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Abstract

In this paper, the goal of identifying disease subgroups based on differ-

ences in observed symptom profile is considered. Commonly referred to

as phenotype identification, solutions to this task often involve the appli-

cation of unsupervised clustering techniques. In this paper, we investigate

the application of a Dirichlet Process mixture (DPM) model for this task.

This model is defined by the placement of the Dirichlet Process (DP) on

the unknown components of a mixture model, allowing for the expression

of uncertainty about the partitioning of observed data into homogeneous

subgroups. To exemplify this approach, an application to phenotype iden-

tification in Parkinson’s disease (PD) is considered, with symptom profiles

collected using the Unified Parkinson’s Disease Rating Scale (UPDRS).

Clustering, Dirichlet Process mixture, Parkinson’s disease, UPDRS.
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1 Introduction

The search for patient subgroups that potentially explain observed hetero-

geneities in complex disease has been a long pursued goal in medical research.

Statistical solutions for this task include various methods of unsupervised clus-

tering, whereby patients are partitioned into less heterogeneous subgroups based

on similarities in responses to discriminating variables, with no a priori clas-

sification rule. Common examples of unsupervised clustering tools include k−

means [20], nearest neighbour [62] and hierarchical clustering methods [27], in

addition to finite mixture models [39, 16]. A comprehensive review of these

methods and others is provided by [24].

An area of research that has benefited greatly from unsupervised clustering

methods is subgroup identification with respect to differences in observed symp-

tom profile. Often referred to as syndrome or phenotype identification, examples

of this type of study can be found in migraine [43, 7], Alzhiemer’s disease [58, 9],

Respiratory illness [49], and Schizophrenia [32, 29].

In this study, the identification of potential phenotypes is explored for Parkin-

son’s disease (PD). This commonly diagnosed, neurodegenerative disorder af-

fects an estimated 1-2% of the over 60 population [52], and is principally charac-

terised by motor impairment, in the form of tremor, rigidity, postural instability

and bradykinesia or involuntary movement. Like other complex diseases, a hall-

mark of PD is marked heterogeneity in symptom expression [46, 13], including

differences in symptom severity and rates of progression.

In light of this heterogeneity, a number of previous studies have sought to iden-

tify clinical subtypes for PD via unsupervised clustering methods. Recent ex-

amples include [45, 53, 55] and [33]. The most recent review of findings from

cluster analyses for symptoms associated with PD was given by [54]. In [61], a

finite mixture model approach was considered with an application to subgroup

identification in PD, based on responses to select symptoms.

In this paper, we consider a Dirichlet Process Mixture (DPM) model [1] for
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the unsupervised clustering of symptoms in PD. The DPM model involves the

placement of a Dirichlet Process (DP) [12] prior over the unknown components

of a mixture model. The clustering behaviour induced by this prior results

in a model that captures uncertainty in partitions of the observed data. To

date, DPM models have found applications in various areas of medical research.

However, to our knowledge, the DPM model is yet to be applied to symptom-

based subgroup identification and thus forms the focus of this paper.

This paper is organised as follows. Section 2 outlines the DPM model, and

details the features of the DP that make it suitable for unsupervised clustering

problems. Similar to the model presented in [61], that considers the same ap-

plication in Parkinson’s disease, the model represents a latent class analysis of

multiple, categorical variables, this time in the form of Multinomial distributed

symptoms, each represented by three response levels. While the intention of this

paper is not to provide a lengthy discussion of theory underlying DPM mod-

elling, key details are highlighted where appropriate and references the relevant

literature are made. Section 3 presents the application of the DPM model to

subgroup identification in PD. The focus of modelling is placed on clustering

in terms of differences in progression of three key, motor-specific symptoms -

Tremor, Rigidity and Akinesia - in addition to Activities of Daily Living (ADL).

In line with the majority of studies into PD subgroups, information on these

symptoms is collected using the Unified Parkinson’s Disease Rating Scale (UP-

DRS). Considered as the gold standard in the assessment of symptoms and

overall severity of PD, an excellent discussion of the UPDRS is provided by

[44]. A summary of findings and directions for future research is presented in

Section 4.
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2 Methodology

2.1 Model specification

This paper considers the problem of clustering responses to multiple symptoms

for a sample of n patients/subjects. The observed data is denoted by the matrix

Y = (y1, . . . ,yn), with rows corresponding to subjects and columns correspond-

ing to symptoms. Throughout this paper, the number of included symptoms is

equal to J .

