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ABSTRACT

This paper analyses the pairwise distances of signatures pro-
duced by the TopSig retrieval model on two document col-
lections. The distribution of the distances are compared to
purely random signatures. It explains why TopSig is only
competitive with state of the art retrieval models at early
precision. Only the local neighbourhood of the signatures
is interpretable. We suggest this is a common property of
vector space models.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval Models

Keywords
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ing, Document Signatures, Search Engines, Document Clus-
tering, Near Duplicate Detection, Relevance Feedback

1. INTRODUCTION

This paper investigates the properties of the pairwise sim-
ilarities of document signatures produced by TopSig. Top-
Sig is a retrieval model where documents are represented by
d-bit binary strings that lie on a d-dimensional collection hy-
percube. The signatures are produced by a random process
called random indexing [10] or random projection [1] which
compresses the standard term-by-document matrix.

Pairwise similarity plays an important role in many in-
formation retrieval related tasks such as ad hoc retrieval,
clustering, classification, filtering, near duplicate detection
and relevance feedback.

The paper proceeds as follows. In Section [2| the TopSig
retrieval model is introduced. Section [3] describes the docu-
ment collections used in the experiments. The experimental
setup is introduced in Section[d]and the results are presented
in Section [} The paper is concluded by a discussion of the
implications of the results in Section [f]

2. TOPSIG

TopSig [7] offers a radically different approach to the con-
struction of file signatures. Traditional file signatures [6]
have been shown to be inferior to approaches using inverted
indexes, both in terms of the time and space required to
process and store the index [12] [13]. However, TopSig over-
comes previous criticisms aimed at file signatures by taking
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a principled approach using the vector space model, dimen-
sionality reduction and numeric quantisation. Previous ap-
proaches to file signatures were constructed in an ad hoc
fashion by combining random binary signatures using a bit-
wise XOR which is a Bloom filter [2] for the terms con-
tained in documents. In contrast, TopSig randomly indexes
a weighted term-by-document matrix and then quantises it.
TopSig is competitive with state of the art probabilistic and
language retrieval models at early precision, and clustering
approaches |7].

Let D = {di,d2,...,dn} be a document collection of n
documents signatures, D C {+1,—1}¢, |D| = n. Let F =
{f1, f2y..., fn} be the same document collection as D where
each document is represented by a v-dimensional real valued
vector, FF C RY, |F| = n, where v is the size of the vocabu-
lary of the document collection. F'is the term-by-document
matrix in the full space of the collection vocabulary which
underlies most modern retrieval systems.

TopSig indexes documents using a mapping function, m :
R” — {41,—1}%, that maps a document from the original
v-dimensional continuous real valued term space, to a d-
dimensional discrete binary valued space. The index is con-
structed using a mapping function, D = {f € F : m(f)}.
The mapping function creates a sparse random ternary in-
dex vector of d-dimensions for each term in the document
with +1 and -1 values in random positions and the major-
ity of positions containing 0 values. These randomly gen-
erated codes are almost orthogonal to each other and have
been shown to provide comparable quality to orthogonal ap-
proaches such as principle component analysis [1]. The index
vector is multiplied by the term weight and added to a d-
dimensional real valued vector that represents the document.
Once all the terms in a document have been processed, this
reduced dimensionality document vector is then quantised
to a d-dimensional binary vector by thresholding each value
in each dimension to 1 if greater than 0 and 0 otherwise.
The 1 and 0 values in the binary vector represent +1 and
-1 values. This mapping function can be applied to each
document independently, meaning that new documents can
be indexed in isolation without having to update the exist-
ing index. This is a key advantage to random indexing [10]
over other dimensionality reduction techniques such as la-
tent semantic analysis [5] which requires global analysis of
the term-by-document matrix using the singular value de-
composition |8].

The indexing process of TopSig is similar to that of SimHash
|3]. However, TopSig uses signatures an order of magni-
tude longer than SimHash and it uses much sparser random



codes. The search process for ad hoc retrieval also differs,
where TopSig searches in the subspace of the query and ap-
plies relevance feedback.

