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Abstract 

Does exercise promote weight loss? One of the key problems with studies assessing 
the efficacy of exercise as a method of weight management and obesity is that mean 
data are presented, and the individual variability in response is overlooked. Recent 
data have highlighted the need to demonstrate and characterise the individual 
variability in response to exercise. 

Do people who exercise compensate for the increase in energy expenditure via 
compensatory increases in hunger and food intake? We address the physiological, 
psychological and behavioural factors potentially involved in the relationship between 
exercise and appetite, and identify the research questions which remain 
unanswered. 

A negative consequence of the phenomena of individual variability and 
compensatory responses has been the focus on those who lose little weight in 
response to exercise; this has been used unreasonably as evidence to suggest that 
exercise is a futile method of weight control and managing obesity. 

Most of the evidence suggests that exercise is useful for improving body composition 
and health. For example, when exercise-induced mean weight loss is <1.0kg, 
significant improvements in aerobic capacity (+6.3 ml.kg-1.min-1), systolic (-6.00 
mmHg) and diastolic (-3.9 mmHg) blood pressure, waist circumference (-3.7cm) and 
positive mood still occur. However, people will vary in their responses to exercise; 
understanding and characterising this variability will help tailor weight loss strategies 
to suit individuals. 
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I) Introduction 

Exercise is frequently used as a method of weight control through an increase in 

energy expenditure with the aim of creating a sustained energy deficit.  Of course, 

compliance to the exercise itself is an important issue, however, of more interest is 

the issue of compensatory responses which undermine the ability of exercise to 

promote the theoretical weight loss.[1] 

There have been a multitude of studies examining the acute effects of exercise on 

compensatory responses in energy intake. The acute effects of exercise appear to 

be consistent and relatively well understood. The majority of research demonstrates 

that acute exercise does not increase hunger, desire to eat or energy intake.[2-6] 

Even when there is a marked increment of 4.6 MJ/d in acute exercise-induced 

energy expenditure (EE), and energy intake (EI) is monitored for 2 days, there is no 

automatic increase in EI.[7] Although the acute effects of exercise on EI are 

generally consistent, there are a few rare examples of a coupling between EE and 

EI.[8-9] More recently partial compensation to an exercise-induced energy deficit has 

been reported.[10-12] Exercise has also been demonstrated to improve the 

sensitivity of appetite control, and that regular exercisers are better at detecting the 

difference in energy content between low- and high-energy preloads compared with 

their sedentary counterparts.[13-14]  

Overall, the evidence suggests that no or only slight partial compensation occurs in 

response to an acute exercise-induced energy deficit. Therefore, exercise should 

provide a successful method of weight control. The effects of chronic exercise on EI 

and appetite are less clear. Long term studies that have monitored EI for between 16 

weeks and 18 months in overweight men and women also demonstrated no 

significant change in EI across the intervention.[15-17] Weight loss is typically low 

and variable in most of these long term studies. It is important to note that there is a 

tendency for the exercise sessions to be unsupervised, the absolute increase in EE 

is low, and the methods used to measure food intake are not reliable. Therefore, it is 

possible that the increase in exercise-induced EE is insufficient to up-regulate EI to a 

detectable level. Even when the exercise was supervised and induced an energy 

deficit of approximately 8.2 MJ/wk for 16 months, there was no increase in EI.[18]  

These data suggest that there tends to be a lack of an increase in EI to compensate 
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for an exercise-induced energy deficit in overweight and obese individuals. However, 

increases in EI in response to long term exercise have been reported in lean 

participants.[19-21] Therefore, one hypothesis is that lean individuals demonstrate a 

compensatory increase in EI to defend their relatively lower body fat reserves. It is 

important to recognise that for a majority of published research, mean data are 

reported which may disguise other trends in the data – for example individual 

variability. A series of systematic studies has recently provided data to identify and 

characterise individuals who experience different changes in body weight after 12 

weeks of supervised exercise.[22-24] These data have revived interest in 

characterising and explaining the variability by focusing on compensatory responses. 

 

II) Individual variability: do all people respond similarly? 

