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ABSTRACT 

Background: We examine the effect of heat waves on mortality, over and above what would 

be predicted on the basis of temperature alone. Methods: Present modeling approaches, may 

not fully capture extra effects relating to heat wave duration, possibly because the 

mechanisms of action and the population at risk are different under more extreme conditions. 

Modeling such extra effects can be achieved using the commonly left-out effect-modification 

between the lags of temperature in distributed lag models. The estimation and size of the 

additional heat effects has been shownappears to be sensitive to the complexity (e.g. the 

degrees of freedom) allowed for in the overall temperature-mortality relationship. Results: 

We find, uUsing data from Stockholm, Sweden, and a variety of modeling approaches, that 

heat wave effects persist over a high degree of model complexities with the additional effects 

beingamount to a stable and statistically significant 8.13-11.6% increase in excess deaths per 

heat wave day. The effects explicitly relating to heat wave duration (2.01.9–3.9% excess 

deaths per day) were more sensitive to model choice, and appeared to be smaller in more 

complex temperature-mortality relationships. . We find that Pproblems aroise with over-

fitting the overall temperature-mortality relationship, for example, when allowing for a very 

many large number of degrees of freedom. Conclusions:  Modeling additional heat wave 

effects, e.g. between lag effect-modification, can give a better description of the effects from 

high extreme temperatures, particularly in the non-very elderly population. We speculate that 

it may beis biologically plausible to differentiate  and heat waves, and differentiation of 

effects from heat and heat wave duration may be biologically plausible.  
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On the estimation of heat-intensity and heat-duration effects in time series models of 

temperature-related mortality in Stockholm, Sweden 

Background 

Heat stress can lead to fatal consequences due to: dehydration; increased cardiovascular 

stress; kidney dysfunction; and electrolyte disorders [1, 2]. At a population level, many studies 

show mortality tends to rise with higher temperatures [3]. Two approaches are generally used 

to quantify excess mortality: studies that focus exclusively on heat waves (so called episode 

studies); and studies that use time series analyses to estimate the effects of temperature on 

mortality by averaging over hot days and heat waves. Heat waves are commonly referred to as 

a period of extreme heat stress relative to the normal climate, although the exact definition 

varies according to the number of consecutive days of heat, temperature variable(s) and heat 

threshold. Many time series studies, assuming the association between temperature and 

mortality is non-linear, report associations between heat and mortality that are immediate or 

delayed by up to a week [4, 5]. However, the validity of this approach is challenged by 

research that reports an additional effect for heat waves [6]. Other studies have reported that 

increasing heat-related mortality is sensitive to the duration of heat waves regardless of  the 

intensity of the ambient heat (e.g. in France during the 2003 heat wave [7]). A number of 

studies have since explored additional heat waves effects with respect to their timing, 

intensity and location [6, 8‐13]. All studies found statistically significant additional risks that 

may relate to the duration of heat waves and the cumulative extreme heat exposure. The main 

differences between the studies were the models used to estimate of the heat-mortality 

relationship and the study location. 
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The underlying reason why the overall temperature-mortality relationship may not fully 

explain effects during heat waves is because the physiological effects of high temperatures 

and heat waves are different. For example, cumulative heat stress over many daysduring a 

prolonged heat wave is more likely to cause dehydration. Cumulative heat stress is also more 

strongly related to cardiovascular deaths [8, 13]. Differences in age stratified relative risks to 

heat and to heat waves have shown that the population at risk may differ, with the middle 

aged population potentially at the highest risk during heat waves [8, 13].  

We aim to explain why the additional heat wave effects are not perfectly captured in models 

of temperature-related mortality, and illustrate the estimation of additional heat wave effects 

using empirical data. We also aim to explore how the additional heat wave effect is affected 

dependent onby the complexity of temperature-mortality model. Using prior studies and our 

own results, we argue that future studies should evaluate potential additional effects from heat 

waves by decomposing heat exposure into a temperature term and an added heat wave effect 

term. Increasing model complexity will not suffice if there is no differentiation between heat 

wave days and non-heat wave days. 

Modelling weather-related mortality 

Time series methods based on daily data have been developed and applied in studies of the 

short-term health effects of environmental factors like air pollution and weather [14, 15]. 

