 

Australians, it was of interest to determine whether there were any genetic differences in the 

recycling of glicazide by Caucasians and indigenous Australians.  It was found that there is a 

slight difference, 30% of the dose in Caucasians is recycled compared to 20% in the 

indigenous group.  Theoretically, this means that for the same dose, the plasma levels could 

be lower in the indigenous group meaning the the glycaemic control might be slightly lower. 

 

When antibiotics are administered they kill the good as well as the bad (disease causing) 

bacteria.  By killing the good bacteria in gut, antibiotics inhibit bacterial enzyme β-

glucuronidase, which inhibits the enterohepatic recycling.  Without this recycling of a 



glucuronide, plasma drug levels may be lowered, and the drug may become ineffective.  For 

instance, oral contraceptives undergo enterohepatic recycling, and with antibiotic use, the 

plasma levels are reduced which may lead to the preparations providing less contraceptive 

benefit.  This could result in unplanned/unwanted pregnancy.. 

 

2.3.4 First pass metabolism and bioavailability 

The relationship between first pass metabolism and bioavailability has been discussed 

previously (Chapter 1), and is only discussed briefly here.  Drugs with extensive first pass 

liver metabolism have poor bioavailability after oral administration.  An example of a drug 

that undergoes extensive first pass liver metabolism is glyceryl trinitrate (nitroglycerin), 

which is used in the treatment of angina.  Due to this metabolism, glyceryl trinitrate has to be 

administered by other routes of administration.  Glyceryl trinitrate is used sublingually. 

 

When drugs have considerable first pass liver metabolism, but a proportion still gets to the 

systemic circulation, it may be possible to increase the dose of drug, to increase the amount 

of drug that reaches the systemic circulation.  This is the case with the painkillers morphine 

and pethidine.  Large doses of the anti-Parkinson’s drug L-dopa are also required to produce 

effective plasma levels of L-dopa. 

 

In liver disease, the metabolism of certain drugs may be inhibited, increasing bioavailability.  

With increased bioavailability, there will be increased effects of a drug.  Indeed the plasma 

levels maybe increased enough to cause toxic effects.  Thus, in liver disease, it may be 

necessary to decrease the doses of drugs metabolised by the liver.  

 

 2.3.5 Prodrugs 

Prodrugs are pharmacologically inactive drugs that have active metabolites.  They are 

designed so that the maximum amount of active drug reaches the relevant site of action to 

have the required pharmacodynamic effect.  An example of a prodrug is enalaprilat.  

Enalaprilat is a potent inhibitor of angiotensin converting enzyme (ACE), and ACE inhibitors 

are commonly used in cardiovascular disease.  However, it would be pointless to administer 

enalaprilat orally, as it is not absorbed after oral administration.  To circumvent this, the 

pharmacological inactive prodrug enalapril is used.  Enalapril is absorbed and has an oral 

bioavailability of ~60%.  Enalapril is converted by esterases in the liver to enalaprilat, which 

is the beneficial ACE inhibitor.  

 

 2.3.6 Pharmacologically active metabolites 

Some drugs produce pharmacologically active metabolites.  Morphine is a 

pharmacologically active metabolite of heroin.  Morphine acts as an agonist at a particular 

binding site, the opioid μ-receptors, to cause pain relief.  Stimulation of the opioid μ-

receptors also underlies the euphoric effects of morphine, and gives its potential for abuse.  

When morphine is given orally, it undergoes extensive first pass liver metabolism, which 

lowers the concentration.  Morphine only enters the brain slowly.  Thus, only low 

concentrations reach the brain to have an effect. 

 

Heroin is diacetylmorphine, and is more lipid soluble than morphine.  Thus, heroin enters the 

brain more readily than morphine.  Once, in the brain, heroin is metabolised to morphine, 

which gives the pain relief and euphoria.  For the same dose, much higher levels of morphine 

in the brain can be obtained with heroin than morphine.  This is a key factor for opioid 

addicts, who prefer heroin to morphine as their drug of abuse. 

 



 2.3.7 Pharmacological toxic metabolites 

In addition to the metabolites of drug being therapeutic, metabolites may be toxic.  

Paracetamol is considered by many to be a relatively safe drug.  It is considered safe enough 

to be sold without a prescription.  Normally most of the paracetamol is conjugated and 

excreted in urine (Figure 2.5). 