Whilst there is some substance in the claim that some or all of weight loss is 

regained, or weight loss eventually reaches a plateau (e.g.,[25-28]) the overriding 

assumption is that people should experience similar weight loss in response to 

exercise. Evidence indicates that even when the exercise is supervised and closely 

monitored, there is variability in weight change - both in the direction and 

magnitude.[24] Figure 1 shows individual changes in body weight after a 12-week 

supervised exercise intervention in overweight males and females. The intervention 

consisted of 5 high-intensity (70% VO2max) exercise sessions per week. The 

intensity and duration was fixed for all individuals and the energy expenditure of 

each exercise session was ~2MJ. These demonstrate that despite the same 

imposed increase in EE individuals will vary in their body weight response.  

 

Figure 1 here 

 

The phenomenon of individual variability in response to energy balance 

perturbations is certainly not new.[29-31] However, exercise-induced individual 

variability has yet to be exploited. In particular the characterisation of the variability - 

the behavioural and physiological compensatory processes need to be determined. 

More recently, individual variability has attracted new interest.[1, 22, 24, 32-36] 

Unfortunately, reports of the variability in exercise-induced weight change results in 
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the media using the evidence unreasonably ([37-38]; 

http://www.telegraph.co.uk/science/6083234/Health-warning-exercise-makes-you-

fat.html; http://www.time.com/time/health/article/0,8599,1914857,00.html), to argue 

that exercise is a futile method of weight loss, by unjustly focusing on those who 

experience no or little weight loss. We acknowledge that some individuals do 

experience minimal exercise-induced weight loss and that these individuals need 

further examination. However, exercise should be portrayed more positively. Overall 

the evidence demonstrates that exercise does lead to improvements in body 

composition and fat mass loss[39], and more importantly, the beneficial health 

effects of exercise are not restricted by the absence of, or a low weight loss. Based 

on changes in body weight after 12 weeks of supervised exercise, two groups were 

identified: responders and non-responders. Despite the non-responders losing 

significantly less weight than the responders (0.9 v 5.2kg), they still experienced 

marked improvements in blood pressure, waist circumference and VO2max (see 

Table 1). Rather than using individual variability as an opportunity to deter those who 

experience poor weight loss from exercising, there is a need to understand what 

accounts for the variability and how that information can be used to develop weight 

management strategies to facilitate weight loss (and maintenance) in those people. 

Further, there is a need to educate people that improvements in health occur even in 

the absence of lower than expected weight loss. The concept of susceptibility to 

weight gain, and resistance to weight loss, has been discussed in detail 

elsewhere.[40-41] There is an urgent need to determine why some people lose less 

weight than is theoretically expected in response to energy balance interventions; in 

particular, exercise interventions. 
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Table 1 

Variable Group Absolute change % Change 

Body Mass (kg)  Responders 

Non-Responders 

-5.2 

-0.9 

-5.7 

-1.0 

 

Fat Mass (kg) Responders 

Non-responders 

-4.9 

-1.2 

-15.3 

-4.7 

 

Lean Mass (kg) Responders 

Non-Responders 

-0.3 

+0.3 

-0.6 

+0.4 

 

Waist Circumference (cm) 

 

Responders 

Non-Responders 

 

-6.0 

-3.7 

 

-5.8 

-3.7 

 

VO2max (ml/kg/min) 

 

Responders 

Non-Responders 

+9.1 

+6.3 

+32.5 

+23.0 

 

Diastolic blood pressure (mmHg) 

 

Responders 

Non-Responders 

 

 

-3.4 

-3.9 

 

-3.7 

-4.6 

 

Systolic blood pressure (mmHg) Responders 

Non-Responders 

-2.9 

-6.0 

-1.9 

-4.3 
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III) Exercise-induced physiological processes of appetite control 

 

i) Gastric emptying and gut physiology 

Given the central role that the gut and its related hormonal activity play in appetite 

control, it is possible that they also moderate the responses to acute or chronic 

exercise. Gastric distension, in combination with the presence of nutrients in the 

small intestine contributes to satiety.[42-43] Gastric emptying inevitably affects food 

intake and appetite control through the delivery of nutrients to the small intestine.[44] 

The classical studies reported an inverse relationship between the rate of gastric 

emptying and satiety.[45-47] More recently the importance of considering the 

biphasic role of gastric emptying in satiation (meal size) and satiety (inter-meal 

interval) has been highlighted, with the suggestion that a decrease in the initial 

emptying rate could result in a delay in the release of potent signals involved in meal 

termination.[48] As satiation and satiety are important processes in appetite 

regulation, inter-individual differences in gut physiology and the strength of these 

signals could contribute to variability in exercise-induced weight loss. 

