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Abstract—A Flash Event (FE) represents a period of time
when a web-server experiences a dramatic increase in incoming
traffic, either following a newsworthy event that has prompted
users to locate and access it, or as a result of redirection
from other popular web or social media sites. This usually
leads to network congestion and Quality-of-Service (QoS)
degradation. These events can be mistaken for Distributed
Denial-of-Service (DDoS) attacks aimed at disrupting the
server. Accurate detection of FEs and their distinction from
DDoS attacks is important, since different actions need to
be undertaken by network administrators in these two cases.
However, lack of public domain FE datasets hinders research
in this area. In this paper we present a detailed study of
flash events and classify them into three broad categories.
In addition, the paper describes FEs in terms of three key
components: the volume of incoming traffic, the related source
IP-addresses, and the resources being accessed. We present
such a FE model with minimal parameters and use publicly
available datasets to analyse and validate our proposed model.
The model can be used to generate different types of FE
traffic, closely approximating real-world scenarios, in order to
facilitate research into distinguishing FEs from DDoS attacks.

Keywords-Flash Events, Modelling, DDoS Attacks

I. I NTRODUCTION

The termFlash Crowd(FC) was coined by Larry Niven in
a 1973 science-fiction story in which huge crowds of people
went back in time to visit historic events [1]. In the World
Wide Web context, a Flash Event (FE) refers to the situation
in which a large number of legitimate users concurrently
send access requests to a web-server, either following some
newsworthy event or as a result of redirection from popular
websites like Slashdot or other social media. This can lead
to a dramatic increase in incoming traffic and hence QoS
degradation. Some examples of FEs include popular news
websites experiencing a surge in incoming traffic after major
world events (earthquakes, 9/11 attacks), major sporting
events (Olympics), or presidential elections.

A Denial-of-Service (DoS) attack is an explicit attempt
by an attacker to disrupt the services of a provider intended
for its legitimate clients by consuming computing and net-
working resources. DDoS is the distributed form of DoS,
in which an array of compromised machines are used to
attack a server. Efficient and accurate detection of DDoS
attacks still remains an unsolved problem despite extensive
research. Ever-changing attack vectors and their increasing

complexity, as well as the potential for confusion with FEs,
make it difficult to build a generic detection model.

The degradation caused by unexpectedly high levels of
traffic, whether occasioned by DDoS or FE activity, can have
economic consequences and requires remediation. Recent
reports by Amazon [2] suggest that even a 100 ms delay in
response time causes an approximately 1% drop in overall
sales. Upon detection of DDoS, attack mitigation mecha-
nisms must be activated to filter out malicious traffic and
sustain uninterrupted services to genuine clients. Detection
of a FE, on the other hand, may be followed by the
activation of various load-sharing mechanisms such as Con-
tent Distribution Networks [3] to accommodate additional
legitimate clients trying to access web resources. One of
the prime differences between these two network anoma-
lies is their source. DDoS attacks are often caused by an
array of compromised machines, whereas a FE results from
requests by legitimate clients. However, there have been
cases where DDoS attacks have resulted from coordinated
‘hacktivists’ such as Anonymous instead of compromised
and pre-programmed machines1. In any event, a detailed
study of FEs and their characteristic features is essential
in order to understand how they may be differentiated
from similar looking DDoS attacks. We intend to use our
results to generate synthetic FE datasets which can closely
approximate a real-world scenario.

In this paper we attempt to address this issue by providing
a comprehensive study of FEs, categorising them as Pre-
dictable, Unpredictable and Secondary. We characterize FEs
in terms of three key components and present a server-side
model with minimal parameters that captures various char-
acteristic properties (duration, shape, intensification,source
IPs, resources accessed) of different FEs. Finally, we present
a detailed analysis of some publicly available datasets to
validate our proposed model.

The remainder of the paper is structured as follows.
Section II gives an overview of recent work done in the
field of FE modelling and simulation. SectionIII provides
a classification of FEs into three broad categories, while
SectionIV presents our proposed FE model based on three
characteristic components. SectionV presents a detailed
analysis of some available datasets of FEs in order to

1http://www.computerworld.com/s/article/9218528/



validate the proposed model. SectionVI summarizes the
work and describes the future directions of our research.

