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Abstract 

Problems involving the solution of advection-diffusion-reaction equations on domains and 

subdomains whose growth affects and is affected by these equations, commonly arise in 

developmental biology. Here, a mathematical framework for these situations, together with methods 

for obtaining spatio-temporal solutions and steady states of models built from this framework, is 

presented. The framework and methods are applied to a recently published model of epidermal skin 

substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the 

numerical spatio-temporal, numerical steady state, and analytical solutions of the model. 
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1.  Introduction 

During biological development, the growth characteristics of tissue domains such as bone, muscle, 

skin or other epithelia can fundamentally affect their final form. Mathematical models have shown 

that the form of tissue domain growth critically modifies the appearance of skin colour patterns of 

the marine angelfish Pomacanthus (Painter, 2001), skeletal pattern formation in chick limb (Dillon 

and Othmer, 1999), tangential growth of the Drosophila wing disc (Baker and Maini, 2007) and the 

ability of migratory cells to fully colonise a tissue domain (Simpson et al., 2006). Most of these 

models prescribe a simple form to the domain growth (linear, exponential, logistic, etc.). However, 

species kinetics on the domain may also contribute to the growth pattern of these tissues 

(Niswander et al., 1994; Baker and Maini, 2007).  

 

In addition, the growth characteristics of adjacent tissues are often intrinsically linked during their 

development. For example, the in vitro growth and deterioration of epidermal skin substitutes 

(Gibbs et al., 1997) is likely to depend on the exchange of cells and chemical signals between this 

tissue’s four distinct sublayers (Adams et al., 2012). Biological tissue may also split into distinct 

subdomains during development, as in the teeth primordia of Alligator mississippiensis (Kulesa et 

al., 1996).  For these situations, a mathematical framework for the growth and development of 

connected subdomains is required. 
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Hence in this paper, we present a mathematical framework and solution methods for the modelling 

of species evolution on one-dimensional growing domains and subdomains. In this framework, 

which builds upon the work of Crampin et al. (1999), the domain and subdomain growth may 

depend on species kinetics, and vice versa. Strategies are presented for obtaining numerical 

solutions of these spatio-temporal models, as well as the less numerically-intensive identification of 

their steady states. Finally, an application of the mathematical framework to a recent model of the 

growth of epidermal skin substitutes (Adams et al., 2012) is demonstrated. 

2.  Problem Statement 

Consider a system of m advection-diffusion-reaction equations, describing changes in species 

Ci (z, t), i = 1,…,m, that act on a one-dimensional growing domain 0 ≤ z ≤ L(t), 
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where each equation is subject to an initial condition Ci (z, 0) and an appropriate number of 

boundary conditions at z = 0 and z = L(t) so that unique and consistent solutions are obtained. In 

Eq. (1), vi, Di, and Ri represent the advective velocity, diffusion coefficient and reaction term 

respectively for each species Ci (z, t). Typically the expression for vi contains a term representing the 

local tissue velocity, a result easily shown by application of Reynolds’ transport theorem (Crampin 

et al., 1999; Painter, 2001). There are also n subdomains within 0 ≤ z ≤ L(t), 
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defined by the stationary boundary at z = 0 and mobile boundaries zj (t), j = 1,…,n, where 

zn (t) = L(t). The change in position of each mobile boundary zj (t) is described by some function f j, 
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together with its initial condition zj (0). The functions vi, Di, Ri and f j may depend linearly or 

nonlinearly on z, t, any of the species Ci (z, t), or any of the boundary locations zj (t). 

3.  Obtaining a Spatio-Temporal Solution 

To obtain a solution of Eq. (1), we uniformly transform the growing domain 0 ≤ z ≤ L(t) to a 

stationary domain 0 ≤ z* ≤ 1, according to (z, t) → (z*, t*) = (z / L(t), t) where (z*, t*) are the 

coordinates in the stationary domain (Crampin et al., 1999). We rewrite Eq. (1)-(3) in terms of this 

stationary domain (z*, t*), and drop asterisks for notational simplicity, 
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Here the subdomain boundaries are represented by α j (t*) = zj (t) / L(t), j = 1,…,n, and the 

replacement dL / dt = fn in Eq. (4) follows from Eq. (3) and the relation zn (t) = L(t). 