For a single subject i and in the absence of clustering, each element of the

vector yi = (yi1, . . . , yiJ ) is assumed to have been generated from an underlying

probability distribution

yij ∼ p (yij |θij) j = 1, . . . , n (1)

defined by parameter/s θij . For the application at hand, each symptom is

observed as a categorical variable with three possible outcomes. Hence,

p (yij |θij) =
3
∏

r=1

θ
Iyij=r

ijr . (2)

For J symptoms, the likelihood of yi is given by,

p (yi|θi) =
J
∏

j=1

p (yij |θij) (3)

and, for all n subjects, p (y|θ) =
∏n

i=1 p (yi|θi).

Under the assumption of clustering, observations collected from multiple sub-

jects are described by the same parameters defining the likelihood in Equa-

tion (3). Thus, for subjects belonging to the same cluster, indexed by k,

the parameters defining their contribution to the likelihood are replaced by

θk = (θk1, . . . , θkJ). It follows then, for a general K clusters, the likelihood for
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the entire sample is

p (y|θ) =

K
∏

k=1

n
∏

i:
zi=k

J
∏

j=1

p (yij |θkj) . (4)

In Equation (4), the latent variable zi ∈ (1, . . . ,K) is introduced to represent

the cluster membership for subject i and to augment the parameters θkj such

that θij = θkj if zi = k.

Inferences about this latent variable, and the parameters that subsequently

define the partition of subjects into homogeneous clusters, has led to the propo-

sition of numerous clustering methods in the literature. Whilst we do not seek

to present a comprehensive review here, common examples are distance-based

methods such as k-means clustering [20], hierarchical clustering [27] and finite

mixture models [39, 16]. In this paper, DPM model is considered for the clus-

tering task and is the focus for the remainder of this Section.

A DPM model is characterised by its use of a DP prior on θi. Originally defined

by [12], a DP is a distribution over random probability measures defined by a

base distribution G0 and concentration parameter α. For a random probability

measure G distributed according to a DP, we write G ∼ DP (α,G0).

A defining property of a DP that makes it suitable for use in clustering is as fol-

lows. For any finite, disjoint partition of a measurable space Θ, {A1, . . . , AK},

the vector (G(A1), . . . , G(AK)) follows a finite dimensional Dirichlet distribu-

tion. In other words, the DP is used in clustering as a distribution over disjoint

partitions.

The clustering behaviour induced by a DP can also be understood in terms of its

so-called discreteness property. For the problem under study, the corresponding

DPM model (excluding the latent variable) can be written as follows, in terms
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of yi

yi|θi ∼ p(yi|θi)

θi|G ∼ G (5)

G ∼ DP (α,G0).

Applying the property that draws from a DP are discrete with probability 1

[3], there exists a nonzero probability that multiple draws assume the same

value for θ, thus inducing clustering behaviour. This discreteness can also be

understood via the definition of the DP from [48], whereby a draw from the

DP can be represented by an infinite sum of point masses on θk, k = 1, 2, . . ..

For a discussion on other representations of the DP, see [35].

Comparing this approach to others in the literature, the types of inferences

drawn from a DPM model are comparable to those produced by a finite mixture

model. However, for the DPM model, the number of unique values for θi and, in

turn, the number of clusters present is not limited to K. Instead, inferences are

based on averaging over all proposed partitions of the data. For the interested

reader, further discussions on this comparison are given by [19] and [31].

To complete the DPM model specification for the application at hand, the base

distribution G0 and concentration parameter α require definition. The base

distribution incorporates prior information about θ into the model, and can

be viewed as the average distribution of the DP; ie. E (G) = G0. In this

paper, a conjugate prior in the form of a Dirichlet distribution is assumed, The

subscript k has been dropped to indicate prior exchangeability amongst latent

components.

