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Abstract

The increasing popularity of video consumption from

mobile devices requires an effective video coding strategy.

To overcome diverse communication networks, video ser-

vices often need to maintain sustainable quality when the

available bandwidth is limited. One of the strategy for a

visually-optimised video adaptation is by implementing a

region-of-interest (ROI) based scalability, whereby impor-

tant regions can be encoded at a higher quality while main-

taining sufficient quality for the rest of the frame. The re-

sult is an improved perceived quality at the same bit rate

as normal encoding, which is particularly obvious at the

range of lower bit rate. However, because of the difficul-

ties of predicting region-of-interest (ROI) accurately, there

is a limited research and development of ROI-based video

coding for general videos. In this paper, the phase spectrum

quaternion of Fourier Transform (PQFT) method is adopted

to determine the ROI. To improve the results of ROI detec-

tion, the saliency map from the PQFT is augmented with

maps created from high level knowledge of factors that are

known to attract human attention. Hence, maps that locate

faces and emphasise the centre of the screen are used in

combination with the saliency map to determine the ROI.

The contribution of this paper lies on the automatic ROI de-

tection technique for coding a low bit rate videos which in-

clude the ROI prioritisation technique to give different level

of encoding qualities for multiple ROIs, and the evaluation

of the proposed automatic ROI detection that is shown to

have a close performance to human ROI, based on the eye

fixation data.

1. Introduction

The emerging mobile technologies have created a huge

demand for video streaming applications. Users increas-

ingly choose portable devices, including smart phones and

tablets, to consume visual media for the freedom to watch

anytime and anywhere in the easy to carry pocketsize de-

vice. In order to deliver high quality videos smoothly over

the wireless networks, it is important for content providers

to optimise the media for customers’s devices while at the

same time maintaining a high quality of service, especially

when the bandwidth becomes limited.

Detection of region of interest can be useful to provide

users with high quality videos by preserving both the con-

tent and the perceived quality. In video retargeting task

for example, the important regions can be preserved us-

ing methods such as cropping and scaling [16, 17], warp-

ing [23], and seam carving [2, 7] when adapting large res-

olution video to a smaller screen size. It is also possible to

allocate more bits to the region of interest at the cost of re-

duced bits in the background. In the videoconferencing ap-

plication for example, face is the object of interest. Rather

than transmitting the whole scene in a high quality video,

only the face region is encoded in high quality [5]. Similar

strategy can be applied to various types of videos, assum-

ing that viewers are mainly interested at ROI and would not

mind lower quality on the rest of the frame when the band-

width is limited. In addition, a bitrate adaptation technique

can be employed in such situation to adjust differently the

regions within each frame of streamed videos depending on

the network conditions [6]. Recent study in [21] shows that

ROI enhancement improves user perceived quality in low

bit rate sports video using a mobile phone (i.e. iPhone).

More recent results using the same device shows that in

the lower bit rate range (e.g. 300-500kbps), people prefers

watching ROI-based video, albeit with manually annotated

ROI [9].

One challenge for ROI-based video coding is to accu-

rately predict where people look when watching a particu-

lar scene. An ideal solution would be to track the viewer’s

eye movements in real time and selecting areas surround-

ing the point of gaze. This ultimate method of determining

ROI is unfortunately not practical due to the necessity for a

user wearing eye tracking device which is obtrusive. It also

suffers from technical and cost implications to be deployed
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in real time applications. The more practical approach is to

automatically predict the ROI by analysing the video con-

tents.

This paper proposes a novel technique for automatic ROI

detection and prioritisation of multiple ROIs for a visually

optimised video coding, which is then evaluated using the

eye tracking data from videos in DIEM database 1. The

videos contain documentaries, game video trailers, music

clips that are commonly watched in a daily basis. The

ROI-based video coding is implemented based on the open

source x264 to generate videos with H.264/AVC format,

a widely adopted standard for video encoding. Section 2

presents the related works. Section 3 describes the imple-

mentation of automatic region of interest detection, show-

ing the steps of how ROIs are obtained and prioritised. Sec-

tion 4 describes the implementation of ROI-based video en-

coder. The evaluation of automatic ROI detection and video

encoding are presented in Section 5. This is then followed

by conclusion remarks in Section 6.

