
INTEGRATED HEALTH PREDICTION OF 
BRIDGE SYSTEMS USING DYNAMIC 

OBJECT ORIENTED BAYESIAN NETWORKS 
(DOOBNS) 

By 

RUIZI WANG 
 

Supervised by 
 

Professor Lin Ma 
Associate Professor Cheng Yan 

Professor Joseph Mathew 
 

 

Submitted in fulfilment of the requirements for the degree of 
Doctor of Philosophy 

 

CRC for Infrastructure and Engineering Asset Management 

School of Chemistry, Physics and Mechanical Engineering 

Science and Engineering Faculty 

Queensland University of Technology 

2012





 i 

Integrated Health Prediction of Bridge Systems using Dynamic Object Oriented Bayesian Networks (DOOBNs)
 i 

ABSTRACT 

The serviceability and safety of bridges are crucial to people’s daily lives and to the 

national economy. Every effort should be taken to make sure that bridges function safely 

and properly as any damage or fault during the service life can lead to transport paralysis, 

catastrophic loss of property or even casualties. Nonetheless, aggressive environmental 

conditions, ever-increasing and changing traffic loads and aging can all contribute to 

bridge deterioration. With often constrained budget, it is of significance to identify bridges 

and bridge elements that should be given higher priority for maintenance, rehabilitation or 

replacement, and to select optimal strategy. Bridge health prediction is an essential 

underpinning science to bridge maintenance optimization, since the effectiveness of 

optimal maintenance decision is largely dependent on the forecasting accuracy of bridge 

health performance. 

The current approaches for bridge health prediction can be categorised into two 

groups: condition ratings based and structural reliability based. A comprehensive literature 

review has revealed the following limitations of the current modelling approaches: (1) it is 

not evident in literature to date that any integrated approaches exist for modelling both 

serviceability and safety aspects so that both performance criteria can be evaluated 

coherently; (2) complex system modelling approaches have not been successfully applied 

to bridge deterioration modelling though a bridge is a complex system composed of many 

inter-related bridge elements; (3) multiple bridge deterioration factors, such as 

deterioration dependencies among different bridge elements, observed information, 

maintenance actions and environmental effects have not been considered jointly; (4) the 

existing approaches are lacking in Bayesian updating ability to incorporate a variety of 

event information; (5) the assumption of series and/or parallel relationship for bridge level 

reliability is always held in all structural reliability estimation of bridge systems. 

To address the deficiencies listed above, this research proposes three novel models 

based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I 

aims to address bridge deterioration in serviceability using condition ratings as the health 

index. The bridge deterioration is represented in a hierarchical relationship, in accordance 

with the physical structure, so that the contribution of each bridge element to bridge 

deterioration can be tracked. A discrete-time Markov process is employed to model 
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deterioration of bridge elements over time. In Model II, bridge deterioration in terms of 

safety is addressed. The structural reliability of bridge systems is estimated from bridge 

elements to the entire bridge. By means of conditional probability tables (CPTs), not only 

series-parallel relationship but also complex probabilistic relationship in bridge systems 

can be effectively modelled. The structural reliability of each bridge element is evaluated 

from its limit state functions, considering the probability distributions of resistance and 

applied load. Both Models I and II are designed in three steps: modelling consideration, 

DOOBN development and parameters estimation. Model III integrates Models I and II to 

address bridge health performance in both serviceability and safety aspects jointly. The 

modelling of bridge ratings is modified so that every basic modelling unit denotes one 

physical bridge element. According to the specific materials used, the integration of 

condition ratings and structural reliability is implemented through critical failure modes. 

Three case studies have been conducted to validate the proposed models, 

respectively. Carefully selected data and knowledge from bridge experts, the National 

Bridge Inventory (NBI) and existing literature were utilised for model validation. In 

addition, event information was generated using simulation to demonstrate the Bayesian 

updating ability of the proposed models. The prediction results of condition ratings and 

structural reliability were presented and interpreted for basic bridge elements and the 

whole bridge system. The results obtained from Model II were compared with the ones 

obtained from traditional structural reliability methods. Overall, the prediction results 

demonstrate the feasibility of the proposed modelling approach for bridge health prediction 

and underpin the assertion that the three models can be used separately or integrated and 

are more effective than the current bridge deterioration modelling approaches.  

The primary contribution of this work is to enhance the knowledge in the field of 

bridge health prediction, where more comprehensive health performance in both 

serviceability and safety aspects are addressed jointly. The proposed models, characterised 

by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated 

the effectiveness and pledge of DOOBNs approach to bridge health management. 

Additionally, the proposed models have significant potential for bridge maintenance 

optimization. Working together with advanced monitoring and inspection techniques, and a 

comprehensive bridge inventory, the proposed models can be used by bridge practitioners 

to achieve increased serviceability and safety as well as maintenance cost effectiveness.   
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Chapter 1: Introduction 

1.1 Background 
During the last several decades, a large number of infrastructure assets for transport 

networks have been built owing to fast urbanisation. Regarded as a critical component of a 

transport network, bridge has experienced a period of massive construction. Overall, there 

are several different types of bridge structures: reinforced concrete bridges, prestressed 

concrete bridges, steel bridges, arch bridges, cable stayed bridges, suspension bridges, 

movable bridges and footbridges [61]. Because of aggressive environmental conditions, 

ever-increasing and changing traffic loading effects and bridge aging, bridges are supposed 

to deteriorate over time. The bridge serviceability and safety are always the primary 

concerns for bridge owners and bridge maintenance engineers. Every effort should be 

taken to assure bridges function properly and safely as any damages or faults during the 

service life can lead to transport paralysis, catastrophic loss of property or even casualties.  

In 2007, the I-35W Mississippi River Bridge (Figure 1-1) crossing the Mississippi 

River in Minneapolis, Minnesota, collapsed suddenly, which killed 13 people and injured 

145 people [171]. Many people were stranded and in danger. There were vehicles on fire 

as well. Overall this catastrophe costed millions of dollars. Although this kind of disaster 

seldom happens in our daily life, we can see the consequence is extremely painful and 

long-lasting. Another instance, in the same year, is the Captain Cook Bridge over Brisbane 

River, which is the busiest bridge in Queensland. It was closed due to safety concern 

caused by a crack in structure [170]. The closure of Captain Cook Bridge affected people’s 

daily life and national economy significantly.  

There are approximately 33,500 road bridges in Australia. Most of them are critical 

bridges like Captain Cook Bridge. Especially, in some regional areas, bridge closures can 

bring even hundreds miles’ detour, which really cause enormous inconvenience to people. 

To avoid any bridge collapse and unnecessary bridge closures, the importance of proper 

bridge maintenance activities cannot be over emphasized.  
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Figure 1-1. Scene of the collapse, the Interstate 35W Bridge over the Mississippi River in 
Minneapolis, Minnesota, 2007 [145] 

 

 

 

Figure 1-2. The Captain Cook Bridge over Brisbane River (Courtesy of Tim Marsden) 
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In Australia, billions of dollars are spent on the activities related to bridge inspection 

and maintenance every year. However, there is always a significant potential for saving on 

current overspending due to ineffective maintenance, which is mainly owing to inaccurate 

prediction of bridge health performance. In addition, the budget funding for bridge 

preservation is always constrained. Hence, it is of particular importance to identify bridges 

that should be given higher priority for maintenance, rehabilitation or replacement, and to 

select the optimal strategy so that risk and life-cycle cost of those bridges can be reduced. 

In recent times, sustainable maintenance of bridges has been drawing increasing attention. 

Bridge management systems (BMS) are designed to consider decisions in design and 

selection of materials, and to optimize maintenance, rehabilitation and replacement 

(MR&R) decisions for bridge networks under financial constraints [112]. 

According to the guidelines and requirements outlined by the American Association 

of State Highway Transportation Officials (AASHTO), a BMS should include five basic 

components: a database, cost models, bridge deterioration models for health performance 

prediction, optimisation models for analysis and updating functions. In BMSs, bridge 

deterioration models are crucial as their ability to forecast bridge health performance 

largely determines the effectiveness of optimal strategy. Bridge health prediction has 

become an essential underpinning science to effective bridge maintenance optimization 

with the following reasons: (1) since a large number of bridges are identified as structurally 

deficient or functionally obsolete, and have been servicing beyond the design life, accurate 

health prediction is of significance to ensure these bridges are safe and reliable; (2) bridge 

health prediction provides the best information about bridge deterioration to assist 

decision-making about bridge maintenance; (3) economically responsible, safe, life-cycle 

management of bridges depends on accurate bridge health prediction over time. Currently, 

various bridge health prediction approaches have been developed. According to used 

bridge health indexes, current approaches can be classified into: that of condition ratings 

(condition states) based and structural reliability based. Among them the Markov chain 

model is the most commonly used by the existing BMSs. However, criticising the 

limitations, such as state space explosion and inconvenience for testing and monitoring 

data incorporation, an open research question arises as to on how to continuously improve 

bridge deterioration models. 

 Furthermore, the recent development of advanced sensing techniques and non-

destructive testing (NDT) techniques has also offered an opportunity for enhancing bridge 
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health prediction. To supplement the visual inspection, NDT techniques have been applied 

by BMSs to detect bridge elements of interest whose deterioration is not visible. Structural 

Health Monitoring (SHM) systems have been established as well to detect deterioration, 

track the real time vibration/dynamic response of a structure along with inputs and provide 

real time sensor values. Therefore, more objective and quantitative information about 

bridge deterioration becomes available. These objective data are supposed to include 

operational and environmental data as well as historical maintenance records. Compared 

with subjective data estimated from expert knowledge and visual inspection, objective data 

provide better insights into bridge real deterioration so that we can calibrate bridge 

deterioration models to mitigate uncertainties and to acquire more accurate results. 

Nonetheless, current bridge deterioration models have not been ready yet to utilise the 

available objective data to improve their prediction.  

This research concentrates on bridge health prediction. Three bridge deterioration 

models based on Dynamic Object Oriented Bayesian Networks (DOOBNs) are developed. 

They can model bridge deterioration from both serviceability and safety aspects jointly. 

Cost-effective maintenance strategies require health prediction in these two performance 

criteria. However, because the existing approaches are segregated and mutually exclusive, 

their prediction results cannot be utilised cooperatively for bridge maintenance 

optimization. Therefore, the proposed models will be valuable on this matter.  

Additionally, the proposed models are able to incorporate different individual methods and 

a variety of subjective and objective data so as to maximise the advances of the current 

bridge health prediction. 

1.2 Research gaps 
At present, various bridge health prediction approaches are available for BMS. 

Although they have advanced the knowledge for bridge maintenance optimization, there 

are a number of identified deficiencies and gaps in current research based on a 

comprehensive literature review and they are listed as follows: 

 It is not evident in literature to date that any existing approaches have been 

yet proven to be generally sufficient and consistent to model bridge health 

prediction using both condition ratings (condition states) and structural 

reliability in an integrated manner so that both performance criteria can be 

evaluated coherently.  
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Bridge serviceability and safety are two different concerns about its health 

performance. Bridge serviceability concerns bridge faults, such as pot holes in the concrete 

deck and spalling on the concrete beams, which will not trigger a bridge collapse but may 

result in a bridge repair. Bridge safety concentrates entirely on bridge load-carrying 

capacity. Normally, condition ratings and structural reliability are two commonly used 

health indexes to describe bridge health performance in these two concerned aspects. 

Condition ratings (condition states) mainly derived from visual inspection are estimated by 

bridge inspector with their subjective judgement. Structural reliability, defined through 

limit state functions, is an objective measure of probabilities that the demand applied to a 

structure may exceed its capacity. Cost-effective maintenance strategies require health 

prediction in these two performance criteria. However, because the existing approaches are 

segregated and mutually exclusive, their prediction results cannot be utilised cooperatively 

for bridge maintenance optimization. An integrated approach for bridge health prediction 

in terms of both condition ratings and structural reliability is highly desirable. This is 

elaborated as follows: 

• Condition ratings (condition states) and structural reliability are implicitly 

correlated since they both reflect the deterioration processes of a bridge. A 

mechanism is needed to consider this implicit relationship for consistent and 

more accurate health prediction results. 

• Bridge health prediction involves uncertainties. These uncertainties can be 

mitigated by adopting multiple approaches concurrently. However, the 

existing approaches are mutually exclusive and segregated. 

• As the existing segregated approaches have limited ability to deal with 

uncertainties, they may lead to different tendencies in maintenance decisions. 

Moreover, maintenance decision-making based on only single health index is 

often not cost-effective. 

 Complex system modelling approaches have not been successfully applied 

for bridge deterioration modelling though a bridge is a complex system 

composed of many inter-related elements. 

A bridge structure is a complex system composed of many inter-related bridge 

elements. The deterioration of the bridge is largely dependent on the deterioration of each 

element. Additionally, each bridge element deteriorates with temporal uncertainties. 
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Therefore, a modelling approach that is able to facilitate the probabilistic representation of 

a complex problem domain in hierarchical ways is more appropriate for bridge 

deterioration modelling. Eventually, bridge maintenance optimization can benefit from this 

approach. Current research, however, has not investigated complex system modelling 

approaches for bridge health prediction effectively. 

 Multiple bridge deterioration factors, such as deterioration dependencies 

among different bridge elements, different types of observed information, 

maintenance actions and environmental conditions have not been considered 

jointly by the existing approaches. 

To achieve accurate health prediction results, a number of different deterioration 

factors should be considered jointly. For instance, because of deterioration dependencies, 

the deterioration of one bridge element can accelerate that of another. For example, the 

deterioration of a concrete deck accelerates when its bearings do not function properly. If 

the bearings freeze due to corrosion, the deck will be subjected to expansion and 

contraction stresses that cause cracking [142]. Therefore, it is vital to take into account the 

deterioration dependencies among bridge elements. Furthermore, during the service life of 

bridges, observed information reflecting bridge real deterioration may be available. These 

records need to be incorporated into modelling for results updating. Similarly, maintenance 

actions, environmental conditions, such as traffic load, wind load, temperature and 

humidity, also have effects on bridge deterioration. All these factors should be handled in 

an integrated manner. However, the current approaches have not done so. 

 The assumption of series and/or parallel relationship for bridge level 

reliability is always held in all structural reliability estimation of bridge 

systems, but this assumption needs to be challenged. 

Conventionally, structural reliability of bridge systems is evaluated through 

structural reliability methods with the representation of a bridge system as basic parallel 

and/or series bridge element sets. However, because a bridge system is a complex system 

being composed of many inter-related bridge elements, this representation is never verified 

favourably in practice. For accurate estimation, this assumption should be removed. 
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 Incorporation of a variety of information, such as monitoring data, expert 

knowledge and physical laws can effectively mitigate the uncertainties in 

bridge deterioration modelling. However, such an incorporation encounters 

difficulties since the current bridge health prediction approaches cannot act 

as an integration platform and lack in the Bayesian updating ability. 