Models often include lagged effects of exposure and adjustment for potential mortality 

displacement [14, 16, 17]. Studies have also explored: the use of non-linear functions to adjust 

for confounding (e.g., season), allowing non-linear exposure-response relationships, and the 

use of model fitting criteria [17, 18].  

Why additional heat wave effects? 
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Additional heat wave effects may appear as an artefact if models employ an overly simple 

exposure-response relationship that does not satisfactorily adequately capture describe the 

non-linearity of effect with higher temperatures. In this case the additional effect is related 

directly to the potential misspecification of the non-linearity of the effect. This is illustrated in 

Figure 1 where a linear relationship and a non-linear relationship are fitted to explain the 

relative risk (RR). Assuming that the factual relationship is non-linear, an additional heat 

wave effects would try to compensate the difference between these two curves. This type of 

misspecifications can be addressed by allowing a more flexible non-linear exposure response 

relationship.  

However, aAdditional heat wave effects canare likely to also arise due to cumulative heat 

stress. , and also from changes in the population at risk (susceptible groups). It is tempting to 

believe that cumulative stress can be estimated just like any other delayed effects of heat 

exposure effects, e.g. by distributed lag models. This is not the case. Distributed lag models 

allow temperature a few days or weeks prior to day t to affect mortality on day t, and are in 

that senseso are perfectly able to capture delayed effects of temperature. However, distributed 

lag models assume the delayed effects are related to the temperature on day t only. This 

means that delayed lag effects are independent of other lag days, for example, days t-1 and t-

2. They cannot model health effects caused by the temperature being above a heat threshold 

for a number of consecutive days. Thus, the distributed lag effect at a certain day of the heat 

wave does not estimate the effects relating to persistent heat stress. In order to estimate the 

effects relating to several days consecutive heat exposure above a certain threshold one would 

need to include non-linear interactions (effect-modifications) between the temperature lag 

effects. Here the non-linearity relates to the fact that the additional heat wave effects are 

thought tos appear above some extreme temperature threshold. Thus, short-term cumulative 

stress of extreme heat can be described by lag effect-modificationinteractions.  

Comment [AGB4]: But is wrongly 
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For illustration we consider the simple case where the effects of temperature are assumed to 

be lineardichotomous according to a threshold of the 98th percentile of the temperature 

distribution. . 

1       98  
0                                                                                  

 

This type of variable assumes a non-linear exposure-response.  Thehe effect of extreme 

temperature (T) on mortality up to lag 3 is then in a non-constrained distributed lag model 

becan be estimateddescribed in a by a regression model: 

mortalityt ~ Poisson(meant) 

log(meant) = intercept + Ttemperaturet + Ttemperaturet-1 + Ttemperaturet-2 + confounderst. 

  (a) 

TNow hise model above assumes that the effect of extreme temperature on day t is 

independent of whether the temperatures on day t–-1 and t–-2 are also extreme. This may, 

however,would not always be the case if there are additional effects from persistent periods of 

extreme heat that are related to the length of the extreme heat period. Then, if we believe that 

mortality on day t is also conditional on the temperatures on day t–1 and t–2. To capture  then 

this in a regression model we can add can be described through two- and three-way 

interactions of the lag termsas. In the model below we assume there are additional conditional 

relationships only between lags that are consecutive in time (e.g. an extended period without 

relief from the extreme temperatures),: 

log(meant) = intercept + Ttemperaturet + Ttemperaturet-1 + Ttemperaturet-2 + Ttemperaturet×Ttemperaturet-1 + 

temperaturet×temperaturet-2 + + temperaturet-1×temperaturet-2 + Ttemperaturet×Ttemperaturet-

1×Ttemperaturet-2 + confounderst  (b) 