 
Figure 2.5 Metabolism of paracetamol (Copyright QUT, Sheila Doggrell) 

 

However, a small amount of paracetamol is metabolised by the CYP enzyme system to 

NAPQI.  NAPQI is potentially very toxic to the liver.  Fortunately small amounts of NAPQI, 

in the presence of glutathione, are readily excreted in the urine.  Thus, normally, we do not 

observe toxicity with paracetamol.  However, when high doses of paracetamol are 

administered, the glutathione gets used up, NAPQI levels build up, and become toxic.  The 

main feature of paracetamol poisoning is liver failure.  Paracetamol poisoning will be 

discussed further under treatment of poisoning. 

 

2.4. Drug Elimination 

 2.4.1 Introduction 

The most common way from administration of drug to elimination is by liver metabolism and 

kidney excretion (Figure 2.6).  After oral administration, drugs are taken from the 

gastrointestinal tract in the circulation for metabolism in the liver. 



 
Figure 2.6 Drug Elimination (Copyright QUT, Sheila Doggrell) 

 

Drugs administered by other routes (e.g. sublingual, via injection) also end up in the 

circulation being carried to the liver for metabolism.  After metabolism in the liver, the 

metabolites are carried in the circulation to the kidney for excretion in the urine.  A few drugs 

are excreted without metabolism.  Some drug metabolites are transported in the bile to the 

gastrointestinal tract, where they may be recycled or eliminated in the faeces. 

 

2.4.2 Kidney 

  2.4.2.1 Introduction 

The kidney is the most important site for excreting drugs.  Drugs are eliminated from the 

body either after conversion to metabolites that are excreted, or they are excreted unchanged. 

 

Kidney function and drug excretion varies with the life cycle.  When renal function is low or 

impaired, the excretion of drugs may be reduced, leading to a build up of drug and toxicity.  

For instance, renal function is low in the neonate but matures rapidly in the first few months.  

This means that neonates may need very small doses, even measured as per kilogram, 

compared to older people.  After maturation, kidney function declines about 1% per year in 

adulthood.  Thus, older-adults (≥ 65 years) may have functional kidney impairment, and 

require small doses of drugs that undergo excretion from the kidney than the doses used in 

younger adults.  

 

The first step in excretion from the kidney is glomerular filtration.  Drugs are delivered to the 

kidney in the blood stream, and free drug (water soluble or free fraction of lipid soluble 

drugs), with the exception of macromolecular substances (heparin), freely diffuse into 

glomerular filtrate.  Drugs bound to albumin (e.g. warfarin) are held back.  Free warfarin 

and most other drugs/drug metabolites are freely filterable.  Some drugs are actively secreted 

into the kidney tubules. 

 



2.4.2.2 Secretion and Reabsorption 

In the adult there are about a million kidney tubules.  In these tubules, movement out of the 

tubule into the interstitial fluid, and, hence, to the blood is known as reabsorption.  Movement 

of substances into the tubules is known as secretion (Figure 2.7). 

 
Figure 2.7 Reabsorption and secretion from kidney tubule (Copyright QUT, Sheila Doggrell) 

 

Lipid soluble drugs are readily reabsorbed, so they will continue to be recycled back into 

circulation.  It is only when drugs are water soluble that they remain in the kidney tubule to 

be excreted. 

 

Endogenous compounds that are positively charged (choline, dopamine) are actively secreted 

into the proximal tubule using transporters.   Many positively charged drugs can be secreted 

on these transporters (e.g. ranitidine), and are excreted following active transport into the 

urine.  Similarly, endogenous compounds that are negatively charged are also secreted into 

the proximal tubule via transporters, and drugs can use this transporter.  Drugs secreted using 

this transporter include the ACE inhibitor captopril. 

 

The drug probenecid has two distinct actions on the kidney.  The first action is related to uric 

acid.  Uric acid (one of the body’s waste products) is actively reabsorbed from the kidney 

tubule, and an excessive accumulation of urate in the plasma leads to gout.  The pain of gout 

is due to crystals of urate in the joints.  Some drugs used to treat gout are known as uricosuric 

agents.  The uricosuric agents (e.g. probenecid) inhibit the reabsorption to promote the 

excretion of urate, and prevent the accumulation of urate in joints.  The second action of 

probenecid relates to penicillin levels.  Penicillin is rapidly eliminated from the body, as 90% 

of penicillin is secreted into the proximal tubule, and excreted.  Thus, after administration, the 

levels and effectiveness of penicillin declines rapidly.  However, this can be inhibited by 

probenecid.   Thus, probenecid can be used to increase and prolong the plasma levels of 

penicillin, to increase the effectiveness of penicillin. 