It is necessary to reduce uncertainties related to lack of full knowledge of bridge 

deterioration behaviours, and to deterioration models by which real-life behaviours of 

bridges may not be fully represented [26]. These uncertainties can be mitigated by 

integrating various types of information, such as inspection records, expert knowledge, 

physical law, monitoring data from NDT and SHM [26, 33, 45, 96, 123, 130] as well as 

operational/environmental condition [59, 64, 153]. However, the current approaches lack 

the ability to integrate all the information mentioned above. Additionally, updating 

efficiencies of the existing approaches also bring difficulties for the incorporation since 

Bayesian updating is implemented manually. Therefore, an effective platform for 

information integration is desired. 

1.3 Research objectives and scopes 
In this research, a complex system modelling approach, known as Dynamic Object 

Oriented Bayesian Networks (DOOBNs), is examined and adopted to deal with the 

identified research gaps so as to develop an integrated health prediction approach. The 

fundamental goal is to pioneer an effective system approach so as to provide 

comprehensive information about bridge future health performance in both serviceability 

and safety aspects for cost-effective bridge maintenance optimization. This research 

develops three novel bridge deterioration models based on DOOBNs. The relationships 

among these three models are shown in Figure 1-3. The research objectives are detailed as 

follows:  

 Model I for bridge condition rating prediction with the ability to: 

• facilitate probabilistic representation of bridge systems in a hierarchical way 

from bridge elements to the whole bridge system; 

• handle multiple deterioration factors, such as deterioration dependencies 

among different bridge elements, inspection records,  maintenance actions 

and environmental effects concurrently; 
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• perform Bayesian updating efficiently; 

• operate as an effective platform to integrate a variety of information; 

• address bridge deterioration in serviceability aspect. 

 Model II for bridge structural reliability prediction with the ability to: 

• calculate time-variant structural reliability of bridge elements based on limit 

state functions;  

• evaluate time-variant structural reliability of bridge systems based on not 

only series and/or parallel relationship but also complex probabilistic 

relationship; 

• implement Bayesian updating for structural reliability estimation without the 

requirement of special knowledge in reliability analysis; 

• address bridge deterioration in safety aspect. 

 Model III for integrated bridge health prediction with the ability to: 

• model bridge essential failure modes, such as corrosion, crack and spalling; 

• incorporate Models I and II by means of essential failure modes; 

• predict bridge health performance in terms of both condition ratings and 

structural reliability. 

 Validation of the proposed models for bridge health prediction. 

 

Figure 1-3. Relationships of the three developed models 

Model III: 
Health 

Prediction 
Integration

Model I: Health 
prediction in 
serviceability

Model II: Health 
prediction in safety
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There are various types of materials for bridges. This research will focus on the 

bridges made of reinforced concrete and steel associated with case studies since these two 

types of materials are the most commonly used. Other materials, such as timber and 

composite material, will not be considered in this research. For structural reliability, only 

ultimate limit state functions are considered. Deterioration mechanisms about corrosion, 

crack and spalling are presented so as to facilitate the health prediction integration. The 

assumption that deterioration process is stationary and follows first order Markov process 

is held in this research. The live load regarding structural reliability estimation is assumed 

to follow a time-invariant statistical distribution. As in practice the permitted weight of 

trucks for passing certain bridges can be controlled, so it is reasonable to hold this 

assumption. Further bridge maintenance optimization and detailed data acquisition from 

monitoring techniques, such as NDT and SHM, are beyond the scope of this research.  

1.4 Originality and contribution 
This research for the first time investigates DOOBNs in depth for integrated bridge 

health prediction. Three models based on DOOBNs are developed to address bridge health 

prediction using both condition ratings and structural reliability in an integrated manner. 

With more accurate and comprehensive prediction results, the proposed models are proved 

to be more effective than the existing bridge deterioration models. In addition, the 

proposed models can cope with versatility requirement for different BMSs and 

extensibility requirement for further maintenance optimization. This novel approach shows 

DOOBNs based bridge deterioration models have several unique features:  

 Modelling of implicit correlation between condition ratings and structural 

reliability. Despite condition ratings and structural reliability are two different 

performance measures of bridge health they both reflect fundamental bridge 

deterioration processes. By means of essential failure modes, such as corrosion, 

crack and spalling, bridge deterioration in serviceability and safety aspects can be 

correlated to achieve integrated bridge health prediction. 

 Hierarchical representation of bridge dynamic deterioration behaviours from 

bridge elements to the entire bridge. This representation facilitates integrated 

bridge management for the purpose of maintenance optimization. It also 

facilitates the implementation of “What-if” analysis to identify important bridge 

structural elements among a complex bridge system. 
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 Adaptive structural reliability estimation of the whole bridge systems. Limit state 

functions regarding bridge elements are modelled as the basis of bridge systems 

estimation. Considering not only series and/or parallel relationship among bridge 

elements but also complex probabilistic relationship, potential errors in bridge 

system estimation owing to inappropriate assumptions can be minimised. This 

adaptive ability facilitates modelling structural reliability of bridge systems under 

different types of relationships among bridge elements.  

 Joint consideration of multiple bridge deterioration factors, such as deterioration 

dependency, observed information and environmental conditions as well as 

maintenance intervene. This ability generates more accurate health prediction 

results especially for bridge operation decisions. 

 Incorporation of a variety of information for parameters estimation. Considering 

different data availabilities, detailed specifications to estimate conditional 

probability tables (CPTs) and priori probabilities based on bridge condition data, 

expert knowledge, combination of condition data and expert knowledge, 

theoretical deterioration equations and limit state functions as well as 

miscellaneous knowledge are all formulated. The inclusion of various types of 

data mitigates prediction uncertainties and data scarcity problems of current 

research. 

 Bayesian updating ability for enhanced updating efficiency and prediction 

accuracy. 

1.5 Thesis outline 
Chapter 1 introduces the current development and significance of the research. In 

Section 1.2, several research gaps are identified from the research area. Targeting these 

limitations, research objectives are outlined in details in Section 1.3. Additionally, the 

scope of the research is described so that the study is constrained to a specific and tractable 

research area. Finally, the originality and knowledge contributions to the current research 

are discussed. 

Chapter 2 presents a comprehensive literature review. In Section 2.2, a brief review 

about bridge management systems (BMS) is given. With the emphasis on bridge health 

prediction approaches, a critical review is conducted in Section 2.3 on bridge deterioration 
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models. The review contains two key parts: condition rating based models and structural 

reliability based models. For each deterioration model, the limitations and merits are 

discussed. In Section 2.4, Structural Health Monitoring (SHM) and Non-destructive testing 

(NDT), which are closely related to bridge management, are introduced concisely. Finally, 

a number of identified research challenges in bridge health prediction are listed.   

Chapter 3 aims to pave the roads for model development. The basic knowledge of 

Bayesian Networks (BNs) theory and bridge deterioration is introduced in Sections 3.1 and 

3.2, respectively. In the first part, different classes of Bayesian Networks (BNs) are 

presented. In the second part, essential failure modes for steel and reinforced concrete as 

well as the corresponding physical equations are described in details. In Section 3.3, the 

issues about research strategy, data collection and modelling analysis process are described. 

In Chapter 4, model I based on DOOBNs is developed for bridge condition ratings 

prediction. In Section 4.2, the proposed Model I is designed in three steps: modelling 

consideration, DOOBNs model development and parameters estimation. In the first step, 

bridge is decomposed into a number of bridge hierarchies. For each hierarchy, condition 

states definition, relative weight and involved deterioration dependencies are identified. In 

the second step, conceptual DOOBNs model is built up from the highest abstract level of 

the whole bridge system to the elementary level of bridge elements. In the last step, 

parameters estimation is addressed considering different types of data sources, such as 

expert knowledge and historical condition rating data. The feasibility of the proposed 

Model I is demonstrated on a steel truss bridge in Section 4.3, where expert knowledge is 

largely used to evaluate conditional probability tables (CPTs).  

Chapter 5 focuses on bridge structural reliability prediction. Model II based on 

DOOBNs is proposed in section 5.2. Similarly, Model II is also composed of three steps: 

modelling consideration, DOOBN model development and parameters estimation. Section 

5.2.1 recognizes several bridge structural hierarchies and develops limit state functions for 

each basic bridge structural element. Section 5.2.2 constructs the conceptual DOOBNs 

model, which includes hierarchical representation of the whole bridge system through 

several bridge hierarchies and time-variant structural reliability estimation for each basic 

bridge element. Section 5.2.3 parameterizes the conceptual DOOBNs model, where 

discretization is implemented on continuous variables to derive CPTs and prior 

probabilities based on discrete states. To validate the effectiveness of the proposed Model 

II, an application borrowed from an existing literature is conducted in Section 5.3. 
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Chapter 6 develops Model III based on DOOBNs for integrated health prediction. In 

Section 6.2, Model I for condition states prediction is modified to facilitate the modelling 

integration. Then, by means of essential failure modes, such as corrosion, crack and 

spalling, Models I and II are connected each other. At last, parameters estimation for the 

proposed Model III is given based on physical deterioration equations and condition 

ratings definition. In the pursuit of integrated health prediction, the practicability of the 

proposed Model III is evaluated in Section 6.3 using an application based on an open 

database and the existing literature. 

Chapter 7 concludes the whole study. The capacity of the proposed models is 

clarified though only partial demonstration is implemented at the current stage due to time 

and data availability limitations. The possible future research directions are discussed as 

well. It is imperative to consider dynamic changing load and extend material variation.    
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Chapter 2: Literature review 

2.1 Introduction 
This chapter presents a thorough literature review of bridge health prediction. The 

prediction results are the base of bridge optimal maintenance practice. So far, owing to the 

increasing concern about economically sustainable maintenance practices, bridge 

management systems (BMS) have become more prevalent. Different BMS have been built 

up in many counties around the world. Moreover, the quality of decisions made by BMS 

largely depends on the accuracy of prediction results obtained from bridge deterioration 

models. Currently, various bridge deterioration models have been developed for BMS, 

most of which attempt to capture the uncertainties amongst bridge deterioration. This 

review begins with an introduction to BMS in Section 2.2. A comprehensive literature 

review about bridge health prediction approaches is carried out in Section 2.3. Other 

techniques closely related to bridges are reviewed in Section 2.4. The review is 

summarised in Section 2.5, where the open research areas are identified. 

2.2 Bridge management systems (BMS) 

2.2.1 Introduction of BMS 
The concept of bridge management derives from the idea that decisions in design, 

construction, maintenance and repair can be made based on resource optimization [65]. 

Primarily, the existing bridges are considered by BMS to ensure that they achieve their 

design life, remain open to traffic continuously throughout their life and that their risk of 

failure is as low as possible [38, 39].  

BMS  have been developed to make decisions in design and material selection of 

materials, and to optimize maintenance, rehabilitation and replacement (MR&R) decisions 

for bridge networks under financial constraints [112]. Normally, BMS consider a wide 

range of activities that are commonly encountered in the day-to-day management of 

bridges such as inspection, assessment of load-carrying capacity and various types of 

testing. The essential parts of a BMS are bridge expected performance model, bridge 

expected demands model, and cost model for different options in structures and lost or 

lessened service[65]. The American Association of State Highway Transportation Officials 
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(AASHTO) outlined the guidelines and requirements for a BMS [1]. These guidelines 

recommend that a BMS should include five basic components: a database (data storage), 

cost models, deterioration models, optimisation models for analysis, and updating 

functions. Compared with other management systems, such as that of pavement-

maintenance management, BMS have some unique characters [59]: (a) An extensive body 

of knowledge and data do not exist for bridges; (b) It is not meaningful to define a uniform 

unit for bridges similar to the lane-mile unit for roads; (c) There are more types and 

designs of bridges than pavements; (d)  Various components deteriorate at differing rates; 

(e) Various bridge components of a bridge may be subjected to different environment 

factors; (f) The funding situation is more complex for bridges than for other entities; (g) 

Improvement activities are different from maintenance activities.  

Currently, most of the existing BMS are based on bridge condition ratings, which are 

mainly estimated from visual inspection in the form of numerical ranking. From the 

definition of condition ratings, specifications for bridge damage related to serviceability 

are included. In condition ratings based BMS, structural safety is only directly mentioned 

in the worst condition rating, where a safety problem is suspected and an urgent 

intervention is anticipated [135]. Normally, these BMS are implemented in the project 

level and the network level. In the project level, BMS focus on individual bridges; whereas 

in the network level BMS deal with the management of bridge stocks [163]. Project level 

BMS mainly concentrate on aspects such as inspection, non-destructive tests, deciding 

maintenance requirements, appropriate prevention, remedial methods and monitoring 

strategies. Network level BMSs include the estimation of deterioration rate, prediction of 

future condition using Markov chain models, planning optimal maintenance programmes, 

prioritising maintenance and assessing the effectiveness of different maintenance strategies 

[163]. Network-level BMSs are more closely associated with the overall condition and 

serviceability of the stock and somewhat less concerned with the maintenance of individual 

bridges, however it is still important to note that most of the input information for a 

network-level algorithm is based on project-level inspection, assessments and test results 

[163]. Nonetheless, there are also other BMS designed based on structural reliability. Such 

reliability indicates the probabilities of failure which are formally defined through limit 

state functions. Therefore, the BMS are concerned more about bridge structure safety. 

Practical experience gained from UK Highways Agency’s bridge maintenance activities 

show that the main part of the work on an existing bridges depends on the load-carrying 
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capacity (or structural reliability) of the bridge systems rather than the condition ratings of 

the bridge elements alone [54]. So far, a large amount of research has been conducted on 

structural reliability based bridge life-cycle management optimization [48, 53, 54, 83, 84]. 

Compared with the condition ratings based BMSs, the structural reliability based BMS 

mainly rely on quantitative and objective information rather than qualitative and subjective 

information [54]. By incorporating structural reliability, maintenance optimization and life-

cycle costing, the new BMS overcome the limitations of the current BMS. For instance, 

maintenance actions are not necessarily related to condition ratings directly, and 

Markovian assumption is released as condition ratings are not used as the indicator of 

bridge damage. Although current BMS are mainly condition ratings oriented, some 

researchers are confident that future BMS will be shifted more towards structural reliability 

based approaches. 

2.2.2 The existing BMS 
To date, a number of BMSs have been developed in several countries, such as the 

Pennsylvania BMS in USA, the HiSMIS developed by High-Point Rendel in UK, the 

DANBRO developed by Danish, the BRISA owned by Sweden, Swiss bridge management 

system (KUBA-MS) [86] and so on. Among all the existing BMSs, two commonly used 

BMSs based on condition states are BRIDGIT [64] and Pontis [156].  