The binary vectors in D provide a faithful representa-
tion of the original document vectors in F. The topolog-
ical relationships in the original space are preserved in the
reduced dimensionality space. This is supported by the
Johnson-Lindenstrauss lemma [9] that states if points in a
high-dimensional space are projected into a randomly cho-
sen subspace, of sufficiently high-dimensionality, then the
distances between the points are approximately preserved.
It also states that the number of dimensions required to re-
produce the topology is asymptotically logarithmic in the
number of points.

3. DOCUMENT COLLECTIONS

We have used the INEX Wikipedia 2009 collection and
the TREC Wall Street Journal (WSJ) Collection to eval-
uate pairwise distances of TopSig signatures. The INEX
Wikipedia collection contains 2,666,190 documents with a
vocabulary of 2,132,352 terms. We have used 2 subsets of
this collection during evaluation. The first is a 144,265 doc-
ument subset used for the INEX 2010 XML Mining track [4].
This is the reference run for the ad hoc track in 2010 pro-
duced by an implementation of Okapi BM25 in the ATIRE
search engine [11]. It is denoted by INEX,.cference. The sec-
ond is a randomly selected 144,265 document subset chosen
to match the size of the XML Mining subset. It is denoted by
INEX, andom. Subsets of the INEX Wikipedia 2009 collec-
tion were used for this experiment because calculating pair-
wise distances has a time complexity of O(n?) and becomes
intractable for millions of documents. The mean document
length in the Wikipedia has 360 terms, the shortest has 1
term and the longest has 38,740 terms. The Wall Street
Journal Collection consists of 173,252 documents and a vo-
cabulary of 113,288 terms. The mean WSJ document length
is 475 terms, the shortest has 3 terms, and the longest has
12,811 terms.

The INEX Wikipedia 2009 collection consists of 12GB of
uncompressed text or 50GB of uncompressed XML which
includes semantic markup. The 2,666,190 documents are
split into 3,617,380 passages. 1024-bit TopSig signatures use
a total of 441MB to index the collection. The TREC Wall
Street Journal consists of 518MB of uncompressed text. The
173,252 documents are split into 222,238 passages. 1024-bit
TopSig signatures use a total of 27MB to index the collec-
tion.

4. EXPERIMENTAL SETUP

Pairwise similarities define the topology of a set of doc-
uments. Each document is compared to every other doc-
ument. These similarities define the relationships between
all documents in a collection. If two documents are nearby
each other they share the same semantic context. TopSig
uses the Hamming distance to measure similarity between
two documents. It produces values in the range [0, d] where
0 indicates the documents are indentical and values from 1
to d indicate decreasing similarity between documents where
d is the most dissimilar two documents can be.

The TopSig indexing process uses random codes to com-
press document vectors. These random codes are also called
index vectors in the random indexing process. The codes are

influenced by the original document vectors. Similar docu-
ments are placed close together in the reduced binary vector
space that are close together in the original vector space.
Therefore, it is expected that the pairwise relationships be-
tween documents will be biased by this process. If the in-
dexing process has no effect then the document signatures
would appear no different to purely random signatures. The
pairwise distances between randomly generated random sig-
natures can be described by the Binomial distribution. The
distribution of pairwise distances produced by the TopSig
indexing process can be estimated by creating a histogram
of similarity counts at all Hamming distances.

All "QT_" pairwise distances between document signatures
in D are calculated. This is all the similarities contained in
the upper triangular form of the pairwise distance matrix
without the entries along main diagonal. The lower half
of the pairwise distance matrix does not need to be calcu-
lated as the Hamming distance is symmetric. Measuring a
pair of signatures both ways around does not add any ex-
tra information. The Hamming distance similarity function,
s {+1,-1}* x {+1,-1}* — N, is symmetric such that
two documents compared in either order produce the same
result, dz,dy € D : s(dz,dy) = s(dy,dz). The estimated
probability of finding a signature at Hamming distance, h,
is the fraction of similarities at that distance over the to-
tal number of distance comparisons. The probability mass
function, pmf. : P{+1,-1}¢ x N — R, produces the esti-
mated probability from the pairwise distances in D where n
is the number of signatures in the collection D, |D| = n,

_dy,dy € DANdy #dy
foew: “Ba2=14 Y

n
2

pmfe(D,h) =

Note that pmf. is the estimated probability for finding a
signature at distance, h, when averaged across all documents
in the collection, D.