II. BACKGROUND AND RELATED WORK

A significant amount of research has been conducted
in workload characterization of web-servers [4]. However,
much of this work has been directed towards understanding
typical web-traffic behaviour to improve caching and con-
tent distribution capabilities [3]. Workload analysis of web-
servers during extremely heavy traffic situations, as in a FE,
is comparatively less researched. Comprehensive modelling
of FEs to describe their various aspects, and synthetic
generation of realistic FE traffic, needs to be explored to
better understand this network anomaly.

Ari et al. [5] proposed a simple model for Flash Crowd
traffic consisting of three phases: a ramp-up phase, a sus-
tained traffic phase and a ramp-down phase. Their proposed
model focuses on the time duration of each of the phases
(controlled by a parameter ‘shocklevel’) and assumes a
linear increase and decrease in the incoming traffic. This
seems overly simplistic as behaviour is likely to vary signif-
icantly between different types of FEs e.g., the traffic seen
during Slashdot triggered FEstends to increase quickly by
a large amount and then fade off slowly [6]. Such FEs occur
when short news articles are posted along-with a Web link
redirecting the reader to another web-server containing a full
description of the associated story, and the receiving web-
server can be quickly overwhelmed. In addition, their model
only represents incoming traffic. Research presented in [7]
analysed CoralCDN traffic, an open content distribution
network, and defined flash crowds as successive intervals
of time for which the rate of incoming requests to a fully-
qualified domain name increases exponentially. However,
that work focuses on aspects of online content service
delivery, rather than on developing a detailed model of FEs.

Bodik et al. [8] analysed five datasets for volume and
data spikes and used a closed-loop workload generator to
synthesize workload traffic in a test environment. Their
model is very similar to one proposed by [5] i.e. a linear
ramp-up and a ramp-down of traffic during a FE. Zhang et
al. [9] presented a model for themagnitudeof FCs (flash
crowds) in Bit Torrent. That model takes into account the
fact that the service capacity of a Bit Torrentswarm(a group
of peers sharing a torrent) increases with its peers, unlike
FCs seen in web-servers with finite capacities.

Research [3] characterized FCs and DDoS attacks, how-
ever it was based on the analysis of some private datasets.
There are only a limited number of public domain datasets,
representing various types of FEs and most are web-server
logs in Common Log Format, which makes it difficult to use
them for experimentation, e.g. by replaying the traffic overa
network to test various FE and DDoS detection mechanisms,
or by measuring their effects (such as CPU, Memory and
Bandwidth utilization) on the target server. Although this
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Figure 1. World Cup incoming traffic profile

lack of representative datasets is somewhat limiting, there is
nonetheless sufficient data available to make useful progress
in developing models of FE traffic.

III. C LASSIFYING FLASH EVENTS

The focus of our work is to model FEs by dividing them
into three broad categories:predictable, unpredictableand
secondary. Research presented in [3] briefly describes the
predictable and unpredictable nature of FEs. We extend that
work by presenting a detailed classification of FEs based on
some real-world examples and make use of our classification
subsequently in SectionIV to propose a general FE model.

A. Predictable FE

A predictableFE (henceforth pFE), can be defined as one
whose expected occurrence is knowna priori, thus allowing
network administrators to prepare for them using various
provisioning techniques such as load-sharing mechanisms
or CDNs. Some examples are product releases (e.g. by hi-
tech companies like Apple) or widely followed sporting
events such as the Olympics, where the expected time of the
incoming traffic burst is well known in advance. The time
when the incoming traffic will hit its peak can also be fairly
accurately estimated. Most pFEs are directed against servers
owned by big companies who can afford the necessary load
or content-sharing techniques to mitigate their effect.

The 1998 FIFA World Cup dataset [10] and NASA web-
server logs [11] are some of the few datasets available in
the public domain representative of a pFE. Figure1 shows
the daily traffic volumes experienced by the World Cup
websites. Each of the individual peaks or bursts of traffic
is essentially fine structure within the overall period and
represents individual FEs on a smaller scale than the overall
event [4]. We have analysed the traffic during the two semi-
final matches (73rd and74th day) of the 1998 FIFA World
Cup traffic (Figure1) for this paper. Figure2 presents the
semi-final peak requests.