Surprisingly, very few studies have directly examined the effects of exercise 

on gastric emptying and appetite. A majority of studies conducted on exercise and 

gastric emptying have focused on the efficacy of providing optimal rates of 

carbohydrate and fluid replenishment as ergogenic aids in sport. Overall, the 

evidence points to a delay in gastric emptying with strenuous exercise (>70% 

VO2max).[49-57], whilst mild to moderate exercise stimulates (i.e., accelerates) 

gastric emptying.[54-55, 58-60] There have also been reports of no change in gastric 

emptying with moderate intensity exercise.[52, 61] Differences in study methodology 

such as test meal properties and exercise parameters may account for this 

inconsistency.  

Mechanisms proposed which could contribute to exercise-induced alterations 

in gastric emptying include changes in contraction frequencies, antral area[62] and 

gastric myoelectrical activity[63-64], hormonal[56, 59, 65] and neural factors (mainly 

vagal in origin)[58, 66], gut blood flow[54] and the mechanical effects of “jostling of 

the gut”[54, 56, 59, 67] during exercise.  
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 In terms of adaptation to regular exercise, very few studies have examined 

the impact of chronic exercise exclusively on gastric emptying at rest or during 

exercise. Despite not controlling for age, Shimamoto et al[68]  reported that at rest, 

gastric emptying was slower in inactive compared to active elderly individuals, which 

was associated with decreased gastric electroactivity in the inactive group. In a cross 

sectional study a faster basal rate of gastric emptying was observed in marathon 

runners compared to sedentary controls.[69] Training-induced enhanced 

parasympathetic tone was proposed as one possible explanation.  

Of course, physical activity (hence EE) might not be the only factor to vary 

between inactive and active people. Dietary habits, including total EI, frequency of 

eating and macronutrient intake could also vary. Collectively, these dietary factors 

could affect gastric motility, via the quantity, frequency and quality of nutrients which 

pass through the gut and small intestine. A high-fat/low-carbohydrate diet attenuates 

the effects of fat on gastric emptying[70-71]  and intestinal transit.[72] Harris et al[73] 

reported rapid orocecal transit time (OCTT) in chronically active individuals with 

concomitant high energy intakes, and concluded that the high energy intake 

associated with chronic exercise may be associated with significant gastrointestinal 

adaptations (Figure 2). However, the causal nature of this association is not possible 

to determine from this cross sectional study. It could also be speculated that 

increased physical activity levels may have led to faster OCTT and thus higher 

caloric intakes as a result of a shorter satiety period. 

 

Figure 2 about here 

 

ii) Appetite Peptides 

Appetite related peptides play an important role in the stimulation or inhibition of 

eating in accordance with the principles of energy balance. For example, ghrelin is 

an orexigenic peptide secreted from the stomach.[74] Increased postprandial ghrelin 

suppression is associated with reduced appetite.[75] The majority of studies indicate 

that acute exercise has no influence on total ghrelin (TG) concentrations.[76-81] 

One study showed that TG levels are suppressed for an hour after the cessation of 
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exercise[82], whilst 3-h of moderate intensity exercise has been shown to increase 

TG levels.[83] The consensus is that acute exercise appears not to influence TG 

levels independent of mode, intensity or metabolic state in normal weight (NW) and 

overweight/obese adults.[84]   

Unfortunately, few studies have examined the active component of the 

hormone – acylated ghrelin (AG).  The first study to investigate AG has shown that 

running for 60 min at ~75% VO2max caused a suppression of this orexigenic 

peptide, with a simultaneous suppression of appetite during and immediately post-

exercise in NW trained men.[85]  This evidence suggests that TG and AG respond 

differently to exercise.  Further to this, TG and AG were measured in both NW and 

obese adults who cycled until exhaustion.[86] No change in TG was evident but AG 

decreased significantly in both groups after exercise even though the obese group 

reached exhaustion earlier than the NW group. The results of this study emphasise 

that the mechanism causing the decrease in AG during exercise is independent of 

adiposity status or acute exercise.[86]  