 

  2.4.2.3 Renal insufficiency 

In renal insufficiency, (e.g in neonates, and with age-related renal impairment), the duration 

of action of drugs excreted unchanged from the kidney is prolonged.  Examples of drugs 



excreted unchanged by the kidney include the aminoglycoside antibiotics and digoxin.  The 

levels of these drugs may increase in renal insufficiency and produce toxicity.  Both of these 

drugs have a small therapeutic window, which means that the concentrations that cause 

toxicity effects are only slightly above the concentrations that cause a therapeutic effect. The 

toxicity with aminoglycosides includes ototoxicity (ringing in ears to deafness).  Digoxin is 

used to increase the force of the heart beat in heart failure, and has a small therapeutic 

window, with toxicity including cardiac arrhythmias.  When renal excretion is impaired, it 

may be necessary to decrease the dose of these drugs and/or increase the dose interval. 

 

Clearance is term given to the combination of metabolism and excretion of a drug.  When a 

drug is metabolised by the liver and the metabolite is excreted via thekidney, renal 

insufficiency can lead to increased plasma concentrations and adverse effects.  Thus, we need 

to lower doses when there is kidney insufficiency.  But how do we know when there is renal 

insufficiency? We assess kidney function.  

 

Kidney function is assessed from the creatinine clearance.  Creatinine clearance is the 

removal of creatinine from the body.  Creatinine is natural metabolite of creatine (found in 

muscle).  The properties that make creatinine ideal for assessing kidney function are that 

creatinine has a steady level in the blood and is freely filtered by the kidney.  Thus, with 

normal function, the plasma and urine levels of creatinine will be similar.  In kidney 

insufficiency plasma creatinine levels are increased, and urine levels are decreased. 

 

When creatinine clearance is inhibited, this indicates renal insufficiency, and that it may be 

necessary to decrease the dose of drug to avoid toxicity.  This can occur with morphine in 

renal insufficiency.  An important metabolite of morphine is morphine-6-glucuronide, 

which has similar pharmacological actions to morphine.  Morphine-6-glucuronide is excreted 

from kidney.  In renal insufficiency, morphine-6-glucuronide builds up and increases efficacy 

(pain relief).  Unfortunately, increased levels of morphine-6-glucuronide also lead to an 

increased likelihood of adverse effects, such as respiratory depression.  In elderly patients, 

lower doses of morphine are used partly to compensate for loss of kidney function  

 

 2.4.3 Other routes of excretion 

Anaesthetic gases are administered by inhalation, and are also excreted from the lung. 

 

Some drugs are excreted in breast milk, and the excreted drugs are a source of unwanted 

effects in the nursing infant.  For instance, morphine and other lipid soluble drugs are 

excreted in breast milk.  While it is best to avoid all drugs during breast feeding, there are 

some breast feeding women who need to take medications.  Epileptic mothers may have to 

continue their medication.  Some of the older anti-epileptic drugs e.g. diazepam, are known 

to get into breast milk and should be avoided during breast feeding.  There is little 

information about whether the newer agents get into breast milk, but it is considered that the 

levels are likely to be too low to have effects in the new-born. 

 

2.5. Blood levels 

 2.5.1 Introduction 

When using drugs as therapeutics, the aim is to produce a specific effect. In most cases, to 

achieve this it is necessary to get the drug into the plasma at concentrations high enough to 

produce the effect.  However, it is also important not to administer too much drug, as this 

could lead to a range of non-specific toxic effects.  As can be seen in Figure 2.8, the ideal 

plasma concentration range is between the minimum concentration required to be effective 



(minimum effective concentration or MEC) and the concentration, above which toxic effects 

are seen (minimum toxic concentration).   

 

 
 

Figure 2.8 Minimum effective and toxic concentrations (Copyright Monash University, Liz 

Davies) 

Graphs are used to describe the relationship between blood levels of drugs over time.  From 

these graphs, we can learn things about drugs that help us to determine how to use them in 

people. 

 

2.5.2 Elimination half-life 

The elimination half-life is the time from the maximum concentration to half maximum 

concentration.  The elimination half-life is dependent on the rates of metabolism and 

elimination of the drug.  Thus, slowly metabolised and slowly eliminated drugs will have 

long half-lives.  Whereas, rapidly metabolised and rapidly eliminated drugs will have short 

half-lives.  The half-life is an important determinant of the frequency a drug needs to be 

administered.  Drugs with short half-lives need to be given more often than those with long 

half-lives. 

 

Provided there is a method for measuring the levels of the drug in the plasma, we can 

graphically plot the drug concentration against time (Figure 2.9). 