B. Unpredictable FE

Events that are totally unexpected can, if sufficiently
newsworthy, cause a sudden and dramatic surge in network
traffic to a site that is thought to describe the event or
provide further leads. We use the termunpredictableFE
(henceforth uFE) to describe the ensuing burst of network
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Figure 2. World Cup semi-finals traffic profile
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Figure 3. Hourly hits on Wikipedia after the death of Steve Jobs

traffic. Provisioning for these events in advance is akin to
preparing for natural catastrophes like a Tsunami or an
Earthquake. Designing systems to handle such a catastrophe
is possible but may be economically infeasible due to its
rarity. The 9/11 terror attack led to such an uFE when major
news websites like CNN and MSNBC were overwhelmed
by the amount of incoming traffic, pushing their availability
close to 0% within minutes after its occurrence [12]. The
start and peak-load time of such events is unpredictable and
sometimes difficult to identifypost hoc. Their occurrence
frequency is relatively lower than pFEs. Figure3 is an
example of a uFE when the popular website Wikipedia
experienced a sudden increase in its hourly hits following
the death of Steve Jobs2. Similar traffic was also observed
following the death of Michael Jackson.

C. Secondary FE

There is a third category of FE, which we call asecondary
FE (henceforth sFE). These kinds of FE usually occur
when a brief article, alongwith a web-link, often related
to an interesting news item, but not as newsworthy on a
world-wide scale as a uFE, is posted on widely followed
websites like Slashdot. This can capture the attention of a
large number of followers and redirect a high percentage of
them to another website in search of additional information.
When these (usually user-posted) articles contain links to
poorly resourced websites, they can easily result in the
redirection of an unprecedented amount of traffic to these
small websites, which exceeds their available resources and
eventually cripples them. Once again, the event (article
posting) is unpredictable, and the peak-load time is likewise

2http://dom.as/2011/10/07/steve-jobs/
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Figure 4. Incoming traffic profile for CAIDA DDoS attack dataset

relatively difficult to predict. Provisioning for such events
can be challenging but is more feasible than for uFEs.
Anderson [6] show the incoming traffic patterns of a sFE.
The receiving server experiences a‘phase-transition’from
virtually no traffic to heavy traffic in a short time.

Table I summarizes the classification of FEs in terms
of Predicted Start-time, Predicted Peak-load Time, Typical
Peak Value, Provisioning and Occurrence Frequency. We
argue also that most of pFEs are against web-servers which
can afford the cost of web-content outsourcing though CDNs
and other load sharing mechanisms. Hence, even during peak
load they are not as badly affected as those subjected to
sFEs and uFEs e.g., a Slashdotted website or various news
websites after a large scale natural calamity.

IV. FLASH EVENT MODELLING

For maximum utility, our work is intended to model FEs
using only available server-side information. We hypothesise
that a FE can be described in terms of the following
three components: volume of incoming traffic, source IP
addresses generating the traffic volume and web-resources
accessed during the FE. We aim in future work to use
these components along with some other server-side system-
based parameters like CPU utilization, to identify FEs and
to distinguish them from DDoS attacks, which are inevitably
similar in some respects. We have done some preliminary
work on the rate of change of new IP addresses sourcing
website traffic [13, 14], also on how that varies between
DDoS and FE activities [15], and intend to consolidate and
extend that work using the FE model developed here.

A. Volume of Incoming Traffic

In contrast to a DDoS attack, during a FE (more precisely
during a sFE or uFE) it is unlikely that the entire web
community gets simultaneously informed and goes online to
get additional information. It usually takes time for the news
that is the root cause of a FE to spread across the world.
Hence, even though the incoming traffic to the web-server
increases sharply, it is not as immediate as in a DDoS attack,
assuming it does not mimic a FE. Figure4 shows the rate of
incoming traffic for a CAIDA ‘DDoS Attack 2007 Dataset’
[16]. Contrasting this with Figures2 and3 demonstrates that
the rate of incoming traffic for a DDoS attack is much higher



Table I
FLASH EVENT CLASSIFICATION

FEs Predictable Start-time Predictable Peak-load Time Typical Peak Value Provisioning Occurrence Frequency
pFE Yes Yes Medium Feasible High
uFE No No High Not feasible Low
sFE No No Medium Not Feasible Moderate

than for a FE (note that whereas Figure4 shows Time in
minutes, Figures2 and3 show it in hours).

For our traffic model, we define the ratio of the ‘peak
request rate’ (Rp) to the ‘average normal request rate’
(Rn), as observed by a web-server during a FE, as a
‘traffic amplification factor’ (Af ) (similar to theshock level
parameter of [5]). Each of the request ratesRn andRp are
expressed as the number of incoming requests per unit time.
Thus:

Af =
Rp

Rn

Af can be set to different values in our model to simulate
various FE scenarios. We consider a FE to have two major
phases: aflash-phaseand adecay-phase, and argue that the
‘plateau period’ orsustained traffic phase[5, 8] is extremely
short lived and orders of magnitudes smaller than that of
the other two phases, the flash-phase and the decay-phase.
Our analysis of real-world datasets in SectionV shows the
absence of any such plateau period.