When the number of lags studied is large (or if heat waves are long) this type of model 

canwill require a large number of interaction terms to be estimated, and resulting in 
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collinearity (similarly toas the non-unconstrained distributed lag model). To avoid this we can 

add all the interaction terms together to create one variable denoting extended heat wave 

periods. Such aThis binary indicator variable is set to 1 if at least two or more proceeding 

days are exceeding the extreme temperature threshold, and 0 elseotherwise. We refer to this 

variable as a heat wave indicator variable (HWI). Note that our HWI is equal to Tt×Tt-1, but 

that it also includes days where Tt×Tt-1×Tt-2 =1.  Thus, the HWI variable describes the two-way 

interaction that was previously described in model (b). A new model including this variable 

can be expressed as, 

log(meant) = intercept + Tt + Tt-1 + Tt-2 + HWIt + confounderst   (c) 

The model (c) with the HWI will not differentiate between two and three way interactions 

(e.g. two and three days of heat wave), butas it assumes the additional effect is the same 

independent of the length of the heat wave. We might, however, have reason to suspect that 

longer heat waves are associated with larger additional effects than shorter heat waves are. In 

this case we can construct a new variable with distinct values for shorter and longer heat 

waves. Such a variable could constitute the number of consecutive heat wave days over the 

lags studied. We refer to such a this variable as a heat wave duration variable (HWD). In the 

case where we use only 3 lag days we can define HWD as to equal Tt×Tt-1 + Tt×Tt-1×Tt-2.  In this 

example the HWD variable takes the values 0, 1, and 2 as depending on how many 

consecutive days of extreme temperatures there are in before day t. The effect associated with 

differentof heat wave durations can be constrained and estimated as a linear or non-linear 

function, or as a factor variable directly yielding the interactions. A non-linear function would 

be sensible if, for example the effect of duration, increased quickly and then remained high. 

Assuming linearity of the duration effect we get the regression model: 

log(meant) = intercept + Tt + Tt-1 + Tt-2 +HWDt + confounderst   (d) 
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The model (d) does estimates the effects of the duration of heat waves as a linear function 

avoiding potential collinearity induced by explicitly including many lag interaction variables. 

The models aboveve assume a dichotomous exposure-response relationshiplinearity for 

temperature whichtemperature, and that effects of temperature and heat waves are not 

extended over more than 3 lag days. However, the same principle can be used when fitting a 

distributed lag model as well as non-linear exposure-response relationship is often not the 

case, and the inclusions of several lags that are highly correlated suggest the use of a 

distributed lag model is preferred. However, the lag interactions shown above are not 

incorporated in distributed lag models, and need to be additionally modeled if there are 

combined effects. The parameterization above would need a large number of parameters to be 

estimated (particularly of more lags days are incorporated). Complexity might be reduced by 

using dummy variables corresponding to all these interactions above a certain temperature 

threshold, but this assumes the effect-modification over different lags is the same and does not 

depend on the length of the heat wave. Alternatively, creating a variable denoting the 

consecutive days with extreme temperatures (a duration variable), would allow longer heat 

waves to have larger effects compared to shorter heat waves. Modeling the duration variable 

as a linear term or using a non-linear spline can be viewed as a similar approach to using the 

interactions, or as using effect-modifications by lag day, with the advantage that this approach 

reduces the complexity and potentially collinearity of the model compared with using 

multiple interaction terms.     

We note that recent studies on this topic have all concluded that there were additional heat 

wave effects and these were not described by the distributed lags of temperature [6, 8, 9, 11-

13].  using continuous variables and a larger number of lag days. 

Model choice and additional heat wave effects 
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While the recent studies found significant additional effects from heat waves, particularly in 

less colder climates regimesareas less adapted to heat (such as the northern parts of the US 

and Sweden [9, 19]), the size of this effect has been estimated using widely different 

approachesmethods [9, 10, 12, 13]. The main differences were: i) the complexity of the model 

used for the exposure-response relationship between temperature and mortality; ii) allowing 

for spatial heterogeneity in the additional heat wave effect; iii) allowing for heterogeneity in 

the additional heat wave effects between population sub-groups.  

The study presentingwith the smallest additional effect from heat waves found the size of the 

effects to be almost negligible when the exposure-response relationship was allowed a very 

flexible parameterization using two dimensional cubic spline functions for temperature and 

lag day and modeling the main effect in a first stage model and the effect-modification in a 

second stage [12]. However, the estimates were for all-cause mortality independent of 

geographical differences in U.S. cities, while there is evidence that heat wave effects may be 

very sensitive to age, cause of death and location [8, 9, 13, 19]. In particular, additional heat 

wave effects were negligible in the southern US, and large in the north east of the US [1, 9, 

19].  