2. Related Works

Due to the difficulties in designing a generic ROI that

would work effectively for arbitrary videos, research on

ROI-based video coding is usually limited to specific appli-

cations, such as videoconferencing based on face and skin

detection. Moreover, determining the region of interest is

a very subjective task since it tries to automate the process

of human cognition. Human’s vision is capable of natu-

rally focusing attention towards the interesting pixels that

stand out from the rest of a video frame, which in turn

can be interpreted semantically as a person and other ob-

jects. Computationally modelling of this ability has been

studied over a long period of time based on physiology,

psychology, and neural systems. In the field of computer

vision, early work by [13] and subsequent work building

on this research [10] suggest that visual attention is the re-

sult of a fast, pre-attentive, bottom-up, data driven saliency

detection; in conjunction with slower, task-dependent, top-

down, goal driven saliency detection. This biologically in-

spired model is quite dominant in the field because it has a

strong theoretical foundation in the study of human atten-

tion mechanisms.

Recently, many research efforts have directed their in-

terest toward computational model without strictly repro-

ducing biological structures of human vision systems. For

example, Ma and Zhang [18] generate saliency maps using

contrast analysis and then extract the attended areas using

fuzzy growing techniques. Zhai and Shah [24] calculate im-

age color statistics in order to generate pixel-level saliency.

Further, Achanta et al. [1] analyse a couple of saliency de-

tection methods and treat them as a filtering operation in

1http://thediemproject.wordpress.com

the frequency domain. A bandpass filter is then designed

to extract salient objects in the image. All the aforemen-

tioned research in general uses a core principle, whereby

regions that stand out from the surroundings capture atten-

tion. Thus, the saliency map may be generated using one or

more features of intensity, color, and orientation by evalu-

ating the relative contrast of image regions compared to the

entire image.

3. Automatic ROI Detector

The ROI is determined from the video’s saliency map.

The saliency map is generated from the reconstruction of

phase spectrum of the image’s Fourier transform based on

the technique presented in [8]. To enable the handling of

salient features of the image such as color, intensity, and

motion, in the frequency domain in a holistic manner, the

quaternion Fourier transform is used [20].

A video with a total number of T frames is processed

frame by frame as an image I(x, y, t), where x and y are

the location of each pixel and t = 1, 2, ..., T . For each input

image, the RGB color frame is decomposed into luminance

Y and two chrominance components, Cr and Cb [17]. The

motion feature M(t) is calculated by frame differencing,

M(t) = ‖Y (t)−Y (t−τ)‖ to capture the temporal saliency

between frames with the latency of τ .

The four features are represented by a quaternion image

q(t) which has four channels,

q(t) = M(t) + Cr(t)µ1 + Cb(t)µ2 + Y (t)µ3 (1)

where µi, i = 1, 2, 3, satisfies µ2
i = −1,

µ1⊥µ2, µ2⊥µ3, µ1⊥µ3, µ3 = µ1µ2. The q(t) can be fur-

ther represented in symplectic form, q(t) = q1(t)+q2(t)µ2,

where q1(t) = M(t) + Cr(t)µ1, q2(t) = Cb(t) + Y (t)µ1.

The Quaternion Fourier Transform (QFT) of a

quaternion image q(t) is then computed to obtain

Q(t) = Q1(t) + Q2(t), where Q(t) is the frequency

domain representation of q(t).
In polar form, Q (t is dropped for clarity sake) can be

represented as Q = ||Q|| expµΦ, where Φ is the phase

spectrum of Q and µ is a unit pure quaternion. To obtain

the image’s phase spectrum Qp, the ||Q|| is set to unity

(i.e. ||Q|| = 1) or by computing Qp = Q
||Q|| . The spatio-

temporal saliency map is obtained by convolving the qp with

2D smoothing filter g,

sM(x, y, t) = g ∗ ||qp||
2 (2)

where qp is the inverse Fourier transform of Qp.

The saliency map can be constructed in different sizes.

The variation in sizes simulates the various view distances

between the observer and the scene. The coarser resolu-

tion is obtained from a smaller size, mimicking the observer

looking at the scene from a long distance. In this case, the
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Figure 1. The saliency map of (a), (b), and (c) are combined together with a generalized bell function map (d) to obtain the final saliency

map (e). Multiple ROIs in (f) are enclosed in red lines for the 1st priority ROI, in green lines for the 2nd priority ROI, and in blue lines for

the 3
rd priority ROI respectively. The total area of ROIs are constrained to be 15% of a frame size.

global features are emphasised whereas the fine details of

features are omitted. Conversely, the fine details of local

features are displayed when the saliency map is constructed

at larger sizes. In order to reliably extracting salient ob-

jects, a scale-invariant saliency map is constructed through

a multi-scale analysis. The combination of saliency maps

from different scales will hopefully highlight both local and

global features. Three maps which are from 1/4, 1/8, and

1/16 of the original frame size are combined, with weights

are empirically set to be 0.6, 0.3, and 0.1 respectively [12].