Fewer studies have investigated the effect of acute exercise on anorexigenic 

gut peptides.  Cholecystokinin (CCK), polypeptide YY (PYY) and glucagon-like 

peptide-1 (GLP-1) are examples of anorexigenic peptides released in response to 

intestinal nutrients.[74] One of the first studies in this area investigated the effects of 

60min cycling (at 65% HR max) vs rest (control) on gut peptides and subsequent 

energy intake in twelve lean adults after consuming a fixed breakfast.[87]  There was 

a significant exercise-induced increase in PYY, GLP-1 and pancreatic polypeptide 

(PP), but no change in TG. The GLP-1 continued to be elevated into the post-

exercise period, whilst the increase in PYY was short-lived.  A similar study (cycling 

at 50% VO2max for 60min), also reported that both PYY and GLP-1 were 

significantly increased by exercise but TG levels remained unaffected.[88] 

Of course, in acute exercise studies, weight loss is not an issue, whereas in 

chronic studies in which weight loss occurs, changes in peptides will also be 

associated with body composition. A significant increase in fasting TG plasma levels 

has been reported after exercise-induced weight loss in NW[89], overweight/obese 

adults[90] and in overweight/obese children.[91-92] However, no change in TG 

plasma levels was reported in overweight twins after 3 months of supervised 
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exercise, inducing a 5kg weight loss.[93]  Regarding AG, no change in fasting 

plasma levels after long-term exercise was reported in overweight children[92] and 

adolescents.[94] However, a significant increase in fasting and postprandial AG 

levels was reported in NW and overweight adolescents after 5 days of supervised 

exercise - but no change in TG.[95] We have also recently shown a significant 

increase in fasting AG plasma levels, despite no change in TG, in overweight/obese 

adults after 12-weeks of supervised exercise, inducing an average 3.5kg weight 

loss, together with a significant increase in the postprandial suppression of AG – see 

Figure 3.[96] 

 

Figure 3 about here  

 

Although the increase in TG and/or AG plasma levels observed in some 

exercise-induced weight loss studies loss can be seen as a counter-regulatory 

mechanism to try to restore EB, TG has been shown to return to baseline levels with 

sustained weight loss maintenance, both in children[91] and adults[97], suggesting 

that TG may be involved in the regulation of acute, but not chronic, changes in EB.  

It remains to be seen if the same is true for AG, since changes in AG do not 

necessarily parallel changes in TG. 

Evidence regarding the impact of chronic exercise on the release of 

anorexigenic gut peptides is relatively scarce.  Long-term exercise has been shown 

not to change fasting CCK in active men [98], but induce a slight increase in fasting 

and postprandial PP, in previously sedentary NW men[99] and a significant increase 

in fasting PYY plasma levels in overweight adolescents.[94] Exercise-induced 

weight loss has no impact on fasting PYY or GLP-1 plasma levels, but leads to a 

tendency towards an increase in the delayed release of GLP-1 (90-180 min) after a 

meal, in overweight/obese adults.[96] Moreover, no change in fasting GLP-1, but a 

significant increase in GLP-1 release in the first 30 min post-prandially was reported 

in NW and overweight adolescents in response to five consecutive days of 

exercise.[100]   
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Similar to gastric emptying, habitual diet can influence appetite related 

peptides profiles. A high-fat/low-carbohydrate diet attenuates the secretion and 

action of gut peptides including CCK, PYY, GLP-1 and ghrelin.[101-104] The 

interaction of exercise with habitual diet is important to consider as these effects 

may undermine any potential beneficial effects of exercise on appetite control and 

therefore contribute to the variability in compensatory responses.  