BRIDGIT was developed from the National Cooperative Highway Research Project 

(NCHRP) with the aims to: (1) facilitate the organization of bridge data, the tracking of 

deterioration trends and repair performance; (2) provide clear, accurate and timely 

reporting; (3) rank bridge populations by a number of user-specified criteria; (4) allow the 

identification of critically deficient structures [3]. BRIDGIT assists in the establishment of 

bridge maintenance, rehabilitation and replacement program based on life-cycle costing 

and incremental benefit cost analysis. Markovian deterioration predictors provide 

necessary information for preservation considerations. A level-of-service (LOS) approach 

is employed for improvements, which also considers user costs associated with traffic 

accidents and detouring [64]. 

Another widely used BMS is Pontis that provides a systematic methodology for 

allocating funds, evaluating current and future needs of bridges and options to meet those 

needs, and recommending the optimal policy for each bridge in the context of overall 

network benefits, budgets and restrictions [59]. The essential parts of Pontis are a set of 
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deterioration prediction and optimization models which derive their information from 

judgmental, engineering and economic models and various databases [59]. Pontis 

possesses the following key features [59]: (a) Pontis abandons Federal Highway 

Administration (FHWA) rating method in favour of requiring more detailed information on 

the conditions of all elements; (b) Maintenance optimization for dynamic process and static 

process (e.g. widening a bridge) are separated; (c) a set of bridge elements that can be used 

for building individual bridges are defined; (d) Predictive models start with elicited 

engineering judgement and become more accurate with time as the system is updated from 

real data; (e) Maintenance optimization is implemented by first considering the network of 

bridge elements and then combining the results to produce recommendations for individual 

bridges. 

As a matter of fact, Pontis and BRIDGIT are often implemented in parallel. Since 

BRIDGIT can upload Pontis inspection data and can handle Pontis core elements, the 

system can offer a second independent analysis of their bridge networks and provide an 

independent set of recommended repair actions [64]. Additionally, both Pontis and 

BRIDGIT have considered effects of uncertainties associated with deterioration process as 

well as with maintenance interventions [123]. The failure dependencies among bridge 

deterioration are very common. For instance, the deterioration of a concrete deck 

accelerates when its bearings do not function properly. If the bearings freeze due to 

corrosion, the deck will be subjected to expansion and contraction stresses that cause 

cracking [142]. Pontis is able to take into account the failure dependencies determined by 

external environmental factors such as, traffic volumes, wind loads, and operating practice. 

In Pontis BMS, four standard environmental levels: benign, low, moderate and severe are 

defined [142]. In BRIDGIT, elements from paint and protective systems are treated 

separately for external environmental factors [64]. However, both Pontis and BRIDGIT 

can only account for interactions due to external environmental factors rather than internal 

factors, such as severe corrosion of one element. Therefore failure dependencies have not 

been adequately considered by the existing BMSs. 

In Australia, although BMS are not well accepted, different BMS have been 

established by governments within different states. Compared with other countries, e.g. 

United States, the science of bridge management in Australasia has developed mainly on 

the initiative of the state road authority organisations [14]. For instance, in New South 

Wales, the PONTIS BMS has been adopted by Road and Traffic Authority New South 
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Wales (RTA NSW) who is one of the earlier BMSs users [94]. In Queensland, Department 

of Main Roads (DMR) has initiated a BMS called bridge asset management system 

(BAMS) which covers 2500 bridges and many thousands of major culverts [129]. In 

Victoria, VicRoads developed a management strategy to maintain Victoria’s arterial 

bridges. The slow implementation of BMSs in Australia is due to that young bridge assets 

bring difficulty for the justification of a sophisticated BMS [14]. In addition, private 

organisations have been reluctant to commit funding where there is uncertainty about 

returns [14]. Nonetheless, with a boosted concern about bridge sustainable maintenance, it 

can be expected that BMS will be applied widely in Australia in the coming future. 

2.3 Bridge health prediction approaches 
In this section, a critical review about various types of bridge deterioration models is 

given. According to commonly accepted health indexes, the existing models can be 

classified into two groups: condition ratings based models and structural reliability based 

models. The former models concentrate on bridge serviceability and take advantage of the 

information resulting from visual inspection. Bridge inspectors estimate condition ratings 

based on their individual experience and judgements. Bridge deterioration in visible failure 

modes, such as corrosion, crack and spalling are included. Generally, condition ratings 

based models can be further categorised into three main groups, namely, deterministic 

models, stochastic process models and artificial intelligence models. Whereas the latter 

models focus on bridge structural safety that is normally defined through a number of limit 

state functions. Load carrying capacity of bridge structures in terms of strengths and 

stresses are considered. A detailed review for all the models is given in the rest of Section 

2.3. 

2.3.1 Models based on condition ratings 
2.3.1.1 Definition of condition ratings 

Condition ratings are usually quantified from good condition to failed condition and 

labelled with several numbers such as, 1, 2, 3, … , 9. As different BMS have their special 

requirements and concerns, there is no universal standard definition for bridge condition 

ratings. For instance, in National Bridge Inventory (NBI), bridge condition ratings shown 

in Table 2-1 are defined by Federal Highway Administration (FHWA) on a scale of 0-9, in 

which 0 represents the worst condition rating while 9 represents the best. In Swiss BMS 
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(KUBA-MS) five condition ratings are defined with CS1 representing good condition 

rating and CS5 representing alarming condition rating [135]. Table 2-2 shows condition 

ratings definition used by Queensland Government, Department of Main Roads (DMR). 

The bridge condition ratings are defined with five condition ratings for the whole structure 

and with four condition ratings for the bridge elements, where CS1 denotes “Good 

condition”, CS4 denotes “Poor condition” and CS5 denotes “Unsafe condition” [129].  

Table 2-1. Bridge condition ratings definition used in National Bridge Inventory (NBI) 
[51] 

Condition 
States 

Subjective 
Rating Description 

9 Excellent condition — 

8 Very good condition No problem found 

7 Good condition Some minor problems 

6 Satisfactory condition Structural elements show some minor 
deterioration 

5 Fair condition 
All primary structural elements are 
sound but may have minor section 
loss, cracking, spalling or scour 

4 Poor condition Advanced section loss, deterioration, 
spalling or scour 

3 Serious condition 

Loss of section, deterioration, 
spalling or scour has seriously 
affected primary structural 
components. Local failures are 
possible. Fatigue cracks in steel or 
shear cracks in concrete may be 
present 

2 Critical condition 

Advanced deterioration of primary 
structural elements. Fatigue cracks in 
steel or shear cracks in concrete may 
be present or scour may have 
removed substructure support. Unless 
closely monitored it may be necessary 
to close the bridge until corrective 
action is taken 

1 Imminent failure 
condition 

Major deterioration or section loss 
present in critical structural 
components or obvious vertical or 
horizontal movement affecting 
structure stability. Bridge is closed to 
traffic but corrective action may put 
back in light service. 

0 Failed condition Out of service - beyond corrective 
action 
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Table 2-2. Bridge condition ratings definition used by Department of Main Roads, 
Queensland [129] 

Condition 
States 

Subjective 
Rating Description 

1 Good Free of defects 

2 Fair Free of defects affecting structural 
performance, integrity and durability 

3 Poor 
Defects affecting the durability which require 
monitoring, detailed structural engineering 
inspection or maintenance 

4 Very Poor 

Defects affecting the performance and 
structural integrity of the structure which 
require urgent action as determined by a 
detailed structural engineering inspection 

5  

(whole structure 

 rating only) 

Unsafe Bridge must be closed 

 

2.3.1.2 Deterministic model 

 Regression model 

Deterministic models, the first applied bridge deterioration models in BMS, make the 

prediction by linking a number of relevant bridge deterioration factors to bridge condition 

ratings through a mathematical or a statistical formulation [112]. To estimate the 

parameters of deterministic models, normally, a large population of data records about 

condition ratings and affecting factors are needed. One typical deterministic model is 

regression model. The regression model used for bridge deterioration is statistical approach 

with the aims to find the relationship between condition rating and bridge age [72]. A 

third-order polynomial model was used to obtain the regression function of the relationship 

with the following formula [117]: 

𝑌𝑖(𝑡) = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑡𝑖2 + 𝛽3𝑡𝑖3 + 𝜀𝑖                                   (2-1) 

where Yi(t) is the condition rating of a bridge at age t, ti is the bridge age, and εi is the error 

term. This formula was used by Jiang and Sinha [72] to predict average condition ratings 

of a number of bridges. The condition ratings of bridges are only dependent on bridge age.  
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Deterministic models are straightforward and can be easily used by bridge engineers 

and managers. However, they suffer from some critical limitations. Firstly, they neglect the 

uncertainties inherited with bridge deterioration. Instead, the deterioration process of a 

bridge is expressed in a deterministic way. Therefore, the prediction results cannot be 

accurate. Secondly, only the average condition ratings of a number of bridges can be 

derived rather than that of individual bridges, which has caused serious restriction to the 

application of deterministic models. Thirdly, deterministic models do not have the ability 

to incorporate newly observed condition data for prediction modification, which may 

eventually lead to unrealistic prediction results. Finally, deterioration dependencies among 

different bridge elements and effects of maintenance activities and environment effects 

cannot be taken into consideration by deterministic models. 

2.3.1.3 Stochastic process models 

 Markov chain 

Stochastic process models capture time-varying uncertainties amongst bridge 

deterioration. They can be grouped into discrete time stochastic process models and 

continuous time stochastic process models. One of the most commonly used discrete time 

stochastic process models for bridge deterioration is the Markov chain model. A Markov 

chain can be seen as a special case of the Markov process which has a series of discrete 

random states. The assumptions of regular bridge inspection intervals and Markov property 

are held by a Markov chain. The Markov property assumes that the future condition ratings 

of a bridge or a bridge element do not depend on the history of its deterioration processes, 

but only depend on its last condition rating. Now Markov chain model has been largely 

applied in the state-of-art BMS, such as Pontis [156] and BRIDGT [64]. Based on 

transition probabilities matrix that indicates the probability deteriorating from one 

condition rating to another, Markov chain model predicts the probabilities of bridges in 

each condition state. Markov chain models can be divided into homogenous Markov chain 

model if transition matrix is not time-dependent or non-homogenous Markov chain model 

if transition matrix is time-dependent. Table 2-3 shows a typical transition matrix of order 

( 5 × 5 ) for a deteriorating element without maintenance intervene. Given the initial 

condition vectors (P0) at time (T) and transition probability P, the future condition vector 

(PT) at time (T) can be obtained as follows [124]: 

PT=P0*PT                                                           (2-2) 
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Table 2-3. Typical transition probability matrix without maintenance intervention 

 1 2 3 4 5 

1 P11 P12 P13 P14 P15 

2 0 P22 P23 P24 P25 

3 0 0 P33 P34 P35 

4 0 0 0 P44 P45 

5 0 0 0 0 1 

 

Transition matrix (transition probabilities) is normally estimated by using expert 

knowledge elicitation procedure, which requires the participation of experienced bridge 

engineers [155]. In addition, the Bayesian approach could be used to update the these 

probabilities [59]. 

Jiang and Sinha [72] applied Markov chain for bridge service life prediction. 

Morcous [109] used Markov chain to predict the condition performance of a bridge deck 

system. He also investigated the impact of regular inspection intervals and Markov 

property on the deterioration of bridge deck systems. The results indicated that various 

inspection periods may result in some errors in the prediction of bridge condition ratings, 

and Markov property (state independence) is acceptable. To consider the impact of 

environments on bridge deterioration, Morcous et al. [110] explicitly linked bridge 

elements with different environmental categories to different Markov chain models. 

Furthermore, a genetic algorithm (GA) was applied to determine the combinations of 

deterioration parameters that best fit each environmental category. Roselfstra et al. [135] 

proposed an alternative approach which took into account the physical phenomena when 

there were almost no inspection data for the worst and second worst condition states. In 

their paper, chloride-induced corrosion of steel reinforcement was modelled and simulated. 

The simulated results were mapped to condition ratings of Markov chain, and the transition 

matrices were calibrated as well.  

Although the Markov chain model has been well accepted and has become so 

accepted and overcomes major shortcomings of deterministic models, it still attracts 
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criticisms because of their limitations which affect accuracy of the prediction results [52, 

99, 112]. First, Markov chain model assumes discrete condition ratings, discrete transition 

time intervals and time-independent transition probability, so the bridge deterioration 

cannot be modelled in a practical way. Second, because of Markov property, a Markov 

chain model cannot capture the history of bridge deterioration, though this may be 

acceptable in some cases. Third, bridge deterioration modelling is not implemented in an 

explicit way, and the latent nature of bridge deterioration is not recognized, either [99]. 

Fourth, deterioration dependencies among different bridge elements [142] cannot be 

effectively modelled by Markov chain. Fifth, observation data from visual inspection or 

condition monitoring cannot be incorporated by Markov chain model directly. Finally, 

Markov chain is not appropriate for modelling a complex system [168]. For the bridge 

system consisting of numerous elements, the total number of condition ratings for an 

adequate description of bridge system performance increases exponentially. 

 Ordered probit model 
Realising the latent nature of bridge deterioration, Madanat et al. [99] proposed an 

ordered probit model for Markovian transition probabilities estimation from condition data, 

which links the unobservable bridge deterioration to a vector of exogenous variables. The 

ordered probit model was originated from social sciences to deal with unobservable 

characteristics in the population [106]. For a bridge n in condition rating i, the continuous 

unobservable latent deterioration Uin is expressed as a linear function of a set of observable 

exogenous variables as follows [99]: 

log(𝑈𝑖𝑛) = 𝛃𝑖′𝐗𝑛 + 𝜀𝑖𝑛                                              (2-3) 

where 𝛃𝑖′ is a vector of parameters to be estimated; 𝐗𝑛 is a vector of exogenous variables 

for bridge n; and 𝜀𝑖𝑛  is random error. With the assumption of the existence of an 

underlying continuous unobservable random variable, the ordered probit model is able to 

capture the latent nature of infrastructure health performance [99]. Linkage between bridge 

deterioration and relevant explanatory variables can be modelled explicitly. However, 

Bulusu and Sinha [24] argued that issues related to panel data should also be considered 

for transition probabilities estimation. Moreover, the ordered probit model always involves 

plenty of analytical manipulations.  
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 Binary probit model 

In order to incorporate panel data, Bulusu and Sinha [32] proposed a binary probit 

model which considered the issue of state dependence and heterogeneity. During time 

period t, the continuous unobserved latent deterioration U(i,t) for bridge i is presented as 

follows[24]:  

𝑈(𝑖, 𝑡) = 𝐗(𝑖, 𝑡)𝛃′ + 𝛾𝑍(𝑖, 𝑡 − 1) + 𝜀(𝑖, 𝑡) 

𝑍(𝑖, 𝑡) = � 1 𝑖𝑓 𝑈(𝑖, 𝑡) > 0 ⇒ 𝑑𝑟𝑜𝑝 1 𝑠𝑡𝑎𝑡𝑒
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⇒ 𝑠𝑡𝑎𝑦 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒

�                       (2-4) 

Where 𝐗(𝑖, 𝑡) is a vector of explanatory variables for bridge i; 𝛃′ is a vector of parameters 

to be estimated; 𝜀(𝑖, 𝑡) is random error term; γ is scalar coefficient for condition rating in 

previous time period; 𝑍(𝑖, 𝑡 − 1)  is transition indicator in previous time period. Like 

ordered probit model, plenty of analytical manipulations are involved in this approach.  