G0 = p(θ1, . . . , θJ )

=

J
∏

j=1

D

(

1

R
, . . . ,

1

R

)

. (6)
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The concentration parameter α controls the prior level of clustering induced by

the DP, with no clustering produced as α → 0 [59]. This can either be assigned

a fixed value or inferred as part of the model. This paper assumes α ∼ G(a, b),

a prior first proposed by [11]. Alternatives to this prior are highlighted in the

Discussion.

2.2 Model inference

Numerous procedures suited for the estimation of DPM models exist in the

literature, with the vast majority involving the use of Markov chain Monte

Carlo (MCMC). Amongst the earliest of these methods to appear were the Gibbs

samplers devised by [10] and [11], based on the original DP definition by [12]

and assuming conjugate priors. However, the use of these approaches is no longer

widespread, due to their focus on sampling θi, as opposed to the latent variable

zi which is more computationally feasible. Gibbs samplers that conditionally

sample each zi, commonly referred to as the collapsed Gibbs sampler, appear

in [36] and [37]. For nonconjugate priors, a Gibbs sampling approach was

developed by [60]. For further discussion of these algorithms, the reader is

directed to [41].

Other MCMC based algorithms for DPM model estimation include the split-

merge algorithm, first developed for conjugate priors by [25] and later for

nonconjugate priors by [26]. [57] proposed an algorithm based on Slice sampling

[42], recently extended by [28]. An example of an non-MCMC based algorithm

is the Variational Bayes’ approached proposed by [5].

In this paper, we adopt an algorithm known as the blocked Gibbs sampler

[21, 22]. Briefly, the algorithm is based on the stick-breaking construction of

the DP [48], whereby draws from the DP are expressed as an infinite sum of

point masses on θ, namely,

G =
∞
∑

k=1

ηkδ(θk)

θk ∼ G0. (7)
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The stick-breaking weights, ηk, are constructed sequentially from a series of ran-

dom Beta (1, α) variates. The algorithm makes the simplifying assumption that

the stick-breaking process can be “blocked” or truncated at k << ∞, leading to

a Gibbs sampler similar to those developed for finite mixture models (for exam-

ple, see [38] and [16]). While the use of truncation in DPM model estimation

is reserved for the Discussion, care must be taken in the choice of truncation

level, L, to ensure it well exceeds the expected number of components.

The blocked Gibbs sampler consists of iterating between sampling from the full

conditional for z = (z1, . . . , zn), θ, η and α. For current estimates of η and θ,

the latent variable for subject i is updated from

zi|η, θ, α ∼ Mult

(

η1
∏J

j=1 p(yij |θj1)

C
, . . . ,

ηL
∏J

j=1 p(yij |θjL)

C

)

(8)

with C =
∑L

k=1 ηk
∏J

j=1 p(yij |θjk), representing the normalising constant. Given

this updated allocation of subjects, the component proportions are updated by

an L−dimensional Dirichlet distribution:

η1, . . . , ηL|α, z ∼ D
(α

L
+N1, . . . ,

α

L
+NL

)

, (9)

known as the L degree weak approximation to the DP [23]. Here, Nk =

∑n

i=1 {zi = k} An alternative update for η based on the stick-breaking rep-

resentation, in the form of Beta distributions, is also possible [21].

Finally, for each occupied cluster, defined by the unique values for z, the com-

ponent parameters θ are updated by the Dirichlet distribution,

(θjk1, . . . , θjkR) ∼ D

(

1

R
+

n
∑

i=1

I {zi = k ∩ yij = 1} , . . . ,
1

R
+

n
∑

i=1

I {zi = k ∩ yij = R}

)

.

(10)

where I {·} denotes the indicator function.
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2.3 Clustering and parameter inference

There exist two main questions are of interest when fitting a DPM model. The

first is to estimate the probabilistic clustering of subjects, modelled by the latent

variable z, given all clusterings proposed by the Gibbs sampler. The second is to

make inferences on the component weights and component specific parameters,

as these provide valuable information about the prevalence of each cluster and

their dominant characteristics with respect to the Multinomial items included

in the model.