 



Eq. (4)-(6) are written on a stationary domain, and thus can be solved using standard numerical 

methods for ordinary (Burden and Faires, 2010) and partial differential equations (Morton and 

Mayers, 2005). In particular, for certain advection-dominated problems the Kurganov-Tadmor 

operator split algorithm, proposed by Simpson et al. (2006), is recommended for solution of Eq. (4). 

However, we found for our application (modelling epidermal skin substitutes) that Eulerian 

methods were sufficient. 

4.  Obtaining a Steady State Solution 

Stationary steady states t → ∞ of the system in Eq. (1)-(3) can be identified as follows. Steady 

states are obtained by setting all temporal derivatives to zero and solving the equations 
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Solutions of Eq. (7) and (8) yield final states of the species distributions Ci (z, t → ∞) and the final 

positions of mobile boundaries zj (t → ∞) respectively. Functions f j in Eq. (8), which are equal to 

the velocity of boundaries zj in Eq. (3), may for the purposes of solution here be replaced by any 

function equal to zero that uniquely determines the location of the associated mobile boundary zj 

and depends only on z, t, any Ci, and/or any zj. 

 

Because the location of mobile boundaries zj and distribution of species Ci may depend on each 

other we solve Eq. (7) and (8) together using the following procedure: 

1. Make initial estimates for the steady state positions of all mobile boundaries zj, j = 1,…,n. 

2. Using these zj, numerically solve the ordinary differential equations in Eq. (7) and hence 

obtain the set of functions f j that we wish to make equal to zero (see Eq. (8)). 

3. Employ an appropriate root-finding algorithm to use the obtained functions f j to update the 

estimates of mobile boundary locations zj. 

4. Repeat Steps 2 and 3 until Eq. (8) is satisfied within appropriate tolerances. 

If there are multiple stationary steady states of Eq. (1)-(3), different initial estimates of the boundary 

locations zj chosen in Step 1 may be required to identify them. It is also conceivable that a solution 

of Eq. (7) and (8) is not a physically reasonable final state of the system because it is an unstable 

node. If all eigenvalues associated with the linearisation of Eq. (7) and (8) about the steady state in 

question are negative, the steady state corresponds to a possible final stationary state of Eq. (1)-(3) 

(Edelstein-Keshet, 1998). 

5.  Application: Modelling Epidermal Skin Substitutes 

5.1  The model 

We recently investigated the growth and deterioration of human epidermal skin substitutes with a 

mathematical model built from the framework defined in Section 2 (Adams et al., 2012). With this 

model we investigated a possible explanation for why epidermal substitutes in vitro reduce 

significantly in thickness and become unusable within only a few weeks (Gibbs et al., 1997), whilst 

in vivo epidermis maintains fairly constant thickness during its lifetime. Because calcium is strongly 

implicated in regulating the multilayered structure of the epidermis (Hennings et al., 1980), and 

because it has been recently shown that tight junctions regulate the epidermal calcium distribution 



(Kurasawa et al., 2011), the model examined whether or not abnormalities in tight junction 

regulation of epidermal calcium could explain the discrepancy between the epidermal growth 

patterns in vivo and in vitro. 

 

The skin substitute model consists of four species (corresponding to Ci , i = 1,2,3,4): intracellular 

calcium ρci , extracellular calcium ρce , tight junctions T and a hypothetical signal chemical S. Each 

species is described by an advection-diffusion-reaction equation, an initial condition, and an 

appropriate number of boundary conditions. The spatial domain encloses the living component of 

the epidermal skin substitute, and the number of subdomains m (which corresponds to the number 

of living epidermal sublayers) changes at distinct times t12 and t23 triggered by specific local events. 

These distinct times define three model stages: in Stage 1 (0 ≤ t ≤ t12) there are three subdomains, in 

Stage 2 (t12 < t ≤ t23) there are four subdomains, and in Stage 3 (t > t23) there are also four 

subdomains but a boundary condition for the species S changes. 