Two studiesGasparrini et al. estimated the overall temperature-mortality relationship using 

non-linear distributed lags and two-dimensional spline functions, and then tested the 

sensitivity of this parameterization [10, 20]. Other studies used less complex linear and/or 

non-linear exposure response relationships, with a small number of lag days of between 1 and 

3 [6, 8, 9, 13, 21]. The lag days in these studies where chosen according to prior literature and 

through using model fit criteria. 

Bobb et al. argued against fitting one model across a range of climates (using the same 

degrees of freedom, splines and temperature measures), as they found that in most cities there 
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were two or more models with a similar fit to the data [19]. Interestingly, after averaging over 

many different models they found larger effects of temperatures on heat wave days compared 

to non-heat wave days [19]. 

Estimation of additional heat wave effects in Stockholm, Sweden 

Methods 

We applied a non-linear distributed lag model to the effects of temperature in Stockholm 

County, Sweden, on total mortality during the years 1990–2002. Table 1 describes the basic 

characteristics of the data used in the study.  A more detailed description of the data is given 

in Rocklöv et al {Rocklov, 2011 #2045}. We used daily maximum temperature as the 

predictor of daily mortality, adjusting for long-term time trends, seasonality, days of the week 

and national holidays in a non-linear distributed lag framework. This is model (1).  

To estimate captureadditional heat wave effects (e.g.  an lag effect-modifications)added heat 

wave effect related to duration, we incorporated the variables HWI and HWDa as were 

described in a previous sectionvariable that sequentially increased with heat wave duration. 

The frequencies of the HWD and HWI variables are described in Table 2. For example, days 

with no heat wave are set to zero and days with heat waves are numbered according to the 

consecutive day of extreme heat. Heat waves were defined as at least two days with maximum 

daily temperature above the 98th percentile. So, on the second day with a temperature over the 

threshold, the variable was 1, and on the 7th consecutive day the variable was 6. The first day 

of temperature above the threshold was set to 0 corresponding to no accumulated heat effects 

of heat. We first fitted the effect of heat wave duration as a smooth function (penalized spline 

with 4 degrees of freedom) firstly, but as it showed an approximately linear association we 

fitted it a linear term. The model with the additional parameter for duration of heat waves, 

HWD, is model (2). The duration term estimates the effect-modification of cumulative lag 
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terms above the 98th percentile indirectly, with the prior assumption that the length of the heat 

wave period can influence the mortality response.  

In model (3) we estimated the additional effects from heat waves (maximum temperature 

above 98th percentile for at least two days) using an indicator variable, HWI. This model does 

not estimate additional effects due to heat wave duration explicitly, but the average additional 

excess mortality during the heat wave periods. The heat wave indicator estimates the effect 

modification of lag terms above the 98th percentile assuming all days above this threshold are 

equally contributing to the mortality response.   

As equations the three models are: 

Mortalityt~Poisson(μt) 

log( μt) = intercept + S(temperaturet, lag.df, var.df) + S(timet, var.df=6 per year) + DOWt + HDt                    

   (1) 

log(μt ) = intercept + S(temperaturet, lag.df, var.df) + S(timet, var.df=6 per year) + DOWt + HDt + 

HWD_durationt      (2)               (2) 

 

log(μt ) = intercept + S(temperaturet, lag.df, var.df) + S(timet, var.df=6 per year) + DOWt + HDt + 

HWI_indicatort                 (3) 

Here t is the time in days, S is a cubic spline function, the spline function of temperature is 

two dimensional with lag degree of freedom given by lag.df and variable degree of freedom 

given by var.df. HWD_duration is a linear variable denoting the day of the heat waves, 

HWI_indicator is an indicator variable for heat waves. timet estimatesmodels trends and 

seasonal changes using a spline with 6 degrees of freedom per year (78 degrees of freedom in 

total), DOW denotes the day of week, and HD denotes national holidays. 
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We used the “dnlm” package in R [22]. We tested degrees of freedom for temperature from 3 

to 8. The lagged effects of temperature were examined over 20 days and allowed 2, 4 or 6 

degrees of freedom. The Akaike Information Criterion (AIC) was used to judge the optimal 

degrees of freedom.  