 Bayesian approach 

Additionally, Bulusu and Sinha proposed a Bayesian approach that combines expert 

data and observed data to update transition probabilities [24]. The priori transition 

probabilities are assumed to follow the Dirichlet distribution and estimated from expert 

knowledge. Observed data are assumed to follow a multinominal distribution. When newly 

observed data 𝜀𝑖  is available, the mean posterior transition probabilities 𝐸�𝑃𝑖,𝑗�𝜀𝑖�  are 

estimated as follows [24]: 

𝐸�𝑃𝑖,𝑗�𝜀𝑖� = 𝑐𝑖𝑃𝑖,𝑗0 + (1− 𝑐𝑖)
𝜀𝑖,𝑗
𝑛𝑖

                                         (2-5) 

𝑐𝑖 = 𝛼𝑖,0
𝛼𝑖,0+𝑛𝑖

                                                           (2-6) 

𝛼𝑖,0 = ∑ 𝛼𝑖,𝑗𝑗                                                        (2-7) 

where 𝑃𝑖,𝑗0  is prior transition probabilities; 𝜀𝑖,𝑗 is the newly observed transitions from 

condition state i to condition state j; 𝑛𝑖 is the total number in condition state i ; 𝑐𝑖  is the 

proportion of weighted assigned to the priori mean transition probabilities; 𝛼𝑖,0 is the priori 

total number in condition state i ; 𝛼𝑖,𝑗  is the priori transitions from condition state i to 

condition state j. Compared with the binary ordered model, the implementation of the 

Bayesian approach is more cost-effective.  
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 Semi-Markov model 

However, one major drawback of Markov chain that has been questioned widely and 

yet to be solved is that the transition probability from an initial condition rating to the next 

condition rating does not relate to the resident time of the initial condition rating. To deal 

with this drawback, a more general stochastic model called semi-Markov process was 

investigated for bridge deterioration modelling [108, 140]. A semi-Markov process is a 

class of stochastic process which moves from one state to another with the successive 

states visited forming a Markov chain. The process stays in a particular state for a random 

length of time the distribution of which depends on the state and the next to be visited 

[136]. Semi-Markov model assumes the resident time of an initial condition rating follows 

a specified distribution. Thus, being dependent on the time spent on the initial condition 

rating, the transition probability to the next condition rating becomes more realistic. 

Moreover, semi-Markov model releases the assumption of discrete transition time interval 

in Markov chain. Some information related to semi-Markov can be found in the literature 

[99, 131].  

 Continuous stochastic process models  

Although semi-Markov model has released some assumptions of Markov chain, it 

still depends on discrete states. To avoid subjective discretization of condition ratings 

based only on engineering judgement, stochastic processes of continuous states such as 

Gamma process and Brownian motion with drift (Gaussian process) have been proposed as 

alternatives for modelling deterioration of infrastructures [159, 161, 162]. A gamma 

process is a continuous stochastic process {𝑋(𝑡); 𝑡 ≥ 0} with independent non-negative 

increments 𝑋(𝑠 + 𝑡) − 𝑋(𝑠) having a gamma distribution. The increasing function 𝜂(𝑡) is 

the shape function, while 𝜉 > 0 is the scale parameter. The monotonous property of a 

Gamma process makes it more attractive for modelling non-reversible deterioration 

process. On contrary, Brownian motion with drift is a continuous stochastic process 

{𝑋(𝑡); 𝑡 ≥ 0}  with the independent increment 𝑋(𝑠 + 𝑡)− 𝑋(𝑠)  following a Gaussian 

distribution with mean 𝜂𝑡 and variance𝜎2𝑡, for all 𝑠, 𝑡 ≥ 0. The 𝜂  and 𝜎2  are called the 

drift parameter and the diffusion parameter, respectively. A Gaussian process holds the 

characteristic that the structure resistance alternatively increases or decreases. Therefore, 

compared with the Gamma process, Brownian motion with drift (Gaussian process) is not 

appropriate for modelling deterioration process. Since the Gamma distribution and 

Gaussian distribution both belong to the class of infinitely divisible distributions, they are 
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adopted as the distribution of independent increments of continuous stochastic process 

[25]. Samali et al. [139] investigated the feasibility of the Gamma process on bridge 

deterioration modelling. Based on simulated data, the Gamma process model showed its 

ability to capture the temporal uncertainties of the deterioration process effectively. 

Furthermore, the authors mentioned that other continuous states stochastic processes, such 

as lognormal diffusion process, could be the candidate as well [139]. Because inspection 

measurements generally consist of cumulative amounts of deterioration, the advantage of 

stochastic process for modelling the uncertainty in the cumulative amount of deterioration 

is evident [160]. Another advantage of stochastic deterioration processes is that the 

modelling of inspection is rather natural and realistic [160]. However, it is generally 

difficult to build up a bridge system model based on the stochastic process deterioration 

models of a number of bridge elements. In addition, the stochastic processes models cannot 

handle the deterioration dependencies amongst different bridge elements.  

2.3.1.4 Artificial intelligence models 

Artificial intelligence methods, such as, artificial neural networks (ANN), case-based 

reasoning (CBR), fault tree and Bayesian networks (BNs) have also been applied to bridge 

deterioration modelling. 

 Artificial neural network 

Artificial neural network (ANN) is a computational model that resembles some of 

the properties of brains: it consists of many simple units working in parallel with no central 

control. The connections between units have numeric weights that can be modified by the 

learning element[137]. During the past two decades, ANN has been comprehensively 

applied to bridges and other infrastructure components. Sobanjo [144] utilised ANN 

method for bridge deterioration modelling, in which the bridge age (in years) was chosen 

as the input while condition rating of the bridge superstructure was chosen as the output. 

Lee et al. [94] considered that there was insufficient historical condition ratings data of 

bridge elements for current bridge deterioration models. They proposed an ANN based 

prediction model which related the missing bridge condition ratings data to several non-

bridge factors including local climates, number of vehicles and population growth in the 

area surrounding the bridge. The ANN method was also used to perform fuzzy inference 

for condition rating evaluation of concrete bridges by Kawamura and Miyamoto [78]. The 

ability to refine the knowledge base by means of back-propagation method was 
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emphasised by the authors. Other literatures about application of ANN in bridge 

deterioration modelling can be found [105, 157, 175]. 

Although ANN has automated the process of finding the polynomial that best fits a 

set of data points, it still shares the problems of deterministic models [112]. One significant 

limitation of ANN is that the uncertainties associated with bridge deterioration cannot be 

captured. For training purpose, a large number of data are needed. Updating the model 

with newly observed data is rather difficult [112]. Additionally, human cannot construct or 

understand neural network representations because the calculations carried out by the 

network is not expressed in a semantically meaningful way [91]. 

 Knowledge-based system 

The knowledge-based systems are also known as a rule-based system and expert 

system. To build a knowledge-based system, the elicitation of a wide range of experts is of 

importance since the knowledge-based system has to be established based on a large 

number of carefully crafted rules. While knowledge-based systems have succeeded in the 

area of medicine, the application of this type of method in bridge deterioration modelling is 

still constrained. Denmark developed knowledge-based systems for optimal reliability-

based inspection and maintenance of reinforced concrete bridges [153]. Two modules, 

BRIDGE1 and BRIDGE2, were utilised to assist inspection and to analyse inspection 

results, respectively. For steel bridges, a knowledge-based system was proposed by Furuta 

et al. [68]. The case-based reasoning (CBR) method was employed to select repairing and 

retrofit methods for fatigue damage. 

One disadvantage of a knowledge-based system is that the rules are only applicable 

to some specific systems. The designers of the model must have extensive knowledge of 

the subject system in order to achieve proper representation of the system and all of its 

uncertainty through the rules and certainty factors that incorporate a calculus of uncertainty 

[137]. 

 Case-based reasoning (CBR) 

Case-based reasoning (CBR) is a kind of knowledge-based system which looks for 

previous cases (examples) that are similar to current problem and reuse them to solve 

problem[112]. These cases, which are stored in the so-called case library, are defined as 

instances that record problem definitions and their corresponding solutions [112]. Morcous 

et al. [111, 112] proposed a CBR based approach which can take advantage of inventory, 
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inspection and maintenance data of BMS database to predict bridge deterioration. The 

architecture of the proposed CBR method is shown in Figure 2-1. This CBR approach 

enabled the representation of deterioration dependencies amongst different bridge 

elements. Nonetheless, the success of this CBR approach largely depends on the size and 

coverage of the case library, and correctness and availability of expert knowledge [112]. 

Furthermore, as a knowledge-based expert system, the CBR approach does not facilitate 

probabilistic representation of bridge deterioration with inherited uncertainty, but only  

represents bridge deterioration in the form of certain rules.  

 

Figure 2-1. Architecture of CBR for modelling infrastructure deterioration [111] 

 Fault tree 

Fault tree, introduced in 1961 by Bell Telephone Laboratories, is a logic diagram 

consisting of a top event and a structure delineating the ways in which the top event can 

occur [173]. A fault tree diagram is also a systematic method of identifying faults and their 

interactions in a complex system [75]. The original purpose of fault tree analysis is to 

evaluate reliability of different designs. However, fault trees can also be used for the 

following: 

1. to assess the probability of failure for the system (or top event), to compare 

design alternatives,  
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2. to identify critical events that will significantly contribute to the occurrence 

of the top event, and  

3. to determine the sensitivity of the failure probability of the top event to 

various contributions of basic events [75].  

Figure 2-2 presents one simple example of fault tree that is a combination of top 

event, basic events, intermediate events and logic gates.  

As a systematic approach, the fault tree can be employed to derive system reliability 

based on the estimation of independent components [33]. So far, because most of the 

existing models failed to address the issue of element interactions, several researchers have 

resorted to fault tree for bridge deterioration modelling [75, 92, 93, 142]. Sianipar and 

Adams [142] applied the fault tree to model deterioration dependencies among bridge 

elements. The authors introduced deterioration dependencies phenomena in bridge 

deterioration and utilised the fault tree approach to represent and measure these 

dependencies. A case study about accelerated concrete bridge deck deterioration was 

given. LeBeau and Wadia-Fascetti [92, 93] argued that current BMS did not tackle 

deterioration dependencies appropriately. A fault tree model was built up based on 

hierarchical decomposition of a bridge. Probability of each basic event was acquired by 

interviewing seven bridge engineers and inspectors. The integration of fault tree analysis 

into BMS did provide the missing link between component condition and system 

performance [92]. Johnson [75] used fault tree to analyse the failure of a bridge due to 

scour and other geomorphic channel instability. Given three examples, the fault tree 

analysis showed the advantages, including no need of quantitative knowledge about 

deterioration dependencies, failure probability estimation of top event based on the 

probabilities of individual events, and no requirements of an exact value of probability[75].  
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Figure 2-2. A simple example of fault tree [9] 
One advantage of fault tree is its ability to unveil logical interrelationships of the 

bridge system both visually through the layout of the tree and mathematically through the 

Boolean algebra [91]. The bridge can be modelled by fault tree in its entirety including 

element interactions, redundancy, deterioration mechanisms, such as corrosion and fatigue, 

and environmental factors [91]. However, fault tree is also criticised for some drawbacks. 

For example, the construction of a fault tree can be laborious and time consuming. The 

basic events have to be independent which may not be practical. In addition, events related 

to Fault tree can only be modelled with binary states (0, 1) in different probabilities. 

Dependent failures, such as sequence failures are beyond fault tree. For common cause 

analysis, some nodes need to be duplicated. Dynamic behaviour of deterioration processes 

cannot be captured by fault tree, either. 

 Binary recursive partitioning (BRP) 

Similarly, binary recursive partitioning (BRP), which is actually a kind of 

classification tree, has been applied for deterioration modelling of a bridge deck by Pittou 

et al. [101]. The proposed method involved four basic modelling steps: tree building, 

stopping tree building, tree pruning, and optimal tree selection [87]. The author claimed 

that because BRP is a nonparametric method, it possesses several advantages, such as less 

stringent data requirements, no assumption for particular distribution, quick answer of 

explanatory variable selection, a practical means for data objectivity and smaller 
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management of data from a smaller population. However, BRP suffers from the limitations 

of classification tree. It is difficult to obtain quantitative results from BRP.  

 Bayesian Networks (BNs) 

Bayesian networks (BNs) are directed acyclic graphs (DAG) formed by the variables 

(nodes) together with the directed edges, attached by a table of conditional probabilities of 

each variable on all its parents [71]. A BN encodes the probability density functions (PDFs) 

governing a set of conditional probability functions (CPFs) [89]. As powerful graphical 

models to describe conditional independence and to analyse probable casual influence 

between random variables, BNs have been widely used in areas, such as, marketing [15], 

industry [67, 169, 179], health [158], risk management [42, 43, 55, 82], reliability and 

maintenance [19, 20, 27, 89], ecosystem and environmental management [76]. 

Compared with other applications, BNs are not as common in bridge deterioration 

modelling. Currently, only a few researchers have applied BNs in the context of bridge 

deterioration modelling. Sloth et al. [143] proposed a Bayesian probabilistic network 

within which condition indicators work as a basis for bridge management decision making. 

The condition indicators for individual bridge component were formulated as time-variant 

condition probabilities which are based on their parents. The uncertain factors, such as 

concrete mix, exposure condition, and reinforcement in concrete bridge were shown by 

casual relationship under the Bayesian probabilistic framework. Attoh-Okine and Bowers 

[10] have investigated bridge deterioration modelling through BNs with the argument that 

fault tree is more suitable for immediate catastrophic failure rather than normal failure. For 

deterioration dependencies of bridge elements, a bridge was simply decomposed into deck, 

superstructure and substructure. The failure probability of the whole bridge system was 

based on the failure probabilities of bridge elements. However, their research is limited to a 

simply mapping of a fault tree model into a BN model. Therefore, their model does not 

seem to have greatly improved modelling performance as far as deterioration dependencies 

amongst different bridge elements are concerned. The advantages of BN could be utilized 

more in depth in their model. Lebeau [91] developed a novel load rating model for a 

prestressed concrete bridge beam element based on BNs, which can integrate bridge 

routine inspection into load-rating processes. The bi-directional ability through BNs has 

been emphasized to execute forward and backward evidence propagation.  