 

In particular, the equations governing the model are: 
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Stage 1 starts at time t = 0. The domain is divided by boundaries z = 0, θz1, z1, z2 into three 

subdomains, with positions governed by: 
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Stage 2 starts at time t = t12 when ρci (z2) ≥ ρdiff . The domain is divided by boundaries z = 0, θz1, z1, 

z2, z3 into four subdomains, with positions governed by: 
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Stage 3 starts at time t = t23 when ρci (z3) = 0. The domain is divided by boundaries z = 0, θz1, z1, z2, 

z3 into four subdomains, with positions governed by: 
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In the skin substitute model expressed by Eq. (9)-(15), the precise form of diffusion coefficients 

DC (T), DS (T), advection due to the local cell velocity ui (z), reaction terms gc (ρce , z2), gT (S, T, z2), 

and constants ρi0 , ρe0 , and ρdiff , are given in Adams et al. (2012).  For the subsequent discussion we 

do not require any further information about these functions and constants, except to note that ui (z) 

is always positive for z > 0, and DC (T) = DCa (1 – (1 – εCa) T ) where DCa  and εCa are constants. 

 

In Eq. (14) and (15), the argmin expressions indicate that the minimum value of zj from its two 

values calculated from the two equations inside the curly brackets, is chosen. In their current form, 

Eq. (14) and (15) do not adhere to the form prescribed in Eq. (3), but their numerical 

implementations do: 
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where 
diffci

z
 

 and 
0ci

z
 

indicate spatial positions z where ρci (z) = ρdiff and ρci (z) = 0 respectively. 

 

Eq. (9)-(15) represent a system in which the growth kinetics of connected subdomains are not easily 

separated from the species kinetics acting on these subdomains, a situation which is likely to be 

common in developmental biology (Niswander et al., 1994). In Stages 2 and 3 of the model, the 

mobile boundaries z2 and z3 depend partially on the species distribution ρci as shown by Eq. (14) and 

(15). In turn, changes in the positions of z2 and z3 modify reaction terms for ρci , ρce and T , and the 

boundary conditions for ρce and S  respectively, as shown by Eq. (9)-(12). 

 

The physical consequences of this model have been discussed in a previous paper (Adams et al., 

2012). Here, we demonstrate how the methods described in Sections 3 and 4 were applied to obtain 

numerical spatio-temporal and steady state solutions of the model. The validity of these methods is 

verified by an inter-code comparison between these numerical solutions and an analytical solution 

which is applicable if DCa is sufficiently high (≥ 10
-9

 m
2
 s

–1
, data not shown). 

5.2  Spatio-temporal solution 

For the spatio-temporal solution of Eq. (9)-(15) obtained by following the methods described in 

Section 3, the stationary boundaries θz1 and z1 become mobile in the transformed coordinate system 

(z*, t*) due to the dependence of their transformed positions on the domain boundary L(t) (given by 

z2 (t) in Stage 1 and z3 (t) in Stages 2 and 3). The advection-diffusion-reaction equations (9)-(12) 

were discretised using the Crank-Nicholson method with second-order central differences for 

diffusion terms and first-order upwinding for advection terms (Morton and Mayers, 2005). The 

mobile boundary equations (13)-(15) were solved using the explicit Euler method and updated 

synchronously on the same timestep as the species kinetics. 

 



Because the advection-diffusion-reaction equations are nonlinear, the Newton-Armijo method 

(Kelley, 2003) was employed in tandem with the Crank-Nicholson method for their solution. The 

Newton-Armijo method requires the calculation of matrix inverses, and if Eq. (9)-(12) are solved 

simultaneously with this method these matrices become exceeding large and computational time 

dramatically increases. By taking into account the interdependence of species ρci , ρce , S and T in 

Eq. (9)-(12), we used the following implementation of these methods to reduce the size of matrices 

to be inverted and hence minimise computational time: 

1. At each timestep, Eq. (11) and (12) for S and T were solved simultaneously using the Crank-

Nicholson and Newton-Armijo methods because they contain no dependence on ρci or ρce. 

This step can be skipped in Stages 1 and 2 of the model because in these stages S = T = 0. 

2. Within the same timestep, Eq. (10) for ρce was solved using the Crank-Nicholson and 

Newton-Armijo methods because ρce depends only on T and itself. 