The probability of finding a random binary code of length,
d, at Hamming distance, h, is described by the Binomial
probability mass function, pmf, : N x N — R,

pmfiia i) = ()= p @)

where p is the probability of a bit being set, p = 0.5.

The cumulative distribution function for either the esti-
mated, cdfe : P{+1,-1} x N — R, or Binomial, cdf, :
N x N — R, probability distributions are the sum of the
probability mass function from 0 to h,

h
cdf.(D,h) =Y pmfe(D,h), (3)
0

h
cdfy(d,h) = pmfu(d,h). (4)

An implementation of the TopSigElsearch engine was used
to index the document collections. It splits documents into
passages on a sentence boundary between a minimum and
maximum number of word tokens. If the maximum word
token limit is reached before the end of a sentence, it is split
at that point. Therefore, documents have multiple signa-
tures. This has been found to be effective for retrieval of

"http://topsig.googlecode. com


http://topsig.googlecode.com

Collection Documents Signatures (Passages)
INEXrefe'rence 144,265 328,207
INEX,andom 144,265 195,369
WSJ 173,252 222,238

Table 1: Number of Signatures Generated by TopSig
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Figure 1: INEX, 4ndom pmf

documents of varying length. The INEX collection was split
on a minimum of 256 and maximum of 280 word tokens.
The WSJ collection was split on a minimum of 256 and a
maximum of 384 word tokens. All indexes use 1024-bit sig-
natures, resulting in the number of signatures as listed in
Table [0

The resulting probability distributions have been multi-
plied by the number of signatures in a collection to produce
the expected number of signatures at a given Hamming dis-
tance. In this case, the pmf gives the average number of
signatures expected at a particular Hamming distance when
comparing a signature to the entire collection. The cdf gives
the average number of signatures expected to lie within a
given Hamming distance when comparing a signature to the
entire collection, i.e. the number of nearest neighbours to
expect within a particular Hamming distance.

5. EXPERIMENTAL RESULTS

Figures[I] to[I2| highlight the difference between the distri-
butions estimated from the pairwise distances and the dis-
tributions expected from random binary signatures from the
Binomial distribution. It can be seen that all the estimated
distributions are left skewed towards a Hamming distance
of 0. This indicates that the signatures produced by TopSig
are biased in such a way that documents are more similar to
each other. There are more documents expected at a more
similar, lower Hamming distance, than expected at random.

The probability mass functions in Figures[I] 2]and [3]repre-
sent the expected number of signatures to be seen at a par-
ticular Hamming distance. The graphs have been centred
around the middle of the distributions to allow better visu-
alisation of the separation between the distributions. The
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Figure 2: INEX, ¢ erence pmf
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Figure 3: WSJ pmf
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Figure 4: INEX, sndom cdf

tails of the distributions tend towards 0 as expected. For ex-
ample, the graph in Figure[3|has a y value for the estimated
distribition of 1033.39 at a Hamming distance of 441. When
comparing a signature to the entire collection, it would be
expected on average to encounter 1033.39 signatures that
are exactly at a Hamming distance of 441. However, the ex-
pected number of signatures at a Hamming distance of 441
for purely random signatures is only 0.29. This suggests that
the signatures produced by TopSig are not uniformly dis-
tributed throughout the feature space. The number of near-
est neighbours at a given Hamming distance, as described by
the pmf, quickly increases when starting from a Hamming
distance of 0 and proceeding to a Hamming distance of d.
This is the same order that TopSig ranks signatures in the
ranked list, or, any other task that compares relative order-
ings of documents such as clustering. This is true for both
the estimated and Binomial distributions. As the neigh-
bourhood of analysis is increased, more and more documents
become equidistant; i.e. they share the same Hamming dis-
tance. This is a property of vector space models known as
the “curse of dimensionality”. However, the left skewness of
estimated distributions indicates that the pairwise distances
of the document collections allow better differentiation be-
tween documents than expected at random. It is this left
skewness of the distributions that allows TopSig to compete
with state of the art retrieval models at early precision. Doc-
uments are topically clustered and are not random bags of
words. Neither of the document collections have signatures
further apart than a Hamming distance of 617, meaning that
the indexing process has moved the random signatures from
the right side of the distribution to the left. This again indi-
cates that similar signatures are being placed closer together
and are therefore more topically related and clustered.