Inference on model parameters augmented by the latent variable, and the la-

tent variable itself, are complicated by label switching. There are a number

of solutions to the label switching problem, including the imposition of prior

constraints [15] and relabelling algorithms [50, 6, 38]. In this paper, a similarity

matrix based approach is used for clustering inference. For each realisation of

z, denoted by z(d), the similarity matrix for the proposed classification, S(d), is

of size n× n and consists of elements S
(d)
ii′ satisfying the relation

S
(d)
ii′ =











1 if z
(d)
i = z

(d)
i′

0 otherwise.
(11)

The posterior expected clustering is found by computing the element-wise aver-

age of S(d) over all iterations, producing the average similarity matrix S, with

elements Si,i′ representing the posterior pairwise probability Pr(zi = zi′). From

Equation (11), it can be seen that the construction of each S(d) and ultimately

S is invariant to permutations of labelling on z, with the focus placed on simi-

larities in classification over all subjects.

Given both S(d) and S, there exist a number of criteria for inferring the most

likely clustering z∗, including Binder’s loss function [2], least squares [8] and

hierarchical agglomerative clustering [40]. These approaches have in common

the goal of maximising the association between the posterior expected classifi-

cation and classifications proposed by the Gibbs sampler, to produce the single

9



likely clustering z∗. In this paper, the criterion of [14] is employed, in light of

its tendency to produce non-singleton clusters over other methods, attributed

to its shrinkage property. This criterion involves calculation of the Posterior

Expected Adjusted Rand (PEAR) index for each realisation of z. For a single

proposed clustering, the PEAR index is,

PEAR(d) =

∑

i<i′ I

{

z
(d)
i = z

(d)
i′

}

Sii′ −
∑

i<i′ I

{

z
(d)
i = z

(d)
i′

}

∑

i<i′ Siji′/
(

n

2

)

0.5(
∑

i<i′ I

{

z
(d)
i = z

(d)
i′

}

+
∑

i<i′ Sii′)−
∑

i<i′ I

{

z
(d)
i = z

(d)
i′

}

∑

i<i′ Sii′/
(

n

2

)

.

(12)

Given the symmetry of the similarity matrix, only the lower diagonal is consid-

ered. The Adjusted Rand index is featured in this criterion as it rescales the

Rand index so it does not exceed 1, allowing for improved interpretation and

comparison of different models over its unadjusted form. In practice, Equation

(12) is computed for each sampled classification, such that z∗ is taken as the

sampled classification equaling the largest PEAR value. In a similar spirit to

other aforementioned methods, this PEAR value indicates maximal associations

between the chosen and posterior expected clustering.

Given z∗, θ and η are simulated from their respective full conditional distri-

butions to provide parameter inference. Alternatively, for parameters with a

conjugate prior distribution, an approximation to the posterior can be obtained

by computing the analytic expectation and variance given z∗. For example, the

posterior expectation of η given z∗ can be estimated by the theoretical expec-

tation of the Dirichlet distribution, in light of Equation (9). This expectation

takes the form,

η∗ =

(

α/L+N1(z
∗)

∑L

l=1 α/L+Nl(z∗)
, . . . ,

α/L+NL(z
∗)

∑L

l=1 α/L+Nl(z∗)

)

(13)

where Nl(z
∗) =

∑n

i=1 I {z
∗

i = l}. The posterior variance is then given by,

V ar(η|z∗) =
η∗(1− η∗)

1 +
∑L

l=1 α/L+Nl(z∗)
. (14)
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Similar expressions are easily obtained for both θ∗ and α∗ (see for example [17],

Appendix A).

3 Results

The proposed methodology was applied to the problem of symptom based sub-

group identification in PD. As mentioned in the Introduction, a hallmark of PD

is marked heterogeneity in observed symptom profiles between subjects, not

only with respect to presence but also the severity of different symptoms. To

this end, the application of clustering methods to data collected on PD symp-

toms may aid the identification of clinically meaningful subtypes that attempt

to explain this heterogeneity.

The focus in this paper is on the overall severity of key motor symptoms asso-

ciated with PD, in addition to the impact of PD on Activities of Daily Living

(ADL). Data used for this analysis were collected as part of the Queensland

Parkinson’s Project [51], involving the recruitment of patients diagnosed with

PD from five specialist neurological clinics across Brisbane, Australia. Infor-

mation on patients was collected using the Unified Parkinson’s Disease Rating

Scale (UPDRS), in particular UPDRS Sections II and III. Variables included in

the model were in the form of sums over individual UPDRS items, specific to a

given symptom. These variables were ADL (items 5–17), Tremor (items 20 and

21), Rigidity (item 22) and Akinesia (items 23–26).