To the best of our knowledge no studies have systematically examined the 

complex interactions of changes in gastric emptying and gut peptides and alterations 

in subjective and objective measures of appetite in response to acute or chronic 

exercise. Therefore, this is an area which needs to be explored because variability in 

compensatory eating responses could be explained by gut-related activity. 
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iii) Substrate oxidation 

Consistent with a psychobiological approach to appetite control, in which 

physiological mediators act as drivers of behaviour [40], it is possible that exercise-

induced changes in substrate metabolism play an important role in changes in 

appetite and food intake. Substrate metabolism has long been implicated in the 

energostatic control of EI, in which fatty acid oxidation (FAO) is thought to mediate EI 

via the maintenance of post-meal satiety.[105] While the mechanisms are poorly 

understood, changes in hepatic energy status (hepatocellular ATP/ADP ratio) 

resulting from altered FAO may influence EI via the stimulation of vagal afferent 

nerve activity.[106] Aerobic exercise is known to alter substrate utilization and 

availability during and following exercise. This may influence the regulation of EI, as 

it has been suggested that short-term feeding behaviour is designed to maintain the 

body’s glycogen stores at a specific set point e.g. the Glycogenostatic theory.[107-

108]. Due to its limited capacity for storage, challenges to glycogen availability (via 

diet or exercise) may act an internal biological cue that elicits feeding in order to 

restore glycogen levels.[107] However, evidence to support a direct link between 

substrate metabolism during exercise and compensatory eating is limited[109] and 

contradictory.[110] Recent evidence suggests that the maintenance of CHO balance 

plays a role in the short-term regulation of EI. Burton et al[111] reported that a 

positive CHO balance at the end of a six hour ‘high energy turnover’ condition 

(involving exercise and the immediate restoration of energy balance) was associated 

with lower ad libitum EI at a subsequent buffet meal than following a ‘low energy 

turnover’ (non-exercise) condition. Despite differing nutrient balances during the 

conditions, CHO balance following the buffet meal was identical, suggesting that 

feeding was driven by the need to restore CHO balance to a set level. This is 
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consistent with the finding that EI following a day of dietary CHO deprivation was 

designed to restore CHO balance rather than energy balance.[112] Where CHO 

balance has been measured over longer periods (1-3 days) following the 

manipulation of glycogen availability, a negative CHO balance (indicating greater 

CHO oxidation than intake) has been shown to be predictive of greater ad libitum EI 

over subsequent days.[111, 113-116] Furthermore, a negative carbohydrate balance 

has been shown to be predictive of weight gain over a four year follow-up 

period.[117] While inferences concerning glycogen availability based on short-term 

CHO balances should be made cautiously, the partitioning of dietary CHO for 

storage rather than oxidation appears to be associated with lower EI and more stable 

body weight. 

 

 

III) Does exercise alter food and taste preferences? 

A contributor to the compensatory response to exercise could be alterations in food 

and taste preference.[118] In a recent review, Elder & Roberts[119] identified 12 

studies investigating the acute effect of exercise on food palatability and taste 

perception.[9, 120-130] We have since identified a further 6 studies that contribute to 

this literature.[131-136] In terms of taste perception and preference, the outcomes 

are rather variable and show increases, no change and decreases in acuity of taste 

perception and rated preference for tastes after exercise. This between-study 

variation may be explained by differences in the exercise protocols adopted. Those 

studies employing longer and higher intensity exercise sessions (120-180 minutes) 

tended to find effects of exercise[124, 130], while shorter, lower intensity exercise 

(10-30 minutes) studies did not report significant changes.[123, 125] Effects were 

more likely to be reported for perception and preference of salt than sweet or bitter 

taste. This suggests any effect of exercise on taste perception and preference is 
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likely to be small or subject to a threshold of physical exertion or energy expenditure. 

Currently there are no studies that have independently examined the roles of 

exertion and expenditure on taste perception and taste preference after exercise. 