3. Finally, Eq. (9) for ρci was solved using only the Crank-Nicholson method because its 

dependence on itself is linear. 

5.3  Steady state solution 

To obtain steady state solutions of Eq. (9)-(15), assumed to occur only in Stage 3 of the model, we 

followed the four-step procedure set out in Section 4. Because this procedure does not require any 

coordinate transformation, only two mobile boundaries z2 and z3 need to be determined 

simultaneously with the species distributions. Hence, in Step 1 only the locations of z2 and z3 need 

to be estimated. For Step 2, time-dependence was removed from Eq. (9)-(12) and the resulting 

system of ordinary differential equations, which possess boundary conditions at both z = 0 and 

z = z3, was transformed to an iteratively-converging sequence of initial value problems using the 

nonlinear shooting method (Burden and Faires, 2010). These initial value problems were solved 

numerically using the explicit Euler method. 

 

In the argmin expressions of Eq. (15), steady positions of z2 and z3 cannot correspond to the second 

equations dzj / dt = ui (zj), j = 2,3, because ui (z) > 0 for z > 0. Hence the functions f j that we wish to 

make equal to zero follow from the first equations within these argmin expressions, and can be 

written as 

 1 2 3 2 diff( , ) ( ) 0cif z z z    ,                   2 2 3 3( , ) ( ) 0cif z z z  . (17) 

For Step 3, the root-finding algorithm we used to solve Eq. (17) was again the Newton-Armijo 

method (Kelley, 2003), which for this situation requires the calculation of f1, f2, f1/z2, f1/z3, 

f2/z2 and f2/z3 evaluated at the current estimate of z2 and z3. Hence, in each iteration of Step 3 

we calculated five values each for f1 and f2 evaluated at (z2, z3), (z2 + z/2, z3), (z2 – z/2, z3), 

(z2, z3 + z/2) and (z2, z3 – z/2) to determine f1 (z2, z3) and f2 (z2, z3) and approximate the required 

partial derivative terms according to: 
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This requires five separate solutions of Eq. (9)-(12) with time-dependence removed, in Step 2. 

Finally, the tolerances required in Step 4 simply consist of the relative and absolute tolerances 

associated with the Newton-Armijo method (Kelley, 2003). 

5.4  Results 

We compared numerical spatio-temporal, numerical steady state and analytical (where applicable) 

solutions of the model expressed by Eq. (9)-(15) for the four parameter sets spanned by the choices 

of DCa = 10
-11

 m
2
 s

–1
,
 
10

-9
 m

2
 s

–1
 and εCa = 5  10

-5
, 1 with all other parameters at the fixed values 

reported in Adams et al. (2012). Of these four sets, the best match between solution methods was 

obtained for (DCa, εCa) = (10
-9

 m
2
 s

–1
, 1) and the worst match was obtained for 

(DCa, εCa) = (10
-11

 m
2
 s

–1
, 5  10

-5
). Hence, the solutions of Eq. (9)-(15) for these two parameter sets 

are presented in Fig. 1. For (DCa, εCa) = (10
-9

 m
2
 s

–1
, 1), numerical spatio-temporal (red),  

numerical steady state (pink), and analytical (black) solutions are shown. For 

(DCa, εCa) = (10
-11

 m
2
 s

-1
, 5  10

-5
), only numerical spatio-temporal (blue) and numerical steady state 

(cyan) solutions are plotted, as the applicability condition of sufficiently high DCa required for an 

analytical solution is not satisfied for this parameter set. 

 

 
 

Figure 1. Analytical (black) and numerical (red, pink, blue, cyan) 

solutions of the skin substitute model. 



Fig. 1 demonstrates that the numerical spatio-temporal and steady state solutions, generated using 

the methods described in Sections 3 and 4, match extremely well with each other and with the 

analytical solution (where applicable). Fig. 1(a) shows that the temporal change in boundaries z2(t) 

and z3(t) match well between the analytical and numerical spatio-temporal solutions for 

(DCa, εCa) = (10
-9

 m
2
 s

–1
, 1). In addition, the predicted final boundary locations z2(t → ∞) and 

z3(t → ∞) varied between solution methods by less than 0.4%, for all four parameter sets (data not 

shown). Figs. 1(b)-(d) show that all final species distributions matched well between solution 

methods. These results demonstrate the suitability of the presented numerical spatio-temporal and 

steady state solution methods to this skin substitute model. 