In preliminary analyses, it was thought that clusters formed with these variables

were strongly influenced by duration of PD diagnosis, given the progressive

nature of PD, with higher scores generally indicative of a more advanced case

of the disease. This was flagged as a potential confounder in the identification

of clusters. Therefore, to adjust for possible effects attributed to duration of

diagnosis, variables were divided by each subject’s duration of diagnosis, such

that each variable was now interpreted as a patient’s average score per year of

diagnosis. Patients with either missing information on duration of diagnosis or a
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Figure 1: Frequencies histograms for each included symptom in DPM analysis.
Variables are interpreted as the increase in relevant UPDRS score per year of
PD diagnosis.

Table 1: Cut offs for recoding of UPDRS-based variables into Multinomial cat-
egories, to be used in the clustering analysis.
Symptom Minimum 33rd percentile 66th percentile Maximum
ADL 0 1.23 2.05 7.2
Tremor 0 0.20 0.55 3.2
Rigidity 0 0.29 0.74 3.4
Akinesia 0 0.72 1.37 5.0

duration of diagnosis less than five years were further excluded from the analysis.

Application of these exclusions resulted in a sample size of n = 153 patients, with

an average duration of PD diagnosis of 7.84 years and corresponding standard

deviation of 6.23 years. Figure 1 provides observed data histograms for each

included variable.

As a final step, each variable included in the analysis was recoded into one of

three categories, determined by its empirical quantiles. For all variables, Level 1

corresponded to the lowest level of severity and Level 3 the highest severity level.

Table 1 summarises the scores for each UPDRS-based variable, representing the

cut-offs for the creation of the three Multinomial categories after accounting for

duration of diagnosis. Of these variables, ADL had the highest rate of increase

per year of diagnosis.

The truncation level for the construction of the stick breaking weights was set
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Figure 2: Relative frequencies of occupied clusters over the course of the blocked
Gibbs sampler, given a truncation level of 100 and a G(2, 2) prior on α.

to L = 100. Uncertainty in α was modelled by a G(2, 2) prior. The blocked

Gibbs sampler described in the previous Section was run on the recoded data

for 100,000 iterations, discarding the first 50,000 iterations as the burnin period.

To explore variation in the level of clustering during the course of the sampler,

the number of occupied clusters was recorded at the end of each iteration. This

quantity of interest is summarised in terms of relative frequencies in Figure 2.

Overall, the sampler inferred a median of seven clusters, with a 95% credible

interval of four to twelve clusters and 80% credible interval of five to ten clusters.

The posterior distribution of α is displayed in Figure 3. In summary, the pos-

terior mean for α was 1.333, with a posterior variance equal to 0.376.

To infer the most likely clustering of subjects based on the MCMC output,

the classification similarity matrix was constructed by sampling the proposed

classification at every 100th iteration post burnin. Using the PEAR criterion, the

most likely classification consisted of seven mixture components. The posterior

means and standard deviations for each parameter, using the method described

in Section 2.3, are given in Table 2.

Describing each cluster in turn, Cluster 1 was characterised by high probabili-

ties of high progression over all symptoms. Cluster 2 was characterised by high

probabilities of moderate progression in ADL and Akinesia. Cluster 3 repre-
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Table 2: Parameter estimates for the component weights (η) and component
specific parameters (θ) for the DPM analysis based on a G(2, 2) prior for α.
Estimates are summarised in terms of posterior expectation and standard devi-
ation. Asterisks denote singleton clusters

ADL
Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7∗

1 0.09 0.16 0.85 0.45 0.62 0.11 0.17
(0.04) (0.05) (0.06) (0.10) (0.17) (0.16) (0.21)

2 0.20 0.60 0.11 0.32 0.19 0.78 0.66
(0.06) (0.07) (0.05) (0.09) (0.14) (0.21) (0.27)

3 0.71 0.24 0.04 0.23 0.19 0.11 0.17
(0.06) (0.06) (0.03) (0.08) (0.14) (0.16) (0.21)

Tremor
Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7∗

1 0.09 0.43 0.69 0.02 0.05 0.11 0.17
(0.04) (0.07) (0.08) (0.02) (0.07) (0.16) (0.21)