The duration of the flash-phase and the decay-phase are
represented by∆Tf and∆Td respectively.∆Tf represents
the time it takes for the normal request rate (Rn) to reach
the maximum i.e.Rp. ∆Td is the time taken for the peak
request rate to decay to the normal request rate (Rn). We
argue that there is a difference in the relationship between
the durations of these two phases for the three different
types of FEs and first discuss this in regard to pFE. In
the case of a football match (and indeed many sporting
events), the event has a duration, from the start through
to its completion, and while people may be interested in
checking throughout, nonetheless we can arguably regard
completion of the event and posting of the final score as
‘the event of interest’. At that point we expect a peak in the
traffic volume and the rate of incoming requests to the web-
server to quickly decline and return to ‘normal’. If the web-
server has difficulty in handling the peak volume of requests,
then persistent delays (response time) from the server side
owing to network congestion, may force users to secondary
sources of information, thus causing a still faster declinein
the incoming traffic rate. For these reasons we posit that for
a pFE the decay time is comparable and possibly less than
the build-up time.

∆Tf > ∆Td

This differs from the research presented in [5] which models
ramp-down duration (∆Td in our case) as ‘n’ (constant)
times the sustained-phase duration.

However, in the case of uFEs and sFEs, there is no such
time-based ‘end of event’. Long after the actual occurrence
of the event, some section of the web-user community will
likely still be interested in it. Thus, there is a slow and
gradual decay in the incoming request rate for sFEs and
uFEs as compared to pFEs. Therefore, we can say that the
flash-phaselasts for much smaller duration than thedecay-
phasein sFEs and uFEs or∆Tf << ∆Td We now discuss
the two phases of a FE.

Flash-phase:During a FE, the excess load on the server
is mainly due to an increase in the overall number of clients
accessing the web-resource rather than in the number of
requests per client [3]. Apart from a small percentage of
enthusiastic clients, a majority of the clients participating
in a FE are mostly interested in a very specific set of
information related to that event [3]. Thus, we would expect
that the average number of requests per participating client
would remain relatively constant during a FE.

When a newsworthy event occurs, it generally takes finite
time for the news related to the event to spread across
the world. More and more people get interested and go
online to investigate. This leads to a dramatic increase in
the interested user population, which can be represented in
terms of the classic exponential growth model used in many
other domains. The exponential growth in user population
appears intuitive for uFEs more so than for pFEs. However,
we tested our proposed model against all three types of FE.

Based on these two propositions (relatively constant per
client request rate and exponential growth rate of interested
population), we can say that during theflash-phasethe
increase in rate of incoming requests is proportional to the
current rate i.e. it varies with time (t) as:

dR

dt
= αR

whereα is a flash-constant. Assuming that theflash-phase
starts at timet = to whereR = Rn, we obtain:

R = Rne
α(t−to)

The end of theflash-phaseis marked by timet = tf where
the incoming request rate reaches the peak i.e.R = Rp =
Af ×Rn Substituting these values gives theflash-constant:

α =
lnAf

(tf − to)

and the value for the incoming traffic during theflash-phase
(i.e. for to < t 6 tf )

R = Rne
lnAf

(tf−to)
(t−to) (1)



The start of the flash-phase i.e.to and the time of the
peak request rate (Rp) can be determinedpost hocvisually
or in real-time using Change Point Analysis (CPA). The
exponential increase of incoming traffic during the flash-
phase differs from the research presented in [5, 8] which
models the ramp-up phase as a linear function, and [7]
defines flash crowds using a quadratic growth model.