Compared with fault tree and Markov chain, BNs show a number of advantages. BNs 

can deal with dependencies among elements of a complex system without holding 
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deterministic and/or binary relationship (AND, OR) between nodes. Therefore, the 

constraints of fault tree, such as binary states and independent basic events can be removed. 

In addition, BNs can model a complex system in a compact representation of all the 

variables through localized network clusters, thereby avoiding the “state space explosion” 

problem of Markov chain. BNs have the updating ability when new information is 

available, and information can be updated from both system-level and element-level. The 

expert knowledge can be integrated into BNs as prior knowledge to tackle the situation 

when there are incomplete data. The partial observation can be handled by BNs with 

observable nodes. Furthermore, BNs are possible to combine different sources of 

information and individual methods to provide a global reliability assessment. In other 

words, BNs can act as a unifying tool to benefit maximally from the strengths of individual 

methods [55]. As an intuitive modelling tool, BNs allow users to learn casual relationship 

by offering a graphical data structure that captures the dependencies between variables. 

Therefore, BNs can be used to communicate with engineers and technicians. Besides, the 

extension of BNs (DBNs or DOOBNs) can be easily utilized to account for the temporal 

variability. To implement BNs, there has been a large number of commercial software 

available. Examples include Hugin (http://www.hugin.com/), BayesianLab 

(http://www.bayesian.com/) and Netica (http://www.norsys.com/). 

Though BNs have presented many advantages, there are still a few limitations about 

BNs. The assumptions, such as the first-order Markov property, stationary structure and 

stationary transitions are all always held in most applications. Moreover, since BNs are 

directed acyclic graphs (DAG), the interactive relationship between two nodes never exists. 

BNs also do not allow continuous parent variables to have discrete child variables because 

of the limitations of current computational algorithms.  

2.3.2 Model based on structural reliability 
2.3.2.1 Introduction of structural reliability 

Structural reliability theory focuses on whether the demand applied to a structure 

exceeds its capacity or not. For a bridge, demand refers to different types and magnitudes 

of applied loads including dead load, live load and wind load. Capacity refers to strength, 

fatigue, moment capacity and so on. To address uncertainties associated with material 

strength/stress, bridge geometry, mechanical loading, environmental stressors, all the 

variables related to demand and capacity should be represented as random variables rather 

http://www.hugin.com/),%20BayesianLab%20(http:/www.bayesian.com/)%20and
http://www.hugin.com/),%20BayesianLab%20(http:/www.bayesian.com/)%20and
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than deterministic variables. Structural reliability theory provides formalized evaluations of 

the probability of failure when capacity is less than demand or equal to demand. However, 

since “failure” means different things to different people, a concept of a “limit state”, 

which may represent any level of failure from collapse of all or part of a structure (ultimate 

safety) to disruption of normal use (serviceability), is adopted for failure definition [107].  

A limit state is a boundary between desired and undesired performance of a structure 

and is often expressed mathematically by limit state functions or performance functions 

[121]. Generally, there are three types of limit states: ultimate limit state related to the 

load-carrying capacity for bending or shear, serviceability limit state related to gradual 

deterioration excess deflection and vibration or maintenance costs, and fatigue limit state 

related to the loss of strength and eventual damage under repeated loads [121]. Each type 

of limit state is associated with a set of limit state functions that are formulated for certain 

conditions. With different concerns of failure, the probabilities of failure are calculated 

based on different limit state functions. If R represents the total capacity of a structure and 

Q represents all demands, a basic limit state function can be expressed as 

G(R, Q) =R-Q                                                    (2-8) 

If G ≥ 0, then the structure is considered safe, otherwise the structure is failed. Based on 

this function, the basic structural reliability equation is given [107] where the probability of 

failure is the probability that Q are greater than or equal to R. 

𝑃𝑓 = 𝑃(𝑅 − 𝑄 ≤ 0) = 𝑃�𝐺(𝑅,𝑄)� ≤ 0 = ∫ 𝐹𝑅
+∞
−∞ (𝑥)𝑓𝑄(𝑥)𝑑𝑥               (2-9) 

where 

                              Pf                = probability of failure 

                              R                = capacity (resistance) 

                              Q                = demand (type, magnitude) 

                              G                = limit state function 

                            FR(x)           = probability that the actual resistance R is less than 

some value x (representing time) 

                            fQ(x)            = probability that the load effect Q acting in the 

member has a value between x and  x = Δx in the limit as Δx approaches 0. 
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As the failure probability is very small, it is convenient to express it as a reliability 

index defined as [107, 121] 

𝛽 ≡ −Φ−1�𝑃𝑓�                                                      (2-10) 

where Φ is standardised normal distribution. Generally, if R and Q are uncorrelated 

random variables, the reliability index β can be quantified as [107, 121] 

𝛽 = 𝜇𝑅−𝜇𝜚

�𝜎𝑅
2+𝜎𝑄

2
                                                          (2-11) 

where µR and µQ are the mean values of R and Q, and σR and σQ are the standard deviation 

of R and Q, respectively. Although Equation 2-9 appears to be to be uncomplicated, it is 

always difficult to evaluate those integrals [121]. This is because that integration requires 

special numerical techniques, and the accuracy of these techniques may not be adequate 

[121]. Therefore, some approximate methods are adopted in practice, such as First-order 

reliability method (FORM), Second-order reliability method (SORM), Monte Carlo 

simulation method and Response Surface Modes (RSM). 

Nowadays, structural reliability theory has been comprehensively applied for bridge 

management. Thoft-Christensen [153] introduced the overall development of optimal 

structural reliability-based inspection and maintenance of reinforced concrete bridges in 

Denmark. A number of involved areas were listed which include reliability assessment of 

deteriorating bridge over whole life, bridge codes and design calibration, optimal 

maintenance strategies, expert bridge management systems (BMS) and decision tools. Das 

[40] presented structural reliability based bridge management procedures in UK. The new 

procedures were considered to be the pioneering technique for bridge assessment. It was 

expected that cooperation with bridge engineering community was necessary for optimal 

bridge management. Moreover, many structural design codes have been based on structural 

reliability, An example is Load and Resistance Factor Design (LRFD). Nowak et al [120] 

studied and compared three different design codes: Spanish Norma IAP-98, Eurocode and 

AASHTO code based on structural reliability. It was found that AASHTO tends to be the 

most tolerant code while Eurocode the most conservative code. Currently, load rating 

model is commonly used in the practice regarding load-carrying capacity in bridge safety 

evaluation [6]. Load rating is calculated from the ratio of reserve capacity to the applied 

live load. An investigation of the relationship between structural reliability and load rating 

was conducted by Akgul and Frangopol [5]. It was shown to be:  
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𝛽 =
𝜇(𝑅𝐹−1)𝑄𝐿𝐿+1
𝜎(𝑅𝐹−1)𝑄𝐿𝐿+1

                                                     (2-12) 

where β means the structural reliability index; RF is the load rating factor; QLL+1 represents 

the load effect including the impact; µ and σ are the mean values and standard deviations 

of product of RF and QLL+1, respectively. 

2.3.2.2 Structural reliability methods 

FORM is an approximate method in which the limit state function at any point is 

linearized through first-order Taylor series expansion at that point [107, 121]. After 

linearization, a straight line is generated which denotes the tangent to the limit state 

function at the point of interest. Normally, the mean value point is chosen as the expansion 

point of interest. With the newly obtained linear limit state function, reliability index is 

calculated based on an equation similar to equation 2-11. Compared with other methods, 

FORM possesses the best compromise between solution accuracy and computation 

economy. As a result, FORM has been widely used in bridge structural reliability problems 

[26, 31, 69]. However, when the limit state function has strong non-linearity and the 

estimation of FORM is not sufficiently accurate, SORM is chosen instead. SORM is also 

based on Taylor series expansion but uses the second order term as well, which makes it 

suitable for nonlinear limit state functions. Moreover, because SORM is more 

computationally intense, generally it yields better estimates of failure probability than 

FORM. As an alternative, Monte Carlo simulation (MCS) is such a special technique that 

can be used to generate some numeric results without actually doing any physical 

testing[121]. By largely sampling from the probability distribution of variables, the failure 

probability is simply estimated from the ratio of failure number to total sampling number. 

For example, regarding the basic limit state function in Equation 2-8, the failure 

probability  𝑃f is estimated as follows: 

𝑃f = 𝑁f
𝑁

                                                          (2-13) 

where N is the total number of samples through simulation and  𝑁f  is the number of 

samples that satisfy G(R,Q) ≤ 0. MCS is usually associated to some finite element (FE) 

analysis software such as ANSYS, ADINA and SAP for reliability estimation. Normally, 

MCS needs a huge number of samples especially when structural reliability problems 

involve lower probability of failure. Therefore, intensive computational efforts are needed. 
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As the number of samples increases, the standard deviation decreases. The required 

sampling size can refer to the two following rules[9, 63]: 

𝐴 = 200�(1−𝑃f)
𝑁(𝑃f)

                                         (2-14) 

𝑁 = 10/𝑃f                                                      (2-15) 

where A is the acceptable percent error, N is sampling size and 𝑃f is the failure probability. 

It has to be noticed that when it comes to structural reliability of bridge system, larger 

computational efforts are unavoidable. Therefore, MCS becomes less effective for 

structural reliability analysis of complex structures. 

Response Surface Method (RSM) is a statistical regression analysis method 

developed by Box and Wilson [21]. To date, RSM has been successfully used in areas such 

as physics, engineering, medical science and sociology for the probabilistic evaluation of a 

system [119]. Nowak and Cho successfully applied RSM to an arch bridge for the analysis 

of its structural reliability [119]. Compared with Monte Carlo simulation and 

FORM/SORM, it was claimed that RSM can be practically applied to the reliability 

analysis of complex structures, and it is more appropriate to evaluate extremely smaller 

failure probability as the derivative terms of implicit limit state functions can be handled 

easily [119]. However, the accuracy of the estimated probability by RSM is largely 

dependent on the quality of selected parameters [62]. RSM also involves intensive 

computational efforts owing to a large number of related random variables.  

2.3.2.3 Structural reliability of bridge systems 

As a bridge is composed of a number of bridge elements, it is necessary to obtain the 

structural reliability of each bridge element before evaluation of structural reliability of 

bridge system occurs. Normally, a bridge element may suffer from multiple failure modes 

such as shear, moment and fatigue. Therefore, several limit state functions should be 

developed. With regard to a typical bridge girder, the limit state functions can be expressed 

from various aspects including bending moment capacity, shear capacity, buckling 

capacity deflection, vibration and accumulated damage condition [122]. Szerszen et al 

[150] established fatigue limit state functions for bridge girders in order to implement a 

fatigue reliability analysis for steel girder bridges. Tabsh and Nowak [151] developed a 

reliability evaluation procedure for noncomposite and composite steel girders, reinforced 

concrete T-beams, and prestressed concrete girders as well as the whole girder bridges 
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based on moment limit state functions. Imai and Frangopol [69] formulated limit state 

functions for main bridge elements: main cable, hanger rope and stiffening girders, in order 

to estimate system reliability of suspension bridges. Considering wind-induced stability 

failure, Cheng and Li [31] carried out reliability analysis for long span steel arch bridges. 

With assumed wind loads, limit state functions were constructed based on overall 

estimated bucking load and minimum permissive bucking load.  

Generally, bridge elements are constructed in series/parallel relationship to represent 

the whole bridge system [26, 47, 174]. In addition, statistical correlation among bridge 

elements was taken into account for structural reliability evaluation of bridge system. In 

practice, some bridge systems cannot be grouped as either series systems or parallel 

systems. Statistical correlation can help model a bridge system consisting of many 

interconnected bridge elements in a practical way. The descriptions about bridge system 

reliability with the consideration of statistical correlation in details can be found from [47, 

121]. Furthermore, FE models are able to take into account load redistribution which can 

results in more practical reliability estimation. Generally, the whole calculation of 

structural reliability from bridge elements to the whole bridge was implemented with the 

help of finite element (FE) models [26, 31, 36, 96]. In these FE models, failure 

probabilities were often evaluated through the structural reliability methods of Monte 

Carlo simulation or RSM. With the development of a software interface strategy, Cheng 

and Li [31] attempted to integrate FORM/SORM methods into FE models.  

2.3.2.4 Time-variant structural reliability 

To facilitate bridge life-cycle management optimization, it is essential to model 

structural reliability of bridge systems in a time-dependent way. To date, a great deal of 

research has been conducted to model time-variant structural reliability. Thoft-Christensen 

[154] presented the time-variant structural reliability calculation for concrete bridges. 

Ultimate and serviceability limit state functions were established for reliability evaluation. 

To consider the bridge temporal deterioration, corrosion deterioration models under three 

deterioration levels were developed. Similarly, Czarnecki and Nowak [36] developed the 

calculation procedures for time-variant reliability estimation of steel girder bridges 

concerning corrosion. Considering three environmental levels and time-variant random 

variables, limit state functions for ultimate capacity and serviceability were established. 

Cheung and Kyle [32] used time-variant reliability as a measure of bridge performance for 

bridge maintenance decision making. For reinforced concrete slabs, five types of limit state 



 

Chapter 2: Literature review 37 

functions considering flexural strength, punching shear, deflection, delamination and 

wearing surface were developed. Kim et al [80] displayed the evaluation procedures for 

fatigue reliability of an existing steel railroad bridge in both deterministic and probabilistic 

ways. According to different loading models, three procedures were developed: simplified, 

probabilistic and deterministic procedures. Comparisons among the results of fatigue 

reliability via the three procedures were also given.  

In summary, the time-variant reliability of bridge system is generally evaluated 

through bridge elements reliability over time. The continuous deterioration of bridge 

resistance and dynamic changed load contribute to the decrease of bridge structural 

reliabilities eventually.  

 Resistance 

For bridge resistance deterioration, corrosion is always the main reason. Normally, 

only uniform corrosion is considered as the cause of reduction of bridge load carrying 

capacity. So far, there have been several papers addressing deterioration of bridge 

resistance as a result of corrosion [32, 36, 46, 47, 49, 104, 119, 130, 152, 154, 165]. 

Generally, two types of materials are considered: reinforced concrete and steel. For 

reinforced concrete, chloride-induced corrosion is the most frequent type and has a severe 

effect on the loss rebar cross-sectional area. As chloride ions penetrate deeper into 

concrete, it normally takes some time before the chloride-induced corrosion actually 

emerges on the surface of rebar.  