2 0.26 0.24 0.30 0.88 0.62 0.11 0.66
(0.06) (0.06) (0.08) (0.06) (0.17) (0.16) (0.27)

3 0.65 0.33 0.01 0.10 0.33 0.78 0.17
(0.07) (0.07) (0.02) (0.06) (0.16) (0.21) (0.21)

Rigidity
Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7∗

1 0.01 0.52 0.59 0.06 0.90 0.44 0.66
(0.01) (0.07) (0.08) (0.05) (0.10) (0.25) (0.27)

2 0.13 0.30 0.33 0.93 0.05 0.12 0.17
(0.05) (0.06) (0.08) (0.05) (0.07) (0.16) (0.21)

3 0.86 0.18 0.08 0.01 0.05 0.44 0.17
(0.05) (0.05) (0.04) (0.02) (0.07) (0.25) (0.21)

Akinesia
Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7∗

1 0.07 0.01 0.95 0.49 0.90 0.78 0.17
(0.04) (0.01) (0.04) (0.10) (0.10) (0.20) (0.21)

2 0.05 0.88 0.04 0.23 0.05 0.11 0.17
(0.03) (0.04) (0.03) (0.08) (0.07) (0.15) (0.21)

3 0.88 0.11 0.01 0.28 0.05 0.11 0.66
(0.05) (0.04) (0.02) (0.09) (0.07) (0.15) (0.27)

η 0.30 0.30 0.20 0.14 0.04 0.01 0.01
(0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.01)
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Figure 3: Posterior distribution of the DP concentration parameter α (solid
line), based on a G(2, 2) prior (dashed line).

sented the reverse trend to Cluster 3, with strong evidence of low progression

over all four symptoms. Representing the last of the dominant clusters, Cluster

4 appeared to be described by high probabilities of moderate progression for

Tremor and Rigidity.

The remaining three clusters, (5,6 and 7) had relatively smaller weights, all

below 0.1, with Cluster 7 containing a single patient. Given these low weights,

it was thought that Clusters 5, 6 and 7 represented multivariate outliers in the

observed data. Alternatively, they may have represented so-called “emerging”

clusters; ie. clusters that were not supported by the observed data but may

be more prominent with the collection of information of additional patients.

Finally, the presence of these clusters could have resulted from the prior specified

for α, given its direct role in clustering inference. This prompted a sensitivity

analysis on α, presented in the next Section.

It is of interest to note similarities and differences between the inferred partition

and results from previous studies of PD. In a systematic review of previous

studies by [55], a number of studies cited identified “slow progression” and “high

progression” subgroups with respect to all included symptoms. This finding was

similar to the identification of Clusters 1 and 3 in this analysis. In [45] and [33],

tremor-dominant and rigidity dominant subtypes were identified. This appeared
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to be in contrast to the combined Tremor/Rigidity cluster found here (Cluster

4), however, in the former studies, the focus was on overall severity as opposed

to progression.

3.1 Sensitivity analysis

To investigate the role of α in clustering inference, a sensitivity analysis was

conducted for different choices of the hyperparameters a and b, involved in the

prior distribution for α. The results that follow are based on two priors, namely

a G(4, 2) and G(2, 4) prior, each representing different prior expectations for α.

Based on the result by [1]1, the specification of these priors resulted in a prior

expected number of clusters equal to 8.70 and 2.86 clusters, for priors G(4, 2)

and G(2, 4) respectively.

The blocked Gibbs sampler was again run for 100,000 iterations with the first

50,000 iterations discarded. Figures 4(a) and 4(b) display the posterior distri-

butions for α and the number of occupied clusters, for each prior tested.

In Figure 4(a), differences in the posterior distributions for α were observed,

most notably with respect to spread. Differences in posterior means were also

noted, with E(α|z,y) = (1.99, 0.82) for G(4, 2) and G(2, 4) respectively. The

comparison of posterior distributions in Figure 4(b) showed evidence of a higher

median number of clusters for the G(4, 2), as expected given its correspond-

ing prior expectation. Conversely, the equivalent posterior distribution for the

G(2, 4) prior exhibited a slightly narrow range of occupied clusters.