Decay-phase:At the start of this phase, the number of
incoming requests is at its peak and starts to decline. We
speculate three possible reasons for this behaviour. Firstly,
by this time the most interested users have the information
they were looking for and thus have moved on. Secondly, the
main web-server hosting the information reaches its serving
capacity and thus starts rejecting new connections. And
lastly, a prolonged response time from the primary web-
server starts to annoy users, forcing them to either return
later or to look for other sources of information (secondary
servers). The last speculation intuitively suggests that a
growth, possibly exponential, in the number of secondary
servers, providing the same information as the primary
server, contributes to the exponential decay in the number of
incoming requests to the main web-server. Hence, we argue
that during thedecay-phase, the rate of incoming requests
(R) decreases with time (t) as follows:

dR

dt
= −βR

whereβ is a decay-constant. At t = tf , R = Rp and at
t = td, R = Rn, thus

β =
lnAf

(td − tf )

and, the incoming traffic model during thedecay-phasei.e.
for tf < t 6 td

R = Rpe
− lnAf
(td−tf )

(t−tf ) (2)

whereRp = Af × Rn. The exponential decay model of
incoming traffic during the decay-phase (Equation2) differs
from [5, 8], which show a linear ramp-down and [7], which
models only the ramp-up phase. Before theflash-phase(0 <
t 6 to) and after thedecay-phase(t > td) we have:

R = Rn (3)

In summary, we have modelled the traffic volume for each
of the two main phases of a FE i.e.flash-phaseanddecay-
phase. We represent a FE as a set of three equations (1, 2
and3) with few configurable parameters (Rn, Rp, to, tf and
td) which are tuned to represent different FEs.

B. Source IP Addresses

The dramatic increase in the number of incoming requests
during a FE can be attributed to either a substantial increase
in the number of requests per participating client or an
increase in the overall population interested in that particular

event, or a combination of the two. Based on two FE
datasets, research [3] concludes that the per-client request
rate does not increase, but rather drops and remains lower
during FEs compared to other times. The analysis of a
pFE dataset presented later in this paper shows somewhat
different results. It shows a slight increase in the number
of requests per client with the onset of a FE. But it also
shows that the overall increase in incoming traffic volume
is mainly due to an increase in the interested population.

The analysis of a publicly available dataset presented in
SectionV shows how the number of source IPs increases
with the onset of a FE (i.e. att = t0) and continues to
increase during theflash-phasebefore starting to decline
over the decay-phase. Thus, during the course of a FE,
variations in the number of source IPs would be expected to
closely resemble variations in the incoming traffic volume.
Nonetheless, there are some reasons why the same model
may not necessarily be applicable to source IPs. For instance,
for source IPs, there are some complicating factors. Firstly,
the number of requests per client may not be constant in all
cases, and secondly, IP mapping (NAT, DHCP) may have
the effect of invalidating the assumption that the number
of clients is equivalent to the number of source IPs, thus
affecting the assumption of constant packets per IP.

C. Resources Accessed

The third component we have used to understand and
model FEs is the ‘randomness of resources’ being accessed.
We speculate that during a FE, barring a small percentage
of enthusiastic clients, most are normally interested in a
very specific set of information relating to that event e.g.
results of a match or presidential elections. In other words,
this translates into a greater concentration of resources being
accessed during the event as compared to the pre-event or
post-event period.

The analysis of a publicly available dataset used in this
paper confirms our speculation. The number of different
resources being accessed during the course of a FE decreases
considerably compared to other times. In this paper, we have
used entropy as the metric to measure this component. The
resource entropy starts to decrease, from its average value
with the onset of the FE and continues to drop for the rest of
theflash-phase, when most of the interested population start
looking for a very specific set of resources. Once the event
comes to an end, marked by the start ofdecay-phase, the
randomness of resources being accessed starts to increase
until the end of this phase, before returning to normal.
SectionV presents the analysis of this component.

V. A NALYSING FLASH EVENTS

Legal and privacy issues in obtaining real-world datasets
means that only a very limited number of datasets are
publicly available. Although some of these are old, they
represent real FEs, mostly pFEs, and still exhibit most (if not



Table II
DATASETS USED

Dataset Duration (hours) Granularity # Packets # Unique Source IPs # Unique Resources FE Type
Semi-final 1 20 seconds 42,373,729 160,704 38,892 pFE
Semi-final 2 20 seconds 34,131,050 152,020 38,102 pFE

Wikipedia Hits 43 hours 7,417,070 N/A N/A uFE
Slashdotted Website 80 hours N/A N/A N/A sFE

all) of the key characteristics that might be used to define a
FE. We have used traffic volume, source IP addresses and
resources accessed, where available, to validate our model.

A. Datasets

In this section of the paper, we validate the three compo-
nents (incoming traffic volume, source IP addresses gener-
ating the traffic, and web-resources accessed during the FE)
of our proposed model by analysing some of the existing
datasets available in the public domain, that represent dif-
ferent types of FE. The datasets used in the validation are
briefly described below and summarized in TableII .