Note that a larger weight is given to a larger map to empha-

sise local features and restraint non-salient areas marked as

salient. Figure 1.a, 1.b, and 1.c show saliency maps gener-

ated with 320x180 pixels, 160x90 pixels, and 80x45 pixels

respectively.

The final region of interest is obtained by augmenting the

saliency map with maps created from high level knowledge

of factors that are known to attract human attention:

1. Human Faces. Faces are very significant cue in hu-

man perceptions. Study in [4] shows that when there

is no instruction for human observers to look for any-

thing, they will fixate on faces within the first two fix-

ations with a probability of over 80%. In this paper,

the Viola Jones face detector based on the implemen-

tation of Intel Open Source Computer Vision Library

(“OpenCV”) [3] is used to detect faces. The estimated

face map is determined by convolving a delta function

(x,y) at every detected faces centre location with 2D

Gaussians. To reduce the computation time in this ex-

periment, the face is detected for every half a second

and assumed to stay for 0.5s duration.

2. Screen Centre. In typical sports/news coverage, the

cameramen filming the action will locate region or ob-

ject of interest and place it in the centre of the view.

Thus salient region have tendencies to be located in the

centre of screen [19, 11]. In order to emphasis the cen-

tre of screen, generalized bell function approximately

centred in the middle of the frame is used to empha-

size a combined saliency map after multiscale analysis.

The generalized bell function b(x, y) is defined as,

b(x, y) =
1

1 + ‖x−µr

σr

‖2β + ‖ y−µc

σc

‖2β
(3)

where µr and µc are set to be a coordinate (i.e. row

and column respectively) approximately in the middle

of screen, and σr and σc control the width of the main

beam of the bell function. Figure 1.d and Figure 1.e

show the generalized bell function map and the final

saliency map respectively.

To generate the ROI area, each frame of an input video

is divided into macroblocks (16x16 pixels in H.264/AVC

format [22]). Given the final saliency map, a macroblock is

defined as a ROI area when the intensity of map within the

macroblock bounding box is above certain threshold (the

threshold is determined using a binary search to constraint

the ROI within the specified area). The transition between

ROI region between consecutive frames are also smoothed

by setting an upper and lower values so that the ROI region

in a next frame will be changed only when the intensity of

map is not between these two values.



3.1. RegionofInterest Prioritisation

The region of interest can be located in multiple posi-

tions within a frame and with different sizes. Assuming a

viewer focuses only on a particular region at one instance

of time, it would be more efficient if this particular ROI is

encoded at a higher quality than the other ROIs. Rather

than equally encoding ROI regions at higher quality, the

less prominent ROIs should be encoded in less quality, so

that more bits can be allocated to the non-ROI region. This

strategy is assumed to reduce coding artefacts in the non-

ROI region. It can also be implemented in adaptive video

streaming whereby the quality of different ROIs is adjusted

accordingly depending on the bandwidth conditions.

The different priority levels of ROIs are determined by

first evaluating the sum of intensity of saliency map within

each ROI area. The N number of ROIs with their values are

given as rM1, rM2, ..., rMN . These values are then quan-

tised into three levels with uniform sampling, so that the

ROI with the largest value will be assigned the 1st priority

and the ROI with smallest value will be assigned the 3rd

priority. Figure 1.f shows the example of three ROI loca-

tions with three quality levels, each is enclosed by bounding

boxes with specific color.

4. Region-of-Interest Encoder

The ROI encoder is a custom-developed x264 codec1

that is able to allocate different amount of bits to the

ROI/non-ROI area by changing the quantisation parame-

ter (QP) values of macroblocks. The region of interest are

pointed out to the encoder as macroblock positions within

a frame. To generate the ROI encoded video, the two pass

encoding process was used. In the first pass, a video source

is encoded with a higher bitrate than the target bitrate. In

the second pass, the quality of the 1st, 2nd, 3rd priority ROI

area and the non-ROI area (the 4th priority) is reduced suc-

cessively by increasing the quantisation parameter value us-

ing the equation below:

• QP1 = QPo + 1 for the 1st priority ROI

• QP2 = QPo + 2 for the 2nd priority ROI

• QP3 = QPo + 3 for the 3rd priority ROI

• QPBG = QPo + 6 for the non-ROI region.

where QPo is the QP values which are assigned by the en-

coder in the first pass.