Parameter inference, for each choice of prior, is summarised in Tables 3 and 4,

again in terms of posterior means and standard deviations.

Of immediate note in the comparison of these two clustering solutions were dif-

ferences in the number of inferred clusters, at most seven for the G(4, 2) prior.

However, in comparing results for the first four clusters under each prior, it was

seen that these clusters were very similar with respect to dominant features.

Cluster descriptions with respect to these features were also aligned with those

1
E(K) ≈ α log

(

1 + n

α

)
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Figure 4: Posterior distributions for fig:ch3aalphasens α for each prior tested.
Solid line = G(4, 2), Dashed line = G(2, 4); fig:ch3aKsens the number of occu-
pied clusters (left to right): G(4, 2) and G(2, 4).
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Table 3: Parameter estimates for revised DPM analysis, based on α ∼ G(4, 2),
summarised in terms of posterior expectation and standard deviation.

ADL
Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
1 0.09 0.77 0.22 0.63 0.03 0.05 0.08

(0.04) (0.07) (0.07) (0.11) (0.05) (0.07) (0.12)
2 0.20 0.14 0.74 0.24 0.03 0.90 0.58

(0.06) (0.05) (0.07) (0.10) (0.05) (0.10) (0.22)
3 0.71 0.09 0.04 0.13 0.94 0.05 0.34

(0.06) (0.04) (0.03) (0.08) (0.07) (0.07) (0.21)
Tremor

Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
1 0.09 0.56 0.59 0.02 0.14 0.05 0.08

(0.04) (0.08) (0.08) (0.03) (0.10) (0.07) (0.12)
2 0.26 0.32 0.22 0.96 0.43 0.62 0.08

(0.06) (0.07) (0.07) (0.04) (0.15) (0.17) (0.12)
3 0.65 0.12 0.19 0.02 0.43 0.33 0.84

(0.07) (0.05) (0.07) (0.03) (0.15) (0.17) (0.17)
Rigidity

Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
1 0.05 0.69 0.53 0.02 0.63 0.05 0.08

(0.03) (0.07) (0.08) (0.03) (0.14) (0.07) (0.12)
2 0.15 0.27 0.22 0.91 0.33 0.90 0.58

(0.05) (0.07) (0.07) (0.06) (0.14) (0.10) (0.22)
3 0.80 0.04 0.25 0.07 0.04 0.05 0.34

(0.05) (0.03) (0.07) (0.06) (0.05) (0.07) (0.21)
Akinesia

Level Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
1 0.07 0.90 0.01 0.74 0.03 0.05 0.33

(0.03) (0.05) (0.02) (0.10) (0.05) (0.07) (0.21)
2 0.05 0.01 0.92 0.24 0.94 0.33 0.58

(0.03) (0.01) (0.05) (0.10) (0.07) (0.17) (0.22)
3 0.88 0.09 0.07 0.02 0.03 0.62 0.09

(0.04) (0.04) (0.04) (0.03) (0.05) (0.17) (0.12)
η 0.32 0.24 0.21 0.11 0.06 0.04 0.02

(0.04) (0.03) (0.03) (0.02) (0.01) (0.01) (0.01)
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Table 4: Parameter estimates for revised DPM analysis, based on α ∼ G(2, 4),
summarised in terms of posterior expectation and standard deviation.

ADL
Level Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 0.11 0.05 0.89 0.39

(0.04) (0.03) (0.05) (0.10)
2 0.61 0.22 0.10 0.37

(0.07) (0.06) (0.05) (0.10)
3 0.28 0.73 0.01 0.24

(0.06) (0.06) (0.01) (0.09)
Tremor

Level Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 0.47 0.07 0.47 0.06

(0.07) (0.04) (0.08) (0.05)
2 0.11 0.31 0.47 0.88

(0.04) (0.07) (0.08) (0.07)
3 0.42 0.62 0.06 0.06

(0.07) (0.07) (0.04) (0.05)
Rigidity

Level Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 0.53 0.05 0.52 0.15

(0.07) (0.03) (0.08) (0.07)
2 0.30 0.14 0.42 0.65

(0.06) (0.05) (0.08) (0.10)
3 0.17 0.81 0.06 0.20

(0.05) (0.06) (0.04) (0.08)
Akinesia

Level Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 0.13 0.09 0.93 0.15

(0.05) (0.04) (0.04) (0.07)
2 0.80 0.03 0.01 0.47

(0.06) (0.02) (0.01) (0.10)
3 0.07 0.88 0.06 0.38

(0.04) (0.05) (0.04) (0.10)
η 0.31 0.29 0.26 0.14

(0.04) (0.04) (0.03) (0.03)
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obtained from the original analysis, involving a G(2, 2) prior on α. That said,