We first calculated the AIC from models based on all ages and then repeated the same 

calculations in ages 80 years and above, and 45-–79 years of age.  

We calculated the variation inflation factor as VIF = 1/(1–R-squared) to assess if the variance 

estimation was inflated through multi-collinearity introduced by having both temperature and 

heat wave terms in the same model. The variation inflation factor (VIF) of the duration 

variable and temperature was estimated to 1.048, and for the heat wave indicator variable to 

1.058. This indicatedSo collinearity was not a concern for models 2 and or 3. 

Results 

The AIC values associated with each model for mortality in all ages are shown in Table 41. 

Overall the models including additional heat wave variables (model 2 and 3) gave a better fit 

to the data compared with model 1 for the same degrees of freedom. The two best fits are a 

simple parameterization using an indicator variable or a heat wave duration variable with 3 df 

for temperature and 2 df for the lagged effects as main effect. These models resulted in a 

small marginal heat effect on non-heat wave days (Figure 2), while more flexible 

parameterizations for the main temperature effect estimated a larger effect (Figures 2 and 3). 

However, with increasing complexity of the main temperature-mortality relationship the 

model fit decreased and the bendiness of the estimated two dimensional spline functions 

increased considerably as can be seen in Table 531 and Figures 2–4. Figures 2–4 also show 

that models including an additional heat wave effects predict a lower mortality increase for 

high temperatures at short lags compared with the model with no heat wave variable. The 
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effect of heat on lag 0 is then higher in the model without an additional heat wave effect. This 

shows that the model without an additional heat wave effect would estimate higher marginal 

excess mortality on days with high temperatures that were not part of the heat wave compared 

to the model with the additional heat wave effect. It appears that models with an explicit 

allowance for additional heat wave effects do a better job of describing the temporal 

distribution of heat-related deaths. 

When studyingIn the age group 80 years and above the inclusion of additional heat wave 

variables dido not substantially improve the model fit when comparing over the different 

degrees of freedoms as is described in (Table 4). In the age group 45–-79 years of age, 

however, the inclusion of an additional heat wave variable in the model substantially 

improvesd the model fit according to the AIC (Table 5), while it is not possible to distinguish 

between the model including the HWD (model 2) and HWI (model 3) in terms of model fit. 

 Thus, the models are shifting part of the marginal heat wave effect to non-heat wave days, as 

illustrated in Ffigures 5 and 6 for show the effects of a 5 unit increase in maximum daily 

temperature from 26  °C to 31°C (the heat wave threshold is 27.5 °C). Figure 5 shows the 

excess mortality predictions for day 4 of a heat wave (including the 0–3 day lagged effects) 

for a range of differentwhile varying the degrees of freedom of the main temperature-

mortality relationship, and for showing the results for the three different models. The In broad 

terms, the heat wave predictions from the different models are similar with more complex 

model fits, while but models 2 and 3 (which include terms for heat wave effects) predict 

higher excess mortality for the less complex temperature-mortality parameterizations. Even 

However, even for complex parameterizations, the model without an additional heat wave 

variableseffect  no added heat wave predicts a few percent lower excess mortality compared 

to the two heat wave models.  
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Figure 6 shows the corresponding marginal excess mortality predictions for a single hot day 

(non-heat wave day; lag 0 only). The model without the added heat wave effect (model 1) 

predicts higher mortality on non-heat wave days compared to the models that differentiate 

between heat wave and non-heat wave days (model 2 and 3). Thus, model 1 (without the 

additional heat wave effect) may over-estimate the effect of heat on non-heat wave days, 

while it appears to under-estimate the effect from heat on heat wave days. Models 2 or 3 do 

better in this sense, differentiating the effects between heat wave days and non-heat wave 

days through the variables capturing the effect modification between the lags of temperature. 

The more complex parameterizations of model 2 and 3 strongly indicate over-fitting in 

graphical examinations, whilst having better AIC values.  However, in order to be 

physiologically plausible, a simpler model fit is to be preferred for this data.   