The corrosion initiation time is a random variable depending on several factors such 

as environmental and geometrical factors. The most commonly used corrosion initiation 

model for concrete bridge deterioration is based on Fick’s second law. As a partial 

differential equation, Fick’s second law models the chloride diffusion process [146]. By 

using Crank’s solution [34], the time to reach the critical level of chloride concentration 

can be estimated. This chloride diffusion model for corrosion initiation has been widely 

used [4, 44, 47, 91, 154]. Some improved chloride induced corrosion initiation models 

were also presented by Rafiq et al. [130], Vu and Stewart [165]. Moreover, the loss of 

rebar cross-sectional area is determined by the instantaneous corrosion rate, which is 

deemed to be a random variable. An improved corrosion rate model was given by Vu and 

Stewart [165]. The time-dependent rebar cross-sectional areas were used to update 

reliability results over time.  
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For steel material, corrosion is also one of the most important causes of deterioration 

[47]. Corrosion emerges immediately after the coatings lose their function. Cross-sectional 

areas of bridge elements decrease over time because of corrosion, which can significantly 

affect bridge safety. So far, an accurate prediction model for corrosion in steel has not 

existed. Instead, some empirical functions have been derived. One of the successfully 

applied models for structural safety evaluation purpose is an exponential function 

developed by Albrecht and Naeemi [8]. Based on the environment and the type of steel, 

corrosion penetrations can be predicted. These penetrations will lead to reduced cross-

sectional areas which contribute to the decrease of bridge resistance. By updating the 

resistance of bridge elements each time, structural reliability of bridge elements and bridge 

system can be modelled temporally. 

 Load 

Dynamic load plays an important role in time-variant reliability of bridge system. 

Normally, loads include dead load, sustained/dynamic load, loads caused by winds, snow, 

earthquakes and tornadoes [121]. Among them, live load and dead load are two main load 

components which are usually modelled. Normally, dead load is seen as static load 

following a time-invariant distribution, for example, normal distribution. Live load is 

generally expected to increase annually and to follow a time-variant distribution. 

Quantifying live load is difficult due to plenty of uncertain parameters. Among them are 

the span length, axle loads, axle configuration, gross vehicle weight, position of the vehicle 

on the bridge (transversely and longitudinally), traffic volume, number of vehicles on the 

bridge (multiple presence), girder spacing, and mechanical properties of structural 

members [36]. So far, there are a few live load models available. Examples are Nowak live 

load model [118], Ghosn live load model [57] and AASHTO specifications [2]. AASHTO 

specifications address the modelling of live load in a time-invariant way. Nowak live load 

model is more common in current time-variant modelling of live load and it has been 

adopted by many researchers [36, 147, 165]. In that live load is formulated as a time-

variant normal distribution. As the distribution approaches a Type I extreme value 

distribution, the mean and standard deviation of the live load in the future time are 

predicted based on measured traffic data.  

The live load effects can also be estimated from SHM data [95, 123]. First, the data 

were used to derive the parameters of extreme value distributions, and then the future 

extreme values of SHM data were obtained. The ratio between future extreme values and 
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current extreme values was used to qualify the increase of live load in the future. The time-

variant live load and bridge resistance models were both utilised to generate time-

dependent reliabilities of bridge elements. Bridge system reliability was calculated each 

time from reliabilities of bridge elements based on serial/parallel logical relationship. 

 Observation 

Nowadays, with the development of monitoring techniques such as SHM and NDT, 

more and more observed information correlated to bridge deterioration is available. This 

information reflects the actual bridge deterioration, and it is of significance to incorporate 

it into bridge time-variant structural reliability estimation.  

Liu et al [96] incorporated SHM data into fatigue reliability evaluation of retrofitted 

steel bridge. An FE model was constructed to identify the critical location for potential 

fatigue cracking re-initiation. If the identified location was different from the sensors 

location, a spatial adjustment factor (SAF) can be applied to adjust the monitored data. At 

last, the modified data was used to derive the random variables related to fatigue reliability 

estimation. Marsh and Frangopol [104] investigated temporal and spatial variations of 

corrosion sensor data for the reduction of uncertainties in reliability estimation of 

reinforced concrete bridge deck. Based on empirical spatial and temporal relationships, 

corrosion sensor data were simulated for multiple critical sections all over the reinforced 

concrete bridge deck. An improved reliability model was developed to provide better 

estimation of bridge deck reliability. Catbas et al [26] estimated bridge reliability by 

incorporating long term environmental monitoring data. The monitoring data were utilised 

to calibrate an FE model of a long span truss bridge so that the uncertainties related to 

different environments can be minimised. Then the calibrated FE model was further used 

to estimate bridge system reliability based on the parallel and/or series relationship.  

Bayesian updating was adopted by some researchers to improve prediction accuracy 

of bridge reliability [45, 130]. With inspection and monitoring data, Bayesian updating can 

effectively reduce the uncertainties associated to bridge deterioration modelling. It also 

facilitates the combination of observed data and expert judgement for more accurate 

prediction results. Monitoring data from SHM were used to estimate parameters of an 

extreme distribution for time-variant live load model [95, 123]. Zheng and Ellingwood 

[177] investigated the application of NDT in time-variant reliability estimation. Two types 

of uncertainties in NDT: flaw detection and flaw measurement error, were characterized by 

probability of detection (POD) and a linear regression function, respectively. Two 
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instances based on magnetic particle and ultrasonic inspections were also used to illustrate 

the applications of NDT for time-dependent fatigue reliability. 

Load testing techniques can be utilised to update bridge resistance. Stewart and 

Val[148] studied the role of proof loading in reliability-based decision analysis of aging 

bridges. The reliability of bridge can be updated whenever proof loading was carried out. 

Full-scale load (proof load) testing can not only evaluate the load carrying capacity of 

existing bridges, but also provide valuable information about structural behaviour that are 

related to validation of design assumption and construction quality [148] . 

Structural reliability has been commonly applied to bridge performance 

deterioration. It is the basis of many structural design codes including Load and Resistance 

Factor Design (LRFD). It provides uniform and consistent estimation criteria for all types 

of bridges in terms of reliability index. Compared with condition ratings based models, 

structural reliability based models account for load-carrying capacity of bridges and failure 

probability is calculated objectively without any subjective condition assessment. In 

addition, failure modes related to strength and stress of bridge resistance are formulated in 

an explicit way. Although most of the current BMS are based on condition ratings, some 

researchers believe time-dependent reliability will be the direction of future BMS [84]. 

Nevertheless, structural reliability also shows some difficulties and disadvantages. 

For example, although several approximation methods are available, it is still a difficult 

task to evaluate structural reliability accurately since these methods might not reflect a 

realistic portrayal of the failure. Moreover, structural reliability mainly focuses on safety 

performance of a structure in term of strengths and stresses rather than serviceability in 

visual terms. In representation of a bridge system, a structural reliability model is mainly 

based on a combination of parallel and/or series bridge elements, which is not appropriate 

to address the deterioration dependencies among different bridge elements. Therefore, 

Frangopol et al. [52] pointed out that it was better to establish a generally acceptable and 

consistent methodology for probabilistic modelling of deterioration process of structural 

performance in terms of both condition ratings and reliability. Researchers have realised 

that BNs would be a proper candidate for integrated bridge health prediction in both 

serviceability and safety aspects [100, 132]. 
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2.4 SHM and NDT 
Besides the bridge health prediction approaches, there are other techniques closely 

related to bridge health management. Typically among them are structural health 

monitoring (SHM) and non-destructive testing (NDT). SHM is defined as an on-line 

system tracking the vibration/dynamic response of a structure along with inputs or 

monitoring of interest physical value, if possible, over a sufficiently long duration to 

determine anomalies, to detect deterioration and to identify damage for decision making 

[7]. To date, the application of SHM technology for surveillance, evaluation and 

assessment of existing or newly built bridges has attained some degree of maturity. On-

structure long-term monitoring systems have been implemented on bridges in Europe [23], 

the United States [37], Canada [114], Japan [178], South Korea [176], China [172] and 

Colombia [127].  

Generally, bridge SHM systems are envisaged to fulfil many assignments, such as, 

validation of design assumption, detection of anomalies, real-time monitoring of bridge 

safety and son on [81]. Measurements of SHM may include displacements, rotations, 

strains, temperature, force, vibrations and other environmental parameters, such as, 

humidity, rainfall and wind speed [22]. Currently, one of the most successful SHM systems 

is an integrated SHM system called Wind and Structural Health Monitoring System 

(WASHMS) conducted by Hong Kong SAR government onto three long-span bridges: 

Tsing Ma Bridge, Kap Shui Mun Bridge and Ting Kau Bridge since 1997, to monitor the 

structural health of them. Totally, more than 800 sensors are working on these bridges. 

Moreover, because of the development of sensor technology, many new techniques such as 

GPS, Video Cameras and Fibre Bragg Grating have been tested and included in WASHMS 

[28, 73, 172].  

However, there are very few successful real-life examples on the integration of novel 

algorithms and SHM with advanced sensing technologies for objective evaluation of 

structural condition and reliability for decision making, which means more research is still 

highly demanded [26]. Catbas et al [26] used data obtained from SHM to calibrate a FE 

model for a long-span bridge. Then element reliability indices were calculated through the 

updated FE model. To evaluate system reliability, Monte Carlo simulations were carried 

out on the FE model. Orcesi et al [123] improved accuracy of the prediction by using SHM 

data to update existing limit state functions. The updated limit state functions were applied 

for the determination of the best maintenance strategies.  
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To date, NDT techniques have been largely used in bridge monitoring system [177]. 

NDT plays an essential role in time-dependent condition assessment and reliability 

analysis. NDT techniques, such as, ultrasonics, acoustic emission (AE), ground penetrating 

radar, impact-echo and infrared thermograph have been applied to detect and measure 

hidden flaws such as fatigue crack size. Because each NDT technique has its own 

limitations, often a combination of various NDT methods are needed to provide more 

effective information [105]. However, the data obtained from NDT methods cannot be 

utilised directly. Complex signal analysis and interpretation are usually needed first on the 

raw data. Artificial intelligence approaches such as artificial neural networks (ANN) and 

expert system are very useful in pattern recognition, classification and qualitative 

interpretation of data obtained from NDT methods[105]. Due to the uncertainties of NDT 

techniques, probabilistic methods are adopted to characterize these uncertainties and to 

update flaw sizes from stochastic fatigue crack growth analysis[177]. The applications of 

NDT for highway bridges in the USA have been described by Washer [167]. The author 

also discussed the potential impacts of NDT on bridge inspection and bridge health 

management [167]. 

2.5 Summary  
Since the effectiveness of optimal strategies for bridge maintenance decision-making 

mainly depends on the ability to forecast bridge health performance, this review focuses on 

bridge health prediction approaches. In addition, the state-of-the-art of BMS and other 

relevant techniques, such as SHM and NDT are also presented briefly. This comprehensive 

review shows that there are various types of bridge health prediction approaches available 

for BMS. Overall, these approaches can be classified into two groups: condition ratings 

based and structural reliability based. The advantages and disadvantages of each approach 

are summarised in Table 2-4. Among them Markovian model is the most commonly used 

model and has been successfully applied to many BMS. However, it is also the most 

criticised model owing to its limitations. Overall, every bridge deterioration model 

possesses its own limitations. Thus, several areas to be researched are listed as follows:  

 Bridge health performance in both serviceability and safety aspects is to be 

addressed in an integrated manner by the existing models 
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 Multiple bridge deterioration factors, such as, deterioration dependencies among 

different bridge elements, observed information, maintenance actions and 

environmental effects are to be considered jointly by the existing models. 

 Approaches better than the currently used Series and/or parallel logical 

relationship for modelling complex relationship of bridge system are to be 

founded. 

 A variety of information, such as, monitoring data, expert knowledge and 

physical laws, is to be integrated to mitigate the uncertainties in bridge 

deterioration modelling.  

 Bayesian updating ability for dynamic prediction results updating is to be 

adopted by the existing models. 

 

Table 2-4. A list of merits and limitations of different bridge deterioration models 

Method Merits Limitations 

Condition ratings based models 

Deterministic model 

Regression model 
• Easily understood and used by bridge 

engineers 
• Only average service life of bridges 

can be predicted 
• Uncertainties inherited with bridge 

deterioration are neglected 
Stochastic process models 

Markov chains 

• Used for any individual bridge or 
bridge element 

• Reflection of  uncertainty from 
different sources 

• Future condition states are predicted 
based on current condition states 

• Computational efficiency and 
simplicity of use 

• First-order Markov property 
• Subjective classification of condition 

states only based on engineering 
judgement 

• Discrete transition time intervals and 
time-independent transition 
probabilities 

• Inspection and monitoring data 
cannot be incorporated directly 

• Latent nature of deterioration is not 
recognized 

• State space explosion 
• Implicitly considered bridge 

deterioration 
• Stationary assumption  of 

deterioration process 

Ordered probit 

model 

• Explicitly linkage between 
deterioration and relevant explanatory 
variables 

• Consideration of discrete condition 
states 

• Panel data cannot be used 
• Too many analytical manipulation  
• Cannot deal with interactions among 

different bridge elements 
• Difficult to model hierarchically a 

whole bridge 
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Binary probit model 

• Consideration of discrete condition 
states 

• Explicitly linkage between 
deterioration and relevant explanatory 
variables 

• Consideration of latent nature of bridge 
deterioration 

• Utilisation of panel data  
• Updated transition probabilities 

• Too many analytical manipulation  
• Cannot deal with interactions 

between different bridge elements 
• Difficult to model hierarchically a 

whole bridge 

Bayesian Approach 
• Incorporation of expert knowledge and 

observation information 
• Updated transition probabilities 
• A cost-effective approach 

• Still suffers from some limitations of 
Markov Chain 

• Cannot deal with interactions among 
different bridge elements 

Semi-Markov model 
• Release of  the assumption that holding 

times of the Markov process is 
exponential or geometric 

• Time-dependent transition probabilities 

• Discrete condition states 

Continuous 
stochastic 
process model 
(Gamma process 
model, Gaussian 
process model) 

• Natural and realistic modelling of 
bridge deterioration process 

• Continuous time intervals  
• Deterioration can be represented as the 

percentage of degradation 

• Cannot deal with interactions among 
different bridge elements 

• Difficult to build a bridge system 
model based on bridge element 
models 

• Stochastic process, such as, Gamma 
process, cannot consider maintenance 
intervene 

Artificial intelligence models 

Bayesian Network 

• Can deal with dependencies among 
complex systems 

• Suitable for modelling of complex 
systems 

• Avoid state space explosion 
• Bi-directional updating ability 
• Incorporation of all formats of data 
• An unifying and intuitive modelling 

tool 
• Extension of BNs (DBN or DOOBN) 

can account for the temporal variability 
• Several commercial softwares are 

available 

• Stationary structure and stationary 
transitions 

• No coupled relationship  
 

Fault tree 

• Visually and mathematically logical 
interrelationships of the bridge system 

• Modelling of  bridge element 
interactions, redundancy, deterioration 
mechanisms in an entity  