The cumulative distribution functions in Figures [ [5] and
|§| represent the area under the curve for each of the prob-
ability mass functions. The y value at a given Hamming
distance indicates the average number of nearest neighbours
expected within a given Hamming distance when comparing
a signature to the entire collection. For example, the graph
in Figure |§| has a y value for the estimated distribition of
25975.78 at a Hamming distance of 441. When comparing
a signature to the entire collection, it would be expected on
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First 100 signatures from estimated distribution
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First 100 signatures from estimated distribution

average to encounter 25975.78 signatures that are nearest
neighbours at a Hamming distance of 441. However, the ex-
pected number of signatures at a Hamming distance of 441
for purely random signatures is only 1.13. Again, the sep-
aration between the curves indicates that TopSig is placing
semantically related documents close together and preserv-
ing the topological relationships of the original document
vectors.

Figures [} [f] and [0] zoom in on the cdf where the first
100 nearest neighbours are expected for the distribution es-
timated from the pairwise distances of the collections. In all
cases almost zero signatures are expected at random where
there are TopSig signatures expected in the range [1,100].
This indicates that the signatures produced by TopSig re-
turn nearest neighbours at a Hamming distance much earlier
than expected by purely random signatures. The start and
end points of these curves are listed in Table [2]

Figures and [12| zoom in on the cdf where the first
100 nearest neighbours are expected for random binary sig-
natures as described by the Binomial distribution. The start
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Figure 9: WSJ cdf
First 100 signatures from estimated distribution

Collection cdfy @ cdfe =1  cdfy @Q cdf. = 100
INEX e ference  1.66 x 107168 1.104 x 10715
INEX random 1.80 x 10718 2.06 x 10734
WsJ 0 1.59 x 10734

Table 2: Nearest Neighbours Expected from cdf;,
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Figure 10: INEX, sndom cdf
First 100 signatures from Binomial distribution

Collection cdfe Q cdfy =1  cdfe Q cdfy, = 100
INEX, e ference 567.86 2129.02
INEX,andom 1793.26 3673.78
WSJ 25495.67 50709.94

Table 3: Nearest Neighbours Expected from cdf.
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Collection cdfb@:;:512 cdfc@::512
INEXT'eference 0.51 0.61
INEXrandom 0.51 0.63
WSJ 0.51 0.89

Table 4: Signatures Expected within %

and end points of these curves are listed in Table [3] There
are many more signatures expected to be nearest neigh-
bours when using TopSig signatures. However, both the
estimated and Binomial distributions have many equidis-
tant documents around the middle of their distributions.
This suggests that only the local neighbourhood of the sig-
natures has semantic meaning. This can also be seen in the
pmf distributions where most of the signatures exist around
the middle of the distribution. Another perspective is that
are too many ties at these distances for the feature space to
differentiate signatures.

The skewness of the estimated distributions suggests that
the feature space is not uniform and is clustered. Some areas
of the space are more dense than others. This is vital for any
document representation because it is this non-uniformity
that allows differentiation of meaning.

Table [3] lists the number of nearest neighbours expected
from the distribution estimated from pairwise distances when
the Binomial distribution expects 1 and 100 nearest neigh-
bours, as listed in columns 2 and 3 respectively. For exam-
ple, the INEX, 4n40m collection expects on average 1793.26
signatures to be nearest neighbours to other signatures when
purely random signatures would expect 1. When purely ran-
dom signatures expect on average 100 nearest neighbours,
the INEX,4ndom collection expects 3673.78 nearest neigh-
bours. These values are linearly interpolated as they exist
in between two Hamming distances under the cdf. These
values are the start and end points for the curves in Figures
and Table [2] lists the opposite, i.e., the number
of nearest neighbours expected from the Binomial distribu-
tion when the distribution estimated from pairwise distances
expects at 1 and 100 nearest neighbours.