Compared to the normal encoded video, the ROI en-

coded video has a higher quality in the ROI area and a lower

quality in the non-ROI area at a given bitrate. The target bi-

trate was set to hit approximately 500kbps for experiments

in this paper. No B-frames were used and a maximum GOP

1Original source code available online at http://www.videolan.org

size was set to 50. The subpixel motion estimation and

mode decision was set to sum of absolute transformed dif-

ferences (SATD) mode decision and number of reference

frames used is one.

5. Region-of-Interest Video Coding Evaluation

Twelve videos from the DIEM project were selected for

experiments in this paper. The project used various video

contents such as advertisement, documentaries, film trail-

ers, music clips to collect the eye tracking data. The twelve

videos have a resolution of 1280x720 with no audio. The

videos’ name, length, number of individuals watching the

video in which the eye tracking data were collected and de-

scription, are shown in Table 1 below.

5.1. Accuracy of Automatic ROI

The accuracy of the proposed automatic ROI detector is

evaluated by calculating the percentage of subject’s fixated

points that fell within the automatic ROI region. The fi-

nal result is obtained by averaging this percentage for all

frames for each video. The higher the percentage is an in-

dication that the automatic ROI region corresponds to the

region where human looks. As a baseline comparison, the

percentage of subject’s fixated points that fell within the

rectangular ROI that is centered in the middle of the frame

is calculated.

Human performance to predict eye fixations is also eval-

uated using a method outlined in [11]. First, the human

ROI is determined by choosing one subject’s fixation point

and draw a rectangular ROI with video’s aspect ratio cen-

tred around this fixated point. This one human’s ROI is

then used to evaluate other humans’ fixation points exclud-

ing the one chosen, whether it fell inside this one human’s

ROI for every frame. By varying the area of human’s ROI,

the ROC curve in Figure 2 is drawn, averaged for all sub-

jects and all twelves videos’ frames. Higher human perfor-

mance is observed on videos which contain a ROI that pops

out where fixations are likely clustered together on that par-

ticular ROI location, compared to the videos without ROI

that pops out [14].

For experiments in this paper, the ROI area is set to be

15% for both automatic ROI and rectangular ROI. This cov-

ers approximately 70% of the ground truth human fixations

(see Figure 2). There is also a trade-off between ROI area,

ROI encoding quality, and the resulting ROI-based video

perceived quality. For example by giving a stronger quality

in the ROI area will require more bits to encode the ROI at

the expenses of non-ROI bits. This may degrade the overall

perceived quality if coding artefacts in the non-ROI area is

too annoying [15]. If the ROI area is larger, lesser bits will

also be allocated to the non-ROI area. On the other hand,

if the ROI area is too small, there is a high chance that it

will not predict human fixations well and the video will not



Table 1. Twelve videos from DIEM project used in the experiments.

Video Name Length Number of Subjects Descriptions

coral reef adventure (CR) 1:58 42 Underwater shots of people diving in coral reefs.

dolphins (DP) 2:07 124 Underwater shots of dolphins swimming in the sea.

london no voices (LV) 2:33 50 Faces of various people talking to the camera on the street.

adrenaline rush (AR) 2:11 123 Shots of people parachuting with a blue sky in the background.

discoverers (DC) 3:02 42 Mix scenes of observatories on hills, inside the obsevatory, and people inside a building.

mystery nile (MN) 1:44 42 Shots of water rafting in the rough river.

nine inch nails (NI) 0:51 42 A band playing in a concert. Most of scenes are quite dark.

bullet witch (BW) 2:28 123 A video game trailer showing gameplay animation.

ghostbusters (GB) 2:04 219 A video game trailer showing gameplay animation.

lego indiana jones (LI) 2:12 218 A video game trailer showing gameplay animation.

barcelona extreme (BE) 1:08 46 Mix scenes of waterskiing and skateboarding, and the spectators watching the sports.

F1 slick tyres (FS) 1:30 46 Shots of F1 racing car with a short interview of the driver.
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Figure 2. The ROC curve of human performance. Fifty percent

of humans will fixate within the 5% of a novel viewer’s ROI area,

and 90% are within the 40% ROI area.

benefit from the ROI coding. The overall quality will also

depend on the actual objects or the low-level visual cues the

ROI area covers. More research is needed to understand this

relationship but not in the scope of this paper.
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Figure 3. The bar plot performance of automatic ROI detection

along with rectangular ROI and human for the twelve test videos.