• Qualitative and quantitative evaluation 
of bridge deterioration  

• Construction can be laborious and 
time consuming 

• The basic events have to be 
independent 

• Binary states 
• Fails to model dependent failure and 

dynamic behaviours of deterioration 
processes 

Binary Recursive 

Partitioning 

• Less stringent data requirement 
• No assumption for particular 

distribution 
• Quick answer of explanatory variable 

selection 
• A practical means for data objectivity 
• Can handle the data from a smaller 

population 

• Difficult to get quantitative results 
• Cannot deal with interactions 

between different bridge elements 
• A kind of classification tree 

Case-based 
reasoning (CBR) 

• Hierarchical decomposition of 
infrastructure facilities 

• Component interactions, condition 
states updating and temporal 
uncertainty of deterioration process can 
be all handled 

• Largely depends on the size and 
coverage of the case library, and 
correctness and availability of expert 
knowledge 

• Modelling of bridge deterioration is 
not probabilistic 

• Uncertainty in bridge deterioration is 
not presented explicitly 
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Knowledge-based 

systems (including 

CBR) 

• Expert knowledge is used • Only responsible for some specific 
rules 

• Extensive knowledge of subjective 
system is required 

• Uncertainty within  bridge 
deterioration is not represented in an 
explicit way 

Artificial neural 
network 

• Computational efficiency is high 
• Complex, multi-dimensional, non-

linear relationship can be modelled 

• Updating with new observation data 
is rather difficult 

• Prediction of bridge deterioration is 
not addressed in probabilistic way 

• A large number of data are needed 
for training  

• Calculations are not carried out in a 
semantically meaningful way 

Structural reliability based model 

Structural reliability 

analysis model 

• Basis of many structural design codes 
including Load and Resistance Factor 
Design (LRFD) 

• Concentrate on bridge load-carrying 
capacity and bridge safety 

• Bridge failure probabilities are 
calculated objectively based on limit 
state functions 

• Failure modes are expressed in an 
explicit way 

• The interactions between bridge 
elements cannot be addressed 
explicitly  

• Visual deterioration information such 
as, corrosion and crack, cannot  be 
incorporated directly 

• Hard to get accurate results 
• Representation of a bridge system as 

basic parallel and/or series bridge 
element sets 

 

To achieve these goals, a more capable model for bridge health prediction is required. 

Dynamic Objective Oriented Bayesian Networks (DOOBNs), which are the extension of 

BNs, have shown the potential for bridge deterioration modelling and have been supported 

in a number of studies and applications with regards to deterioration prediction and 

decision making [42, 115, 149, 168, 169]. The DOOBNs are not only capable of 

overcoming the shortcomings of the current models, but also capable of incorporating 

various individual methods. In the future, the DOOBNs can be further extended for the 

purpose of bridge maintenance optimization. Influence diagrams (IDs), which are also 

extended from BNs by adding utility nodes and decision nodes, can be employed to 

optimize both inspection planning and maintenance actions.   
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Chapter 3: Overview of research basis 

This chapter introduces the basic research knowledge for the proposed integrated 

health prediction. The aim is to pave the way for model development. Section 3.1 

represents the different classes of BNs, including, Dynamic Bayesian Networks (DBNs), 

Object Oriented Bayesian Networks (OOBNs), Dynamic Object Oriented Bayesian 

Networks (DOOBNs) and Influence Diagram (IDs). Section 3.2 focuses on deterioration 

knowledge of bridges made of reinforced concrete and steel. For each material, the 

deterioration processes and corresponding physical equations descriptions are given in 

details. Section 3.3 addresses the issues regarding to research strategy, data collection and 

modelling analysis process. 

3.1 Bayesian Network theory 

3.1.1 Bayesian Networks (BNs) 
According to Jensen and Nielsen [70], a BN is a probabilistic model in the form of 

directed acyclic graphs (DAG) with the directed edges and a table of conditional 

probabilities of each variable on all its parents. Fig 3-1 illustrates a simple example of a 

BN. Each node represents a probability distribution of a variable, which may in principle 

be continuous states or discrete states. Nodes X2 and X3 with arrows directed from other 

nodes are called child nodes. They have a common parent node X1. Nodes without any 

arrows directed to them are called root nodes. An arrow between two nodes X1 and X2 

indicates conditional dependence between the two variables. The dependence relationships 

are represented by a set of conditional probability distributions (CPDs) or conditional 

probability distributions (CPTs). For instance, the probability of a dependent variable X2 

being in a particular state given for each combination of the states of variable X1 is 

expressed as P(X2| X1). Prior probability tables or functions are held by root nodes. 

 

Figure 3-1. A simple BN consisting of three variables 
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As the probability of each variable is defined conditional on its parents, the joint 

probability of this network𝑃(𝑋1,𝑋2,𝑋3) is specified as a product of these conditional 

probabilities 

𝑃(𝑋1,𝑋2,𝑋3) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)𝑃(𝑋3|𝑋1)                                    (3-1) 

where 𝑃(𝑋2|𝑋1) and 𝑃(𝑋3|𝑋1)  are conditional probabilities given X1, respectively, and 

𝑃(𝑋1) is prior probability. Moreover, with the assumptions of Markov property and 

conditional independence (d-separation [126]), the joint probability for any BNs is given as:  

𝑃(𝑿) = 𝑃(𝑋1,⋯ ,𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))𝑛
𝑖=1                                 (3-2) 

where 𝑃𝑎(𝑋𝑖) is the set of the parents of node 𝑋𝑖. One distinctive advantage of BNs is the 

inference ability for calculation of beliefs of events based on new observed evidence. The 

beliefs (probabilities) are updated in accordance with observation using Bayesian updating. 

Assume an evidence e is observed, and then we have: 

𝑃(𝑿|𝑒) = 𝑃(𝑿,𝑒)
𝑃(𝑒)

= 𝑃(𝑿,𝑒)
∑ 𝑃(𝑿,𝑒)𝑿

                                             (3-3) 

However, this computation is practical only if the network is small and each node has a 

few states. In practice, efficient algorithms have to be adopted. Now various inference 

algorithms are available for computing marginal probabilities for each unobserved node 

given a set of new observed evidence. The most commonly used algorithm is based on a 

tree-structure called junction trees [71]. Besides, there are also a number of exact and 

approximated inference algorithms available [116]. Without any observation information, 

the computation is based on a priori probabilities. When observation information is 

available, it is integrated into the network and all the probabilities are updated accordingly. 

Moreover, the observation information consists of hard evidence and soft evidence. Hard 

evidence indicates any particular state for a node directly (direct observation). Soft 

evidence only indicates any particular state for a node with probability (indirect 

observation). 

In most engineering applications, the variables that refer to physical phenomena are 

continuous in nature. While BNs can handle both discrete and continuous variables, the 

formers are more typical since the associated algorithms are tailored to handle discrete 

variables effectively. Approximate inference algorithms such as Markov Chain Monte 

Carlo (MCMC) [17, 58] allow BNs to involve continuous random variables, yet this 
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flexibility comes at a price. The drawback is that the rate of convergence can be extremely 

slow. As a result, any random variables that are defined in continuous states will be 

dsicretised and replaced by equivalent variables defined in a finite space. Furthermore, it is 

suggested to perform this discretization sequentially from parent nodes to child nodes. It is 

of importance to choose the discrete intervals for dividing a continuous variable into 

discrete states. One school of thought is to choose the discrete intervals that are suited to 

the characteristics of the variable (multivariate discretisation). Alternatively, the discrete 

intervals can be chosen uniformly for all variables (univariate discretisation), which is 

deemed to be suited for BNs [55]. To date, there are several discretisation algorithms 

available. For instance, a flexible way for multidimensional discretisation was proposed by 

Kozlov and Koller [85]. A detailed introduction about discretisation could be found in 

Friis-Hansen’s PhD thesis [55]. 

 The effectiveness of BNs is largely dependent on the accuracy of conditional 

probability tables (CPTs). Learning CPTs refers to the task of constructing a network 

model which best represents an underlying database or knowledge [55]. The CPTs can be 

estimated from four sources: statistic database, expert knowledge, physical laws and 

experiments data. In light of statistic database, some learning algorithms, such as, search-

and scoring-based algorithms [66], and “Bayes Net Power Constructor” (BNPC) [30], are 

available. In addition, when some nodes are hidden or any data are missing, the 

expectation maximum (EM) algorithm, which is a two-step iterative algorithm, can be 

employed. However, it is a difficult task to collect enough statistics data for the estimation 

of CPTs. And statistics data found in the literature may not exactly represent the variables 

within the network. Expert knowledge is an alternative of statistics data. The questions are 

carefully administered to elicit knowledge from experts. The drawbacks of expert 

knowledge are the bias of questions and subjective judgement of experts. However, expert 

knowledge can simplify the estimation of CPTs for complex BNs. The CPTs estimation 

based on Physical laws is the best choice since physical laws are objective and can provide 

deterministic relationship between variables. Monte Carlo simulation is used to obtain 

statistics data based on Physical laws. As for the fourth source, data yielded from 

experiments can be used to estimate CPTs. Nonetheless, in real applications experiments 

may not always be realistic and affordable.  

Validation of BNs can be done in three ways: sensitivity analysis, outcomes 

comparison and scenario testing. Sensitivity analysis is helpful in determining which basic 
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input variables have the greatest influence on the output variables [91]. The prediction 

results of BNs can be compared with known results for model validation. Scenario testing 

is to model behaviours of BNs with different scenarios defined by experts and to assess 

whether the BNs behave as expected in term of past experience and in accordance with 

current credible research [18, 90]. As a whole, these three ways should be carried out 

together to validate BNs. 

Compared with commonly used Markov chain, BNs show a number of advantages. 

BNs can model a complex system with plenty of variables in a compact representation 

through localized network clusters, thereby avoiding the “state space explosion” 

characteristic of Markov chain. Furthermore, with the Bayesian updating ability, BNs 

facilitate the integration of prior knowledge (expert knowledge) and new observations to 

tackle the situation when there are insufficient data. When new observations regarding to 

any variable are available, Bayesian updating can be implemented through the whole 

network. The latent nature of bridge deterioration can be modelled by BNs as well. As an 

intuitive modelling tool, BNs allow users to learn casual relationship by offering a 

graphical data structure that captures the dependencies between variables. Given its 

diagnostic and predictive capabilities, BNs can be used to diagnose root causes to specific 

output information or predict the outputs in the future. 

3.1.2 Dynamic Bayesian Networks (DBNs) 
Dynamic Bayesian Networks (DBNs) is a special class of BNs which includes a 

temporal dimension. A DBN is also referred to as state space models with two most 

common kinds of state-space models, namely Hidden Markov Models (HMMs) and 

Kalman Filter Models (KFMs) [116]. One simple example is shown in Figure 3-2. The 

DBN consists of a sequence of time slices i , each of which consists of one or more BN 

nodes. These slices are connected by direct links from nodes in slice i to corresponding 

nodes in slice i+1.The direct links between variables in different time slices represent 

temporal probabilistic dependence, which leads to the definition of CPTs. Normally, the 

Markov property is held by DBNs. If the model structure and the CPTs are identical all the 

time except for the initial time, DBNs are homogenous. A introduction about DBNs in 

details which includes representation, exact and approximate inference, and learning 

algorithms was provided by Murphy[116]. 
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Figure 3-2. Simple example of dynamic BN 

3.1.3 Object Oriented Bayesian Networks (OOBNs) 
    An Object Oriented Bayesian Network (OOBN) is a special class of BNs. In 

addition to usual nodes, an OOBN contains instance nodes [169]. In it, a physical or an 

abstract entity, or a relationship between two entities can all be an object. The object 

represents either a node or an instantiation of a network class (instance nodes). The 

definition of a network class enables OOBNs to be a more generic, reusable network, 

which facilitates hierarchical description of a problem domain. A network class is a named 

and self-contained representation of a network fragment with a set of interface and hidden 

nodes [169]. A class is generic network fragment. When this class is instantiated it is called 

an object [76]. A class may be instantiated many times [70]. And several classes can share 

common substructures. An example of a BN class is shown in Figure 3-3, where input 

nodes are ellipses with shadow dashed line borders and output nodes are ellipses with 

shadow bold line borders. An instantiation of this network class is also given in the Figure 

3-3, which has one input C, and two outputs A and B. 

  

Figure 3-3. A simplified BN class and its instantiation 

At At+1

Bt Bt+1 Bt+n

At+n
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3.1.4 Dynamic Object Oriented Bayesian Networks 
(DOOBNs) 

To address temporal behaviour of an OOBN, time slices are added to represent each 

period of interest. The resulting network, considering of several OOBNs time slices, is 

referred to as a dynamic OOBN (DOOBN) [76, 168]. Figure 3-4 shows a three-slice 

DOOBN. The inputs come from outputs in the previous time slice so that OOBNs in each 

time slice can be connected to address temporal behaviours.  

 

Figure 3-4. A simple three-slice DOOBN 

3.1.5 Influence Diagrams (IDs) 
Influence Diagrams (ID) are originally a representation of a fault tree for a 

symmetric decision scenario: one is faced with a specific sequence of decisions, and 

between each decision one observes a set of variables [42]. Nowadays, an ID is a Bayesian 

network, which is extended with utility nodes and decision nodes to solve decision 

problems [55]. Decision nodes define the action alternatives considered by the user. The 

available information about decisions instead of an expression of conditional probabilistic 

dependence is linked to the decision nodes as parents. Meanwhile, utility nodes are 

conditional on probabilistic and/or decision nodes but have no descendents. The utility 

nodes are the measures of decision nodes. To establish a rational basis for decision-

making, one can compute the expected utility (EU) of each decision alternative (the global 

utility function is the sum of all the local utility functions). The alternative with the highest 

EU is chosen, which is known as the maximum expected utility (MEU) principle [42]. 

For instance, if there are a set S of possible configurations s1, s2, …, sn, each 

associated with a probability P(si), the expected utility under action aj is represented as 

follows [55]: 
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𝐸𝑈�𝑎𝑗� = ∑ 𝑈(𝑠𝑖)𝑆 𝑃(𝑠𝑖|𝑎𝑗)                                         (3-4)                                              

According to the MEU principle, the best decision is chosen by performing the max-

operation over the set of decision alternative D: 

𝑈(𝐷) = max𝐷(𝐸𝑈(𝑎𝑗))                                            (3-5) 

By substituting Equation 3-4 into 3-5, the decision equation can be derived as: 

𝑈(𝐷) = max𝐷(∑ 𝑈(𝑠𝑖)𝑆 𝑃(𝑠𝑖|𝑎𝑗))                                 (3-6) 

which is formulated as alternating sum- and max-operations. 