The estimates and confidence intervals of the added effects relating to heat wave duration and 

the heat wave indicator variables are in Table 2. Using the best model identified by the AIC 

(Table 1), there was an additional heat wave effect with a relative risk of 1.037 (95% 

confidence interval of 1.014, 1.060). Thus on the fifth day of a heat wave the relative risk 

from the overall temperature-mortality association would be multiplied by 1.156 (1.0374). The 

heat wave duration effects estimates ranged between 1.039 and 1.019, and became smaller 

and non-statistically significant with more complex model fits. 

The optimal fit of model 3 estimated a relative risk of 1.112 (95% confidence interval of 

1.050, 1.176) associated with heat wave days (95% confidence interval of 1.050, 1.176). The 

effects ranged between 1.116 and 1.083, and all estimates were statistically significant at the 

5% level.  

We did not assess the estimates’ sensitivity to the parameterization (df) of long-term time 

trends, as this appears to havehas less influence on the heat wave effect [12, 19]. 
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Discussion 

Estimates of additional heat wave effects in models of temperature-related mortality can be 

interpreted as a constrained form of non-linear effect-modifications between lags of high 

temperature (, or, similarly lag interactions). This can explain why such effects have been 

found to significantly contribute to additional deaths during heat waves in previous studies of 

temperature related mortality, over and above the effects of temperature overall. Our results 

may dispelThis dispels the widespread belief that such effects are incorporated through 

distributed lag models. From a mechanistic perspective including additional effects from heat 

waves are supported through the physiological stress incurred by cumulative exposure being 

potentially different from the stress from shorter periods of extreme heat, and can also result 

in differences in the population at risk such as contrasting susceptibility with age [8‐10, 13, 19] 

We found the additional heat wave effects awere more important in middle age populations 

and the elderly compared to the very elderly in the study location. We found the size of the 

heat wave effect depended on the complexity of the main temperature-mortality 

parameterization, more specifically on the df used for modeling non-linearity of temperature 

and lagged effects. This indicates that there is, not surprisingly, some overlap between the 

effects of hot days and the effects of heat waves. Our results show, however, that there is also 

likely to be an independent extra effect of heat waves that is not captured by hot days, e.g. an 

effect modification. Differences in the temperature-mortality parameterization probably 

explain many of the differences between the conclusions of recent studies on the effects of 

heat waves [6, 8, 9, 11‐13, 19, 21] In our example we found that a simple model for the 

temperature-mortality association was better than a complex model. The additional heat wave 

effects are substantial and important to account for in order not to underestimate mortality 

risks during heat wave days.  We conclude that it is important not to over fit the data by using 

too complex non-linear lag parameterizations, and that simple parameters for the additional 
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effects of heat waves are useful. However, the more complex parameterizations appear to 

better capture effects and the high end. However, it appear it is not reasonable to distribute the 

degrees of freedom uniformly over the temperature and lag scales as such assumption gave 

rise to over-fitting in regions of the temperature and lag scale where the relationship is not 

very complex. Overall, mModel fit improved as the complexity of the model and flexibility of 

the splines were reduced. These simpler models also had larger additional heat wave effects, 

as reported elsewhere [6, 8, 9, 11‐13, 19, 21].  

Some studies have used two-stage model to describe the effects from temperature using 

distributed lag non-linear models in the first stage and the additional effect associated with 

heat waves in a second step [10, 12]. We note, however, this deviates from the conventional 

framework for modeling of effect-modifications, and that it can potentially affect the 

estimates of additional heat wave effects downward.  

We achieved a better model fit using an indicator variable for heat waves rather than the 

duration variable when studying all ages; nevertheless, models with the duration variable 

performed better than the models without additional heat wave components, and similarly 

well in the age group 45-79 years of age.  