  
Figure 2.9 Elimination half-life (Copyright QUT, Sheila Doggrell) 

 

In Figure 2.9, Drug A was administered intravenously, giving a maximum concentration 

straight away, and then the concentration diminishes over time, as the drug is metabolised 

and excreted.  The elimination half-life is the time from the maximum concentration to half 

maximum concentration.  Thus, we need to determine the 50% maximal response, and then 

determine the time from maximal to half-maximal response, which with Drug A is about 4.4 

hours.  Drug A will have to be administered at least 2 times a day, and maybe more, as it is 

rapidly metabolised and/or eliminated.   

 

Elimination half-lives can also be determined when drugs are administered orally.  When 

Drug B is administered orally, it has to be absorbed into the blood stream, so blood levels rise 

slowly over time to a maximum.  Once again, the elimination half-life is the time from the 

maximum concentration to half maximum concentration.  So we need to estimate the time of 

the maximal response, which is about 6.2 hours for Drug B.  The levels of Drug B have fallen 

to half-maximal after 13.4 hours.  Thus, the elimination half-life is 13.4 – 6.2 hours, which is 

7.2 hours.  Drug B may be suitable for administration 2 times a day or less, as it is less 

quickly metabolised and/or eliminated than Drug A 

 

 2.5.3 First and zero order kinetics 

Graphs of plasma levels against time, can also tell us about the kinetics of the metabolism of 

the drug (Figure 2.10). 



 
Figure 2.10 Metabolism and Kinetics (Copyright QUT, Sheila Doggrell) 

 

With most drugs, there is a rapid fall in drug levels, as most drugs are readily metabolised, 

and there is an excess of enzyme available for the metabolism.  Thus, the enzyme never 

becomes saturated with drug.  This is known as first order kinetics (top, Figure 2.10).  In 

first order kinetics, increasing the concentration of the drug increases the metabolism of the 

drug.  First order kinetics is also observed with drugs that are eliminated unchanged. 

 

With some drugs there is a limited amount of enzyme available to metabolise the drug, and 

when that limit is reached, metabolism occurs at a constant rate.  Thus, the enzyme becomes 

saturated with drug.  This is known as zero order kinetics, and is seen as a straight line on 

the graph (bottom, Figure 2.10).  In zero order kinetics, increasing the concentration of drug 

above a certain point does not increase the rate of metabolism.  The best known example of 

zero order kinetics is alcohol.  There are no notable examples of therapeutic drugs that have 

saturable metabolism and zero order kinetics.  However, some therapeutic drugs taken in 

excess can have saturable kinetics.  Examples include aspirin and the anti-epileptic drug 

phenytoin. 

 

 2.5.4 Minimum effective and steady-state concentrations  

The Minimum Effective Concentration (MEC) is the minimum plasma concentration 

required for the drug to be effective.  When we use drugs, we want to use the appropriate 

dose and dosing interval to achieve plasma concentrations about the MEC to give an ongoing 

beneficial effect. 

 

The steady-state concentration is a reasonably even concentration achieved with repeat 

dosing or continued infusion, which gives a continued beneficial effect. 

 

 2.5.5 Maintenance doses and loading doses 

 

A maintenance dose is a small, fixed dose.  When you use maintenance doses, it may take 

long time to reach the minimum effective concentration, as the plasma concentration only 

slowly builds up to reach and then exceed the minimum effective concentration (top, Figure 



2.11).  This is an inappropriate way to administer drugs in serious conditions or emergency 

situations, where you need the drug to be effective immediately. 

 

With some drugs, especially those with a large volume of distribution, it may be necessary to 

give a loading dose (a big dose) initially to get above the minimum effective concentration 

and get the beneficial effect quickly.  In such situations, a loading dose is used to reach the 

minimum effective concentration, and then maintenance doses are given to maintain the 

minimum effective concentration (bottom, Figure 2.11).  With a loading dose, the minimum 

effective concentration is reached much quicker than using the maintenance dose. 

 
Figure 2.11 Maintenance doses and loading dose (Copyright QUT, Sheila Doggrell) 

 

An example of a drug that is used with a loading dose and maintenance doses is the anti-

platelet drug clopidogrel.  Intravenous clopidogrel is given as a loading dose in percutaneous 

coronary intervention to prevent clotting straightaway, and this is followed by oral 

maintenance doses to prevent coagulation, as the subject recovers from the surgery. 

 

Steady-state concentrations are eventually reached with both maintenance and 

loading/maintenance dosing (Figure 2.11). 
 