 

We also investigated the convergence of the steady state solution method, by calculating steady 

state distributions of all species and boundaries for DCa = 10
-11

 m
2
 s

–1
,
 
10

-9
 m

2
 s

–1
 and 1001 values of 

εCa spaced equally on a logarithmic scale from 10
-5

 to 1 (2002 simulations total, data not shown). 

We found that the convergence of the Newton-Armijo method to identify these steady states 

depended strongly on the initial estimates chosen for z2 and z3. Hence, for the steady state method 

we implemented the following addition to the solution algorithm: if the Armijo rule is invoked more 

than 10 times during a Newton step, new initial guesses for z2 and z3 are chosen at random such that 

100 m ≤ z2 < z3 ≤ 180 m and the steady state solution process restarts from the beginning. For all 

2002 simulations, initial estimates z2 and z3 could always be found so that the steady state solution 

method converged within high tolerances to the correct values of the final boundary locations. 

6.  Discussion 

For the skin substitute model we found that graphs of the numerical spatio-temporal, numerical 

steady state and (if applicable) analytical solutions were visibly indistinguishable. This strong 

agreement is particularly surprising for the species distributions T and ρci , whose absence of 

diffusion and hence infinite Péclet numbers are expected to yield severe dissipation in Eulerian 

schemes (Simpson et al., 2006). This dissipation depends strongly on the spatial discretisation 

(Morton and Mayers, 2005), and yet our numerical spatio-temporal and steady state solutions were 

indistinguishable despite the use of vastly different spatial discretisations (L/∆z = 10
3
 and 

L/∆z = 10
5
 respectively). Although we and other groups (Baker et al., 2009) have observed success 

with Eulerian schemes in growing domain problems, we caution that the validity of numerical 

results for these problems should always be carefully examined, either by comprehensive inter-code 

comparisons, the use of robust methods such as the Kurganov-Tadmor operator split algorithm 

proposed by Simpson et al. (2006), or testing against analytical solutions where possible. 

 

During the identification of steady states for our skin substitute model, we found that the 

convergence of the Newton-Armijo method depended strongly on the initial estimates chosen for z2 

and z3. This most likely occurs because f1 and f2, whose zeros are sought in this method, depend in a 

complex fashion via the solution of four ordinary differential equations on z2 and z3, but we have 

not investigated this further. Hence the examination of alternative root-finding algorithms to the 

Newton-Armijo method, for the identification of steady states arising from advection-diffusion-

reaction kinetics on growing domains, is a possible extension to this work. 

 

There are some limitations to the mathematical framework presented here. We assumed that the 

functions vi, Di, Ri and/or f j in Eq. (1)-(3) cannot depend on spatial or temporal derivatives of Ci (z, t) 

or zj (t). However, the functions vi typically depend on the local tissue velocity (Crampin et al., 1999; 

Painter, 2001), which due to the subdomain growth may in turn depend on temporal derivatives of 

mobile boundaries zj. Additionally, in models of chemotactic and diffusive cell migration on 



growing domains, cell advection may depend on the local chemoattractant gradient (Simpson et al., 

2006). In these situations, spatio-temporal solutions may still be obtained using the transformation 

described in Section 3, but Eq. (4) is no longer correct. However, the steady state procedure 

described in Section 4 is unaffected and hence is still suitable for these problems. 

 

On the other hand, the skin substitute model demonstrates that the proposed model framework 

allows the emergence of new spatial subdomains at later times, by dividing the temporal domain 

into model stages as in Eq. (13)-(15). This has immediate application, for example, to models of the 

lower jaw of Alligator mississippiensis in which successive partitioning of the spatial domain 

contributes crucially to the formation of the first seven teeth primordia (Kulesa et al., 1996). 

Regardless of the application, it is hoped that the present work will contribute to the formation of 

future mathematical models in developmental biology. 
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