The average performance of automatic ROI along with

human and rectangular ROI for the twelve videos are given

Table 2. The average performance of automatic ROI detection (in

%) in comparison with human and rectangular ROI when the ROI

area is 15% of the frame’s area.

automatic human rectangular ROI

69.0 70.4 63.1

in Table 2, while the details for each video is shown in Fig-

ure 3. For most of videos, automatic ROI has either better or

having comparable performance with rectangular ROI, ex-

cept the BW, GB, LI, and BE video where rectangular ROI

performs better. The average of the twelve videos shows

that the use of automatic ROI detection is promising and

comparable to human performance. Note that there is a

strong cluster for human fixations to be located around the

centre of the frame, with an average of 63% fixations are

within 15% of rectangular ROI area. Another interesting

point from the bar plot is that it is possible for the automatic

ROI to exceed the human performance. This is possible if

there are two or more distinguish ROIs in a frame so that

one group of subjects fixate on one of ROIs, and the other

fixate on the other ROI, while a novel’s viewer ROI can

cover only one of ROIs. Therefore, it is an advantage to

have multiple ROIs in a frame. Comparable performance

between the automatic ROI detector and the human shows

that the strategy employed by the proposed automatic ROI

detection is able to predict human gaze quite well.

5.2. Performance of ROIbased Video Encoding

Figure 5.2 shows the snapshots from Normal and ROI

encoded videos at 500kbps. The graph presented in Figure 5

shows the average bits within ROI and non-ROI area for

both ROI and Normal encoded videos. The improvement

in the ROI area while reduction of bits in the non-ROI area

for ROI-based video coding is shown clearly in the figure.

The bits allocation for each ROI priority area are shown in

Table 3.

Having multiple qualities for ROIs (i.e. with different
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Figure 4. Screenshots from Normal and ROI encoded videos at 500kbps for MN (top) and BE (bottom). The frames with ROI boundaries

are displayed in the orginal frame size (a and d), while the Normal (b and e) and ROI encoded (c and f) videos are cropped and zoomed to

highlight the difference of encoding quality in the ROI region.

Figure 5. The average bits within ROI and non-ROI area for the 12

test videos.

Table 3. The average bits of different priority area between Normal

and ROI-based encoded videos.

Type of Encoding 1
st ROI 2

nd ROI 3
rd ROI

Normal 3622 1010 1221

ROI-based 5112 1287 1407

priorities) can be advantageous since more bits can be allo-

cated to the non-ROI region. Figure 6 shows the ROI-based

encoded videos that are generated with 4 priorities in com-

parison to videos that are generated with 2 priorities (i.e. 1st

priority is ROI region and 2nd priority is non-ROI region).

The average bits allocation from the twelve videos in Fig-

ure 6 shows that having 4 priorities increase the bits alloca-

tion to the non-ROI area while reducing the bits allocation

to the ROI area. However, this improvement is small for ex-

periments in this paper which is caused by smaller areas of

the 2nd and 3rd priority ROIs compared to the first priority

ROI area. Analysing the relationship between the area of

ROIs and bits allocation will be left for future works.

The time to encode ROI-based video in the current x264

two pass implementation takes approximately three and half

times longer than the time to encode normal video using one

pass. Using the CR video with the length of 1 minute and

38 seconds, the ROI encoding takes an average of 8 minutes

and 36 seconds while the normal encoding takes 2 minutes

and 36 seconds in 10 trials. The test were run on a Windows

platform, equipped with Core2 Duo 2.33GHz and 2GB of

memory.

Figure 6. The average bits within ROI and non-ROI area for the 12

test videos when the ROI-based encoded video has either two or

four priorities encoding strategy.



6. Conclusion

This paper presents a novel technique for automatic

region-of-interest detection for the purpose of visually op-

timised video coding for general videos. The ROI detec-

tion is developed from the saliency analysis of video frames

in combination with face detection, while emphasising the

importance of the centre of the frame. The result is the

ROI location that likely to sit in the centre location which

then expand to cover any stand-out objects incuding faces

that appears on the screen. The ROI detection accuracy

is shown to have a comparable performance with human.

Screenshots of videos which are encoded at the low bit rate

with ROI video coding show a better perceptual quality

compared to the normal encoded videos (with further ev-

idence is available in the submitted supplementary materi-

als). Ongoing research investigates the impact of ROI-based

encoded videos, at various target bit rates, on the perceived

quality for various mobile devices through subjective exper-

iments.
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