Conclusions 

We conclude that it is important to continue to explore the magnitude of additional heat wave 

effects in future studies of temperature-related mortality, e.g. temperature lag effect-

modifications. and tIt appear also important too fit models that are location sensitive in the 

parameterization (choice of df), as well as in the evaluation of potential additional heat wave 

effects. Fitting a complex distributed lag non-linear model may reduce the heat wave signal 

and over-estimate mortality on non-heat wave days, compared to a model including a heat 

wave term. It is important to be able to differentiate between extended periods of heat and 
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single days of extremely high temperatures, since several recsent studies have shown that 

duration of heat exposure is related to mortality risk. Increasing the accuracy of heat-wave 

mortality models will assist public health authorities to direct preventive actions when and 

where they are most needed. Future studies should continue to study and identify potential 

differences in the population at risk to heat and heat waves, as well as describe the 

mechanistic differences.  
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Tables 

Table  1. Descriptive  statistics  for  daily  deaths  and  environmental  variables  in  Stockholm 
County, 1990–‐2002, per season. Mean ± standard deviation (proportion percent missing) 

Daily deaths, all non‐injury causes, all ages  40 ± 7.2

       Ages 45‐–79  18 ± 4.6
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       Ages 80+  20 ± 5.3

Mean temperature (˚C)  7.5 ± 7.6 (7 %)

       range  –‐15.7, 26.4

Maximum temperature (˚C)  10.5 ± 8.6 (7 %)

       range  –‐13.4, 33.5

Maximum temperature 98th percentile (˚C)  27.5 °C

 

 

Table 2. Values and frequencies taken by the heat wave duration and the heat wave 
indicator variable 

Variable  Heat wave duration (HWD) Heat wave 
indicator 
(HWI) 

Value  0  1  2  3  4 5 6 7 0 1

Frequency  4697   23  11  7  4 3 2 1 4697 51

 

 

 

 

Table 3. AIC values for the three models using 3 to 8 degrees of freedom for 

temperature and 2 to 6 degrees of freedom for lag, Stockholm, 1990–‐2002 in 

all ages  

df Temperature 

Spline 

No heat wave 

variable (model 1) 

With heat wave 

duration variable 

(model 2) 

With heat wave 

indicator variable 

(model 3) 

  df Lag Spline= 2 
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3  20052  20044  20040

4  20056  20047  20044

5  20059  20051  20048

6  20058  20051  20047

7  20062  20055  20052

8  20063  20057  20054

  df Lag Spline= 4 

3  20054  20049  20047

4  20055  20052  20051

5  20060  20059  20057 

6  20061  20061  20059

7  20061  20061  20059

8  20067  20068  20065

   df Lag Spline = 6 

3  20061  20056  20053

4  20065  20063  20061

5  20075  20073  20071

6  20077  20077  20075

7  20082  20081  20079

8  20089  20089  20086

 

 

Table 4. AIC values for the three models using 3 to 8 degrees of freedom for 

temperature and 2 to 6 degrees of freedom for lag, Stockholm, 1990–‐2002 in 

ages 80 years of age and above 

df Temperature 

Spline 

No heat wave 

variable (model 1) 

With heat wave 

duration variable 

(model 2) 

With heat wave 

indicator variable 

(model 3) 
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  df Lag Spline= 2 

3  17962  17961  17957

4  17966  17965  17961

5  17970  17969  17965

6  17971  17970  17966

7  17974  17972  17968

8  17977  17975  17971

  df Lag Spline= 4 

3  17958  17960  17958

4  17959  17961  17961 

5  17967  17969  17968

6  17971  17973  17972

7  17977  17979  17977

8  17982  17984  17983

   df Lag Spline = 6 

3  17958  17959  17957

4  17961  17963  17963

5  17972  17974  17974

6  17980  17981  17981

7  17989  17991  17990

8  17997  17999  17998

 

 

 

 

 

Table 5. AIC values for the three models using 3 to 8 degrees of freedom for 
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temperature and 2 to 6 degrees of freedom for lag, Stockholm, 1990‐–2002 in 

ages 45 to 79 years of age 

df Temperature 

Spline 

No heat wave 

variable (model 1) 

With heat wave 

duration variable 

(model 2) 