the comparison of component weights under different priors revealed some dif-

ferences between Clusters 1, 2 and 3. For example, the moderate ADL/Akinesia

cluster was ranked third with respect to weight under the G(4, 2) prior, com-

pared to first for G(2, 4) and second under the G(2, 2) prior. These discrepancies

could be attributed to the relative closeness of inferred weights for these three

clusters. In greater detail, in transitioning from models with more to fewer clus-

ters, the reclassification of some patients into more dominant clusters resulted

in changes to the posterior means for the corresponding weights. Overall, the

choice of prior on α was seen to impact on the number of clusters inferred;

however, in terms of identifying dominant clusters and their features, resulting

inferences were largely robust to the choice of prior.

4 Discussion

In review, this paper has investigated the problem of clustering multivariate,

categorical data with an application to the identification of symptom subgroups

in PD. It represents a novel application of the DPM model, an unsupervised

clustering method that allows for uncertainty about the partition of patients

into an unknown number of subgroups.

The results presented in Section 3 beared similarities to other studies that have

considered clustering techniques for the identification of PD subtypes. The

identification of Clusters 1 and 3 were in line with previous results [45, 33].

In these studies, the presence of these clusters was linked to age on PD onset,

with younger age of onset patients typically characterised under Cluster 1. Con-

versely, the identification of Clusters 2 and 4 appear to differ from the results

of previous studies and are thus worthy of further investigation.

The analysis presented in this paper brought to attention the role of the con-

centration parameter involved in the DP prior, in particular how the choice of

prior on α affected clustering inference. This aspect of DPM modelling has been
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discussed by many authors, among those [22] and [59] where larger values of

α tended to produce more smoothing and larger numbers of occupied clusters.

In this study, a conjugate Gamma prior on α was chosen, and the choice of

hyperparameters affected the number of inferred clusters. However, parameter

inference on dominant clusters was not largely affected by this choice. That

said, there exist other, more flexible, prior distributions for the concentration

parameter. In [34], the DP is replaced by a prior obtained by a generalised

Gamma process. Alternatively, in [56], an enriched conjugate prior for the DP

is developed. Although not considered in this paper, these distributions provide

competitive alternatives to the use of a Gamma prior and could be considered

in future studies of this nature.

Out of the numerous algorithms available for DPM model inference, the blocked

Gibbs sampler was chosen in light its relative computational speed. However,

this choice of this algorithm required the specification of a truncation level,

which is not required for other sampling approaches. Examples of these alter-

native approaches include those based on the Pòlya Urn representation [4] and

the normalised, completely randomised measures representation first proposed

by [12]. As a reviewer rightly pointed out, a problem with the use of truncation

on the stick-breaking process may ignore the influence of outlying observations

or heavy tail behaviour. In the present study, the blocked Gibbs sampler was

rerun with multiple different choices for L, with resulting inferences not affected

by this choice. Nevertheless, the choice of sampler for DPM model estimation

should be carefully considered as part of any analysis.

A broader issue faced in the use of unsupervised clustering methods, including

the DPM model, is that of variable selection. It is widely acknowledged in the

literature that the choice of variables included in a clustering analysis may affect

the identification of different clusters and, in many cases, some variables may

play little to no role in differentiating between clusters. For the featured applica-

tion, while variables were chosen for clinical reasons, it would be of great interest

to compare results with models including variable selection, in this case, the se-
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lection of symptoms that best discriminate between patients. Furthermore, in

other applications, variable selection may represent a significant challenge. A re-

cent innovation in clustering problems is the incorporation of Stochastic Search

Variable Selection (SSVS) [18], whereby variables are randomly included or ex-

cluded during the course of MCMC and their role in discriminating between

clusters assessed. For DPM models, this extension was considered by [30] and

also presents opportunities for future work.
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