Table [] lists the number of signatures expected within a
Hamming distance of %. This summarises the distributions
in a single number, where the difference between the distri-
butions indicates the fraction of the signatures shifted from
the left hand side of the Binomial distribution to the right
by the indexing process. It is also the value under the pm f
at g which is also the y value of the cdf at %.

The difference in distributions between the INEX refer-
ence and random subsets indicates that the reference run
is not suitable for estimating properties of the entire col-
lection. This is to be expected as the reference run has
been biased by the queries used for ad hoc retrieval. Table
shows that INEX,.c ference €xpects 567.86 nearest neighbours
where as INEX;4ndom expects 1793.26 nearest neighbours
when purely random signatures expect 1 nearest neighbour.
This indicates that the reference run is less clustered than
than a random sample from the INEX Wikipedia collection.
This can explained because the documents returned by the
reference run are more diverse than a random sample from
the collection. As the diverse topics are further apart, i.e.
more dissimilar, there are more inter-topic distances than



intra-topic distances, leading to less signatures being located
nearby. Note that the reference run is determined by only
searching in a few dimensions determined by the keywords in
the queries, where as the pairwise distances compare entire
documents, using their entire vocabulary.

6. DISCUSSION

The results presented indicate why TopSig is only com-
petitive at early precision in comparison to probabilistic and
language models for ad hoc retrieval. As the Hamming dis-
tance increases when proceeding down the ranked list more
and more documents become equidistant. This can be seen
in Figures and [3| containing plots of probability mass
functions indicating the expected number of documents at a
given Hamming distance. The curves quickly increase to the
point where thousands of documents are equidistant. This
is likely to be a property of any vector space model due to
the “curse of dimensionality”. Only the tails of the distri-
bution of distances are useful for differentiation of relevant
and non-relevant documents.

Approaches to near duplicate detection such as SimHash
[3] use short signatures that are 64-bits in length. This only
allows the few nearest neighbours to be differentiated which
is adequate for near duplicate detection. This can be ex-
plained by the probability mass functions in Figures
and [3] The x axis for 64-bit signatures will only contain 65
positions for the Hamming distances 0 to 64. As the num-
ber of equidistant documents is a function of the x value, or,
Hamming distance, many documents will appear equidistant
much sooner than with signatures of 1024-bits in length.
The same curve has to be squeezed into 65 positions instead
of 1025 positions. A duplicate is expected to be very sim-
ilar to other documents it is a duplicate of, so these short
signatures will suffice. In contrast, TopSig uses much longer
signatures that allow for better separation for tasks such as
ad hoc retrieval and clustering.

Document clustering places similar documents into groups
of topically related documents. The results presented in this
paper suggest that only document clusters that exist within
the local neighbourhood of a vector space are interpretable.
As the documents within a cluster become more dissimilar,
the grouping of these documents loses its meaning for the
same reason precision at higher recall suffers in ad hoc re-
trieval, there are many equidistant documents that are un-
able to be differentiated from one another. This suggests
that only a large number of smaller document clusters are
meaningful. The maximum interpretable radius for a docu-
ment cluster can be esimated heuristically from the distribu-
tions of estimated from the pairwise data. This heuristic is
to stop at the point where the distribution starts to sharply
increase. In Figure [1| this would be approximately a Ham-
ming distance of 450, or, the point before the elbow in the
left hand side of the distribution occurs.

Furthermore, TopSig is likely to be useful for increased
computational efficiency of document-to-document compar-
isons. Examples of this include clustering, classification, fil-
tering, relevance feedback, near duplicate detection and ex-
plicit semantic analysis. All of these tasks can exploit the
left tails of the probabilty mass function distributions de-
picted in Figures in[I] 2] and B] In fact, TopSig has been
shown to provide a 1 to 2 magnitude increase in process-
ing speed for document clustering |7] over traditional sparse
vector representations.

The analysis presented in this paper is expected to be use-
ful for any vector space model. It would be expected that
similar behaviour would be exhibited whether comparing
entire documents in the full vocabulary space of the term-
by-document matrix or comparing dimensionality reduced
documents in a continuous space such as those produced
by latent semantic analysis, principal component analysis
or random indexing.
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