With heat wave 

indicator variable 

(model 3) 

  df Lag Spline= 2 

3  17410  17405  17406

4  17415  17409  17410

5  17416  17412  17412

6  17416  17412  17413 

7  17417  17415  17415

8  17419  17417  17417

  df Lag Spline= 4 

3  17418  17413  17413

4  17423  17418  17419

5  17428  17424  17425

6  17430  17428  17428

7  17426  17426  17426

8  17434  17434  17434

   df Lag Spline = 6 

3  17426  17421  17421

4  17435  17430  17430

5  17443  17440  17440

6  17448  17447  17446

7  17448  17448  17447

8  17456  17457  17456
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Table 6. Relative risks (RRs) and confidence intervals (CI; 95%) associated with heat 

waves 

  Heat wave duration variable 

(model 2; unit: days of duration) 

Heat wave indicator variable 

(model 3; unit: heat wave= {yes, 

no}) 

df Tempera‐

ture Spline 

df Lag Spline= 2 

  RR  CI RR CI

3  1.037  1.014, 1.060  1.112 1.050, 1.176

4  1.039  1.015, 1.063  1.116 1.053, 1.183

5  1.038  1.013, 1.062  1.114 1.050, 1.182

6  1.038  1.013, 1.063  1.114 1.049, 1.182

7  1.038  1.013, 1.063  1.114 1.048, 1.183

8  1.037  1.011, 1.062  1.111 1.045, 1.180

  df lag spline= 4 

3  1.032  1.008, 1.056  1.100 1.034, 1.169

4  1.028  1.002, 1.054  1.088 1.018, 1.162

5  1.026  0.998, 1.053  1.086 1.011, 1.165

6  1.023  0.994, 1.051  1.081 1.003, 1.165

7  1.022  0.992, 1.051  1.087 1.005, 1.174

8  1.020  0.990, 1.051  1.088 1.004, 1.179

  df lag spline= 6 

3  1.032  1.008, 1.056  1.102 1.037, 1.172

4  1.028  1.002, 1.054  1.090 1.020, 1.165

5  1.025  0.998, 1.053  1.088 1.013, 1.168

6  1.023  0.994, 1.052  1.083 1.005, 1.167

7  1.022  0.993, 1.052  1.088 1.006, 1.176

8  1.019  0.989, 1.050  1.088 1.003, 1.179
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Figure legends 

Figure 1. The fit of a linear (black) and a non-linear (grey) curve to data. 

Figure 2. The distributed non-linear lag surface relating to a daily max temperature of 12 °C. 

The models to the left have no heat wave variables (1), the models in the middle include a 

heat wave duration variable (2), and the models to the right include a heat wave indicator 

variable (3). The figure shows parameterizations using 2 df for the lags and 3, 6, and 8 df for 

the variable in the rows starting from the top respectively. 

Figure 3. The distributed non-linear lag surface relating to a daily max temperature of 12 °C. 

The models to the left are without additional heat wave variables (1), the models in the middle 

are include a heat wave duration variable (2), and the models to the right include a heat wave 

indicator variable (3). The figure shows parameterizations using 4 df for the lags and 3, 6, and 

8 df for the variable in the rows starting from the top respectively. 

Figure 4. The distributed non-linear lag surface relating to a daily max temperature of 12 °C. 

The models to the left are without additional heat wave variables (1), the models in the middle 

are include a heat wave duration variable (2), and the models to the right include a heat wave 

indicator variable (3). The figure shows parameterizations using 6 df for the lags and 3, 6, and 

8 df for the variable in the rows starting from the top respectively. 

Figure 5. The excess mortality predictions for day 4 of a heat wave with maximum daily 

temperatures at 31 °� C as compared to 26 °� C. The predictions include the 0-–3 lagged 

effects over a range of different degrees of freedom of the main temperature-mortality 

relationship and:  i) from a model with no added heat wave effect (model 1); ii) from a model 

with a heat wave duration parameter (model 2); iii) and from a model with the added heat 

wave effect as a dummy variable (model 3). 



24 
 

Figure 6. The excess mortality predictions for a single hot day (non-heat wave day) for 

maximum daily temperatures at 31 °� C as compared to 26 °� C. The predictions include 

only the lag 0 effect over a range of different degrees of freedom of the main temperature-

mortality relationship and:  i) from a model with no added heat wave effect (model 1); ii) 

from a model with a heat wave duration parameter (model 2); iii) and from a model with the 

added heat wave effect as a dummy variable (model 3). 