Other studies have tested the effect of exercise on the palatability of whole meals or 

food items more generally.[122, 126] King et al[122] found increased palatability 

ratings after high fat and low fat test meals, while Lluch et al[126] found increased 

ratings for low fat foods only. Finlayson et al[137] measured hedonic response to 

images of food immediately before and after acute exercise at baseline and following 

12 weeks of daily moderate intensity exercise. The authors reported an overall 

decrease in palatability ratings over the 12 weeks, however acute increases in food 

preference after the exercise session was associated with poorer weight loss 

response to the intervention. Finlayson et al[132] measured reaction times – an 

implicit measure of wanting for food - in response to foods varying in fat content and 

sweet taste after 50 minutes moderate intensity cycling (compared to no exercise) 

followed by a test meal. The authors observed increased reaction times (increased 

food wanting) after exercise among those participants who increased their EI 

compared to those whose EI did not change. The findings that individual differences 

in the hedonic evaluation of food after exercise are linked with food intake and poor 

weight loss outcome suggest that altered food preferences are a stable characteristic 

that may partially explain compensatory responses to exercise. 

Exercise-induced changes in food preference imply a change in the hedonic or 

motivational response to food. These processes can be understood as separable 

psychological components of liking and wanting that can be dissociated in the 

brain[138] and behaviourally in response to acute exercise.[132] It has been 

hypothesised that exercise may act as a buffer for reward driven eating.[139] In rats, 

chronic exercise has been shown to decrease the reinforcing value of self-

administered cocaine.[140] However it is also possible that exercise at the acute 

level has an enhancing effect on reward (similar to a low dose of an addictive drug) 

via a sensitizing action.[141] The deliberate choice of foods with high hedonic value 

(e.g. fatty or sweet tasting ‘treats’) to reward virtuous behavior or to regulate changes 

in psychological states could be associated with exercise-induced changes in mood 

(e.g.[135])  or stress.[136] The effects of exercise on food preference can be linked 

with equal importance to the metabolic and cognitive consequences of engaging in 

physical activity. For example, the effect of exercise on food preference can depend 
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on eating behaviour traits of the population studied such as Restraint and 

Disinhibition.[122, 126, 142-143]  

Exercise-induced changes in food reward could be an important consideration in the 

efficacy of exercise as a means to reduce overweight.  In particular, an enhanced 

motivational drive or wanting for food after exercise may help to explain why some 

people overcompensate during acute eating episodes.[132] Some individuals could 

be resistant to the beneficial effects of exercise due to a predisposition to 

compensate for exercise-induced energy expenditure as a result of physiologically or 

psychologically modulated changes in food preference. 

 

 

IV) Psychological processes and behavioural traits 

 

There is evidence to suggest that eating behaviour traits measured using the Three 

Factor Eating Questionnaire[144] exert an influence on food intake and that they also 

play a role in weight loss interventions.[143] The factors of Disinhibition and 

Restraint in particular, have emerged as important eating behaviour traits which 

influence weight gain, weight loss and weight maintenance, thus can be deemed as 

psychological markers of appetite regulation. On the one hand, there are data to 

suggest that individuals with a high level of Disinhibition, are more susceptible to 

overcompensate for the energy expended during exercise[145], whereas exercise 

can also exert a positive influence over appetite control in individuals who show 

susceptibility towards opportunistic eating. For example, in lean women, an acute 

bout of exercise has been found to reduce motivation to eat and increase preference 

for low fat foods.[146] Conversely, in lean women with a high level of Restraint, an 

acute bout of exercise increased the perceived pleasantness of low-fat food and 

reduce the motivation to eat.[126] In concordance with this, lean and overweight 

males with high Restraint, did not show a counter-regulatory eating response (an 

overeating response initiated by the breakdown of cognitive Restraint) following a 

bout of moderate intensity exercise.[147] Therefore the influence of an acute bout of 

exercise appears to be beneficial, at least in the short-term, for men and women who 

exhibit a high Restraint score.  
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In longer term interventions there is a consistent and robust finding that successful 

weight loss is associated with a decrease in Disinhibition and Hunger, and an 

increase in Restraint (e.g. ([148-152]). Independent of the type of energy balance 

perturbation, individuals who are successful in losing weight, respond by increasing 

their control over eating (i.e., restraint) and reducing their opportunistic eating 

behaviour. More specifically, Butryn et al[153] found that individuals who showed a 

larger reduction in their level of Internal Disinhibition (e.g. eating in response to 