1998 FIFA World Cup (pFE):This dataset is provided by
the Internet Traffic Archive [10] and contains all the HTTP
GET requests (along-with the resources accessed) made to
the 33 web-servers for the duration of the World Cup. The
dataset is in Common Log Format with source IP addresses
replaced by unique integer identifiers for privacy reasons.We
analysed the two peaks in the incoming traffic corresponding
to the semi-finals as two separate pFEs (see Figures1 and
2) and used that analysis to validate our model. The dataset
was sampled at one-minute intervals.

Hourly Hits on Wikipedia (uFE):This data was provided
by Domas Mituzas, who maintains a repository of page
view statistics for various Wikimedia projects3. We selected
records following Steve Jobs’ death as representative of a
uFE. The data provides hourly aggregates of requests and
covers a period of 43 hours (starting 16:00 hours UTC, 5th

October 2011) as shown in Figure3.
Slashdotted Website (sFE):Since there were no public

domain datasets representing a sFE, we used high-level
statistics of empirical data [6]. Although incomplete, this
shows network activity on web-servers in the Department
of Geological Sciences at Southern Methodist University,
after their website was listed on the front page of Slashdot
on June 15, 2003 and August 10, 2003.

TableII shows that, except for the 1998 FIFA World Cup
data, the other datasets available in the public domain lack
both ‘source IPs’ and ‘accessed resources’.

B. Analysis

We now present our analysis of the above datasets in
terms of three components we have used to model a FE
i.e. incoming traffic volume, source IP addresses generating
that traffic and web-resources being accessed during the FE.

3http://dumps.wikimedia.org/other/pagecounts-raw/
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Figure 5. Incoming traffic during 1st Semi-final

Incoming Traffic Volume:Figure 5 shows the actual
incoming traffic volume over the 20-hour period around
the 1st semi-final match during the 1998 FIFA World Cup.
The incoming traffic volume is represented as the number
of packets received per one minute sampling interval. The
rate of incoming packets before and after the FE is roughly
constant. This feature is represented by equation (3) of our
model. The match starts around the 420 minute mark on the
x-axis (to), continues for the next 162 minutes (∆Tf ), before
ending around the 580 minute mark (td). The 1st semi-final
match extended into a penalty shoot-out phase. During the
flash-phase, Rn increased by a factor of nearly twelve.

Except for the (FIFA World Cup dataset), the other
datasets were only available with hourly time resolution.
Hence, for comparison purposes, we have used one-hour
as the sampling interval for the FIFA World Cup dataset to
find the values of the model parameters (Rn, Rp, to, tf ,
td) as shown in TableIII . The time-based parameters (to,
tf , and td) indicate the instances of time (in hours) when
different phases started and ended and the requests rates
(Rn andRp) were calculated (for pFE) and observed (for
uFE and sFE) on a per-hour basis for comparative analysis.
Table III also shows the values for derived parameters viz.
the incoming Traffic Amplification Factor (Af ), α (flash-
constant),β (decay-constant), and the duration of flash and
decay phase i.e.∆Tf and∆Td, for the three datasets used.

It is interesting to note that the incoming traffic amplifies
(Af ) by nearly 600 times in case of the uFE. This substantial
increase in incoming traffic, combined with its relative
infrequency, makes it less feasible to have any provisioning
for such events. Another observation is the rate at which
the incoming traffic increases and decreases for each FE
as determined byα (flash-constant) andβ (decay-constant)
respectively. These constants have comparable values for the
two pFEs, whereas in sFE and uFE they differ substantially.
In the latter cases the incoming traffic tends to fade-off at



Table III
FLASH EVENT TRAFFIC MODEL PARAMETERS

FEs Rn Rp to tf td Af ∆Tf ∆Td α β

pFE: 1998 FIFA World Cup (1st Semi-final) 1,167,621 9,898,273 7 10 12 8.47 3 2 0.71 1.06
pFE: 1998 FIFA World Cup (2nd Semi-final) 1,032,715 9,785,128 8 10 12 9.47 2 2 1.12 1.12

uFE: Hourly hits on Wikipedia 1,826 1,063,665 8 10 43 582.51 2 33 3.18 0.19
sFE: Slashdotted Website 1,000 78,000 13 15 71 78.00 2 56 2.17 0.07
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Figure 6. Packets per Source IP during 1st Semi-final

2,000

4,000

6,000

8,000

10,000

12,000

 0  120  240  360  480  600  720  840  960  1080  1200

N
o.

 o
f u

ni
qu

e 
so

ur
ce

 IP
s

Time (minutes)

Figure 7. Unique source IPs during 1st Semi-final

a much slower pace as compared to the build-up phase,
whereas for the pFEs the incoming traffic appears to increase
and decrease at similar speeds. These parameters can be
configured and we intend to use them subsequently to
generate different types of FEs.