negative affect), experienced the greatest weight loss.[153] Two studies have 

examined the influence of exercise over a longer term on psychological aspects of 

appetite regulation. Keim et al[154] found that following a four-month exercise 

intervention (aerobic exercise or resistance training 5d/week), reduced-obese 

women could be separated into over- and under-compensators. Those who overate 

where characterised by a high Disinhibition and Hunger scores on the TFEQ, 

whereas the under-eaters showed a decrease in Disinhibition and Hunger scores 

and an increase in Restraint score during the intervention. In line with this, a recent 3 

month exercise intervention, designed to expend 500kcal/day, with no dietary 

intervention[22, 24], demonstrated that overweight and obese individuals with a 

higher baseline Disinhibition experienced a greater weight loss. In addition, those 

individuals who experienced a decrease in their level of Disinhibition and an increase 

in Restraint had a higher weight loss.[155] Figure 4 shows data originating from King 

et al[24] demonstrating how changes in TFEQ eating behaviour traits are affected 

differentially – depending on the actual weight loss experienced. That is, those who 

lost less weight than expected (non-responders) experienced lower decreases in 

Disinhibition and increases in Restraint than those who lost equal to, or more than 

the expected weight (responders). Of course, it is not clear whether it is exercise per 

se, or weight loss which is driving these changes – but it is clear that exercise can be 

used to modify eating behaviour traits which are associated with susceptibility to 

weight gain. By identifying and characterising psychological markers of eating 

behaviour the efficacy of exercise on weight loss could be improved. 

 

Figure 4 about here 
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Summary 

This review has identified the current state of play regarding the interaction between 

exercise and appetite – with a focus on individual variability and compensatory 

responses. It is clear that although the phenomenon of exercise-induced inter-

individual variability in responses was highlighted over 20 years ago - it hasn’t been 

exploited - and the characterisation of this variability can be used to identify 

resistance to exercise-induced weight loss and for more efficient weight 

management strategies. Resistance to exercise-induced weight loss is partially 

explained by orexigenic responses in eating behaviour, which are mediated by 

physiological and psychological processes. A better understanding of how these 

underlying processes collectively contribute to a lower than expected weight loss, will 

determine why for some, exercise is not the most effective weight loss method.   
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Information Box 

 

 

 

   

What is already known on this topic? 

Although there are several reviews of the effects of exercise on 
appetite, there is no information on the proposed mechanisms on the 
relationship. Therefore, there is information on the summary of how 
exercise affects appetite, but nothing on the various behavioural, 
physiological and psychological processes involved.  

 

What this study adds:  

This review adds value by providing a collective discussion of how the 
behavioural, physiological and psychological processes might 
influence compensatory responses to exercise, and partially explain 
the individual variability. 
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Table and Figure Legends 

Figure 1. Individual variability in changes in body weight in overweight and obese 
men and women (n=58) after 12 weeks of supervised exercise. Each histogram 
represents an individual’s change in weight. There was no difference between males 
(■) and females (□). Data from King et al, 2009a. 

Figure 2. Daily energy and nutrient intakes, and orocecal tranist times in 20 
physically active males. Data shows a negative correlation between mouth to large 
intestine (orocecal) transit time and daily energy intake. Data from Harris et al, 

(1991). 

Figure 3. Total ghrelin (A) and acylated ghrelin (B) plasma levels (pg/mL) during the 
post-breakfast postprandial period, before (♦) and after (□) a 12-week exercise 
intervention in overweight/obese individuals (n=15). Despite no change in TG, there 
was an exercise-induced significant increases in fasting (p=0.01) and postprandial 
suppression (p=0.009) of AG plasma levels. Values represent means ±SEM. 
Adapted from Martins et al, 2010.  

Figure 4. Mean (±SEM) changes in Three Factor Eating Questionnaire (TFEQ) 
scores of Restraint, Disinhibition and Hunger after 12 weeks of supervised exercise. 
Data is displayed for responders and non-responders who lost more than, and less 
than the expected weight respectively. 

Table 1. Changes in body mass, fat mass, waist circumference, blood pressure and 
VO2max in responders and non-responders after 12 weeks of supervised exercise. 
Adapted from King et al, 2009b. 

 

 