Source IP Addresses:As described previously, we expect
the per-client request rate to be almost constant during the
event. The analysis of the 1st semi-final match dataset,
however, slightly deviates from this speculation. It instead
shows a small increase in the per-client request rate for the
duration of the FE as shown in Figure6, which plots the
number of requests per unique source IP against time for
the 1st semi-final. Thus, it is the overall increase in the
participating population that causes a surge in the incoming
traffic during a FE. Figure7 shows the rate of increase and
decrease of unique source IPs during the event. It varies in
a similar fashion to the incoming traffic (Figure5).

We conclude that during a FE, the majority of the traffic
increase is due to an increase in the overall participating
population, although there is also a slight increase in the
per-client request rate as compared to the non-flash period.
This result differs from [3], which states that the per-client
request rate drops and remains lower during the flash period
as compared to other time periods.
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Figure 8. Resources accessed during 1st Semi-final

Accessed Resources:As the news causing the FE spreads
across the Web, more and more people go online to get
the related information. We argue that a majority of the
participating population is generally interested in obtaining
a specific set of information from the web-server. Thus the
number of different resources being accessed by the client
during a FE should be lower than during non-flash-event
times. One way to measure this attribute is Shannon entropy,
a measure of the uncertainty associated with a random
variable. Shannon’s formula [17] is used to compute Entropy
H , where0 6 H 6 log2N , andN is the number of discrete
random variablesX . In our analysisX represents aunique
web-resourcebeing accessed. We have used normalised
entropyHo, where0 6 Ho 6 1, given by:

Ho = −(
N∑

i=1

pilog2pi)/log2N

wherepi is the probability of that random variable. In our
analysis, the probabilitypi of each resource is its relative
frequency of occurrence in each one minute interval. Exper-
iments conducted for one-second and five-minutes intervals
gave similar results. Figure8 shows a drop in the normalised
resource entropy from the onset of the event and stays low
for the entire duration of the event.

C. Model Validation

In this section we use the equations presented in Section
IV, and values computed from real datasets, to generate
synthetic data to see how closely the model can replicate
real-world data. Due to the absence of resource request
information, our validation was limited to the incoming
traffic volume component of FEs. Also since, the dataset
for sFE and uFE had hours as the granularity level, we
decided to use the same granularity also for the pFE dataset.
The ‘belly’ shape in the original pFE data (between hours
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Figure 9. Traffic comparison for 1st Semi-final
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Figure 10. Traffic comparison for Wikipedia hits

7 and 10) seems to reflect a faster initial increase in the
traffic than our model followed by a tailing off towards the
peak. We intend to study this further in future work. Figures
9 and 10 compare real and synthetic data, for pFE and
uFE, generated using the proposed FE model for incoming
traffic. It shows that a simple exponential model, with few
configurable parameters, can be used to capture the essential
characteristics of a FE. This can be used to generate realistic
FE traffic, thereby facilitating research in FE detection and
its differentiation from DDoS attacks. Similar results were
obtained for sFE but as the original data was unavailable
[6], we opted not to include the results for synthetic data.

In contrast, the linear model postulates a plateau phase not
found in our analysis and a linear ramp-down phase, which
less closely models the actual data. The quadratic model
deals only with the ramp-up phase (cf. sectionsII andIV).

VI. CONCLUSION AND FUTURE WORK

We have shown that FEs can be closely approximated
by a simple mathematical model consisting of an expo-
nentially increasing flash phase and a decreasing decay
phase, regulated by an amplification factor. We have further
classified FEs into predictable, unpredictable and secondary.
The particular traffic profiles of each of these events can be
accurately modelled by varying a small set of configurable
parameters including the amplification factor and the time
durations of the flash and decay phases. Our future work
will be directed toward applying this model to the synthetic
generation of FEs with a view to developing techniques for
successfully distinguishing FEs from DDoS attacks.

This research was supported in part by the Australia-India
Strategic Research Fund.
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