3.2 Bridge deterioration description 
Due to aggressive environment and steadily increasing traffic, bridges are supposed 

to deteriorate over time. The deterioration mechanisms differ for bridges. In this research, 

we focus on bridges made of reinforced concrete and steel. The bridge deterioration 

knowledge for steel bridges and reinforced concrete bridges is introduced respectively. The 

knowledge will be used for bridge deterioration modelling in the following chapters.  

3.2.1 Steel bridges  
3.2.1.1 Corrosion 

For these bridges, the most common cause of deterioration is corrosion since all 

structural metals are prone to that. Corrosion can lead to cracking (fracture), yielding or 

bucking, bending or distortion, and slipping, which can result in stress concentration, 

change in geometric parameters, and a build-up of the corrosion products. Consequently, 

bridge serviceability and safety decrease over time. As far as steel bridge reliability is 

concerned, corrosion can cause a reduction in cross-section areas. The reduction of web 

area and plastic section modulus will result in shear capacity loss and moment capacity 

loss, respectively. 

A number of factors can influence the propagation of corrosion. Temperature, 

amount of chloride, location environments and moisture are some of them. There are also 

different forms of corrosion, such as, pitting, crevice, galvanic and stress corrosion. In this 

study, the only general form of corrosion, uniform corrosion, is considered. Current 

available data are not sufficient to formulate analytical models for such corrosion. 

Therefore, it is only possible to use approximate empirical formulas. Normally, if effects of 
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painting and coating are not considered, it is generally agreed to use a power function to 

describe corrosion propagation. An exponential function is given [8]. 

𝑪 = 𝑨 ∙ 𝒕𝑩                                (3-7) 

where C is average corrosion penetration from corrosion loss after t years in micrometers 

(10-6 m), A is the corrosion loss after one year, and B is a regression coefficient 

numerically equal to the slope of Equation 3-7 in log-log plot. The values of A and B are 

dependent on the environment and steel type of bridge. For instance, in term of carbon 

steel and rural environment A=34 with coefficient of variation equal 0.09, and B= 0.65 

with coefficient of variation equal 0.10 [8]. Based on Equation 3-7, new geometric 

parameters, such as, plastic section area and web area can be recalculated for structural 

reliability estimation of each bridge element.  

3.2.2 Reinforced concrete bridges 
For bridges made of reinforced concrete, the concrete itself is a relatively inert 

material. But if it is in contact with embedded steelwork or made from reactive aggregates, 

decay can ensue [98]. The concrete with reinforcing steel has distinctive deterioration 

processes. Concrete deteriorates because of internal pressures which are caused primarily 

by chemical reactions in the cement (sulphate attack), chemical reactions between the 

cement and aggregate (alkali-silica reaction), internal water movement owing to 

temperature gradients (freeze-thaw cycle attack), or expansion of corrosion products of 

reinforcing steel [44]. Reinforced steel deteriorates due to corrosion. 

It is well accepted that chloride induced reinforcement corrosion is the primary cause 

of deteriorations of reinforced concrete bridges [166]. Normally, corrosion will not initiate 

until chloride penetrates into concrete and reaches a minimum concentration. The chloride 

contamination is initiated due to environmental exposure, such as deicing salts, salt spray 

of seawater and marine immersion environment. Chloride ions infiltrate through the porous 

concrete, and this chloride diffusion process is accelerated in the presence of cracks. 

Eventually, the chloride initiates corrosion of reinforcing steel, which further leads to other 

forms of severe deterioration, such as cracking, spalling and delamination. The sequential 

deterioration processes are described in details as follows.  For bridge elements made of 

different concrete materials, the corresponding deterioration processes can be modelled by 

taking different parameter values. 
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3.2.2.1 Corrosion 

The corrosion can cause a reduction of cross-section area of steel over its lifetime, 

which can reduce shear capacity and moment capacity of bridge. The reinforced concrete 

bridge structures suffer from two stage deterioration processes of corrosion: corrosion 

initiation and corrosion propagation. In the first stage, chloride is initiated through 

environmental exposure and penetrates into concrete. However, corrosion of reinforced 

steel has not actually happened. Fick’s second law is commonly used to model the chloride 

penetration. Solved by Crank [34], Cx,t the chloride concentration at distance x from the 

surface at time t, with the assumption that chloride density on the surface is constant, can 

be described by  

𝐶x,t = 𝐶0[1 − erf � 𝑥
2�𝐷c𝑡

�]                                             (3-8) 

where C0 is the chloride concentration on the concrete surface, Dc is the diffusion 

coefficient for chloride in concrete, and erf denotes the standard error function. 

Furthermore, in the second stage, corrosion initiates when the chloride concentration at the 

rebar surface reaches a minimum concentration. The corrosion initiation time when the 

critical chloride concentration Ccr is reached can be obtained by replacing Cx,t by critical 

chloride concentration Ccr , which is given by [154]: 

𝑇corr = 𝑥2

4𝐷c[𝑒𝑟𝑓−1(1−𝐶cr𝐶0
)]2

                                                (3-9) 

where Tcorr is corrosion initiation time at any depth X from the surface. A limit state 

function for time to corrosion initiation at time t can be formulated as follows: 

𝑔𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛(𝑡) = 𝑡 − 𝑇corr                                             (3-10) 

where 𝑔𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛(𝑡) > 0 indicates the initiation of corrosion. 

The diameter of reinforced steel bar at any time Dt is modelled as a function of time 

as follows [152]:  

Dt =D0-Rcorr (t-Tcorr)                                                   (3-11) 

Dt =Dt-1-Rcorr                                                        (3-12) 

where D0 is the initial diameter of reinforcement steel bars, Rcorr is the corrosion rate. The 

corrosion rate of a reinforced concrete bridge due to chloride induced reinforcement 
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corrosion varies considerably depending on the environment around reinforced steel. If 

corrosion has been identified, then Equation 3-11 can be simply expressed as Equation 3-

12. Moreover, the cross-section area of reinforced steel bar at any time At is given by [47] 

as:  

𝐴𝑡 = 𝑛𝜋𝐷𝑡2

4
                                                         (3-13) 

where n is the number of bars experiencing active corrosion.  

3.2.2.2 Crack 

After corrosion initiation, further deterioration will bring crack to reinforced steel 

concrete cover. Prediction of the time from corrosion initiation to cracking is critical for 

modellings of the time to repair, rehabilitate and replace reinforced concrete structures in 

corrosive environment [97]. Based on experimental data obtained from simulated bridge 

deck slabs, Liu and Weyers have successfully developed a time to corrosion cracking 

model which considers the amounts of corrosion products needed to fill the interconnected 

void space around the reinforcing bar plus the amount of corrosion products needed to 

generate sufficient tensile stresses to crack the cover concrete [97]. The time from 

corrosion initiation to cracking 𝑇corr_crack  is predicted by the following equation [97]: 

𝑇corr_crack = 𝑊crit
2

2𝐾𝑝
                                                (3-14) 

where Wcrit is the critical amount of corrosion products, Kp is the rate of rust production. 
Wcrit  and Kp are further expressed by Equation 3-15 and 3-16, respectively 

𝑊crit = 𝜌𝑟𝑢𝑠𝑡(𝜋 �
𝐶𝑓𝑡′

𝐸𝑒𝑓
�𝑎

2+𝑏2

𝑏2−𝑎2
+ 𝜈𝑐�+ 𝑑0� 𝐷 + 𝑊𝑠𝑡

𝜌𝑠𝑡
)                         (3-15) 

where 𝜌𝑟𝑢𝑠𝑡 is the density of corrosion products; 𝜌𝑠𝑡  is the density of steel; a is inner radius 

of a thick-wall concrete cylinder a= (D+2d0)/2; b is outer radius of the thick-wall concrete 

cylinder b=C+(D+2d0)/2; D is the diameter of reinforcement steel; d0 is the thickness of the 

pore band around the steel/concrete interface; C is cover depth; vc is Poisson’s ratio of the 

concrete; Eef  is an effective elastic modulus of the concrete where 𝐸𝑒𝑓 = 𝐸𝑐/(1 + 𝜑𝑐𝑟), 𝐸𝑐  

is elastic modulus of the concrete and 𝜑𝑐𝑟 is the creep coefficient of the concrete; 𝑓𝑡′ is the 

tensile strength of concrete; 𝑊st, the amount of steel corroded, equals to 𝛼𝑊𝑐𝑟𝑖𝑡, in which 

α is represented as the molecular weight of steel weigh divided by the molecular weight of 

corrosion products 
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𝐾𝑝 = 0.098(1/𝛼)𝜋𝐷𝑖corr                                         (3-16) 

where 𝑖corr is the annual mean corrosion rate (mA/ft2). 

As the calculated 𝑇corr_crack  and 𝑇corr are both probabilistic variables, a limit state 

function for time to crack at time t can be formulated as follows[103]: 

𝑔𝑐𝑟𝑎𝑐𝑘(𝑡) = 𝑡 − (𝑇corr_crack + 𝑇corr)                               (3-17) 

where 𝑔𝑐𝑟𝑎𝑐𝑘(𝑡) > 0 indicates the initiation of crack. 

3.2.2.3 Spalling 

If crack is initiated, its width will grow. When a critical crack width is reached, 

spalling can be caused by severe cracking. The time to spalling is also critical for 

modelling of the time to repair, rehabilitate and replace reinforced concrete structures in a 

corrosive environment. An empirical model of time from crack initiation to spalling was 

derived from experimental results as follows [79]: 

𝑇𝑐𝑟𝑎𝑐𝑘_𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = 0.0167𝑖corr−1.1[42.9�𝑤𝑐
𝐶
�
−0.54

+ ((𝑤𝑙𝑖𝑚 − 0.3)/0.0062)1.5]      (3-18) 

0.3𝑚𝑚 ≤ 𝑤𝑙𝑖𝑚 ≤ 1.0𝑚𝑚 
where 𝑖corr is corrosion rate (µA/cm2); wc is water-cement ratio estimated from Bolomey’s 

formula; C is concrete cover (mm). Similarly, the obtained 𝑇𝑐𝑟𝑎𝑐𝑘_𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔  is also 

probabilistic variable, and a limit state function for time to spalling at time t can be also 

formulated as follows[103]: 

𝑔𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔(𝑡) = 𝑡 − (𝑇corrcrack + 𝑇corr + 𝑇𝑐𝑟𝑎𝑐𝑘_𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔)                 (3-19) 

where 𝑔𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔(𝑡) > 0 indicates the initiation of spalling. 

3.3 Research strategy and data specification 
To adopt DOOBN approach to deal with the identified defects, three novel models 

will be proposed. Firstly, the Model I focuses on bridge deterioration in serviceability, 

which uses condition ratings as the health index. Secondly, the Model II concentrates on 

bridge deterioration in safety. Both Models I and II are designed in three steps: modelling 

consideration, DOOBN development and parameter estimation. Thirdly, Model III 

integrates Models I and II to address bridge deterioration in both serviceability and safety. 
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The integration of condition ratings and structural reliability is implemented through 

essential failure modes.  

To validate the proposed three DOOBN based models, a large number of data are 

necessary. In this research, multiple data sources from bridge experts, the National Bridge 

Inventory (NBI) and the existing literature [47] will be utilised for model validation. An 

interview aiming to elicit expert knowledge was conducted. With carefully designed 

questions, bridge practitioners are able to provide their estimation about condition 

evolution for each bridge element over a certain period of time. To ensure the reliability 

and validity of their estimation, only bridge practitioners with excellent expertise and long-

time working experience was selected. Since most of these engineers have poor 

understanding about the art of probability assessment, specialised training courses were 

given to them so that desired information can be provided. With proper designed questions 

and friendly presentation of them, the quality of the elicited data can be guaranteed. A 

highway bridge “E-17-AH” located in Denver, Colorado was selected from the existing 

literature [47] as a case study, where the data have been validated. For the NBI data, the 

selection criteria are to consider “Record Type”, “Route Signing Prefix”, “Kind of 

Material/Design” and “Type of Design/Construction”. Considering the highway bridge “E-

17-AH” in these aspects, relevant condition records were selected out.  
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Chapter 4: Bridge health prediction in 
serviceability aspect 

4.1 Introduction 
In this chapter, a DOOBN model for bridge condition ratings prediction is proposed. 

In Section 4.2, the proposed DOOBNs model I is developed to assist probabilistic 

modelling of bridge condition ratings deterioration in a hierarchical way. The model I and 

is outlined through three steps: modelling consideration, DOOBN development and 

parameters estimation. it provides BMS with more accurate prediction results by handling 

the multiple deterioration factors, such as, deterioration dependencies among different 

bridge elements, maintenance intervene and environmental effects jointly, and performing 

the Bayesian updating efficiently. Furthermore, the model I can incorporate different types 

of data, such as, expert knowledge and historical condition rating data, to deal with data 

insufficiency. To demonstrate the feasibility, an application of this model I to a steel truss 

railway bridge is given in Section 4.3. 

4.2 Model I: using condition ratings 
To fulfil versatility requirement for different BMSs and extensibility requirement for 

maintenance optimization, the DOOBNs model I for bridge condition ratings prediction is 

designed through three modelling steps: modelling consideration, DOOBNs development 

and parameters estimation. A bridge is modelled in a hierarchical way by the DOOBNs so 

that the deterioration contribution of each bridge element could be tracked. The merit of 

the proposed model lies in the propagation of temporal deterioration uncertainties from 

bridge elements to the whole bridge system. The following sections discuss the three 

modelling steps in details. 

4.2.1 Modelling consideration 
4.2.1.1 Bridge hierarchical decomposition  

Systematic modelling of a bridge requires the identification of all bridge hierarchies 

related to the bridge deterioration. The condition ratings of bridge hierarchies contribute to 

overall condition ratings of the whole bridge. Therefore, bridge hierarchical decomposition 
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is necessary for bridge deterioration modelling. In BMS, a bridge can be decomposed into 

a number of bridge hierarchies in several levels. According to the structures of BMS, 

different hierarchical decomposition strategies are taken, which results in different bridge 

hierarchies. For most of the currents BMS, the decomposition method used in Pontis is 

often adopted. A bridge is generally divided into three bridge components: deck, 

superstructure and substructure, and the bridge components are further divided into a 

quantity of bridge elements, such as, girder, expansion joints, pier and abutment. Here, the 

bridge elements mean basic units with primary inspection records. However, Morcous [113] 

criticised that this decomposition method does not categorise bridge elements based on 

their functions and locations, and therefore proposed a method that decompose a bridge 

into seven levels of granularity: root bridge, bridge massing, bridge system, bridge sub-

system, bridge assembly, bridge sub-assembly and bridge element. No matter which 

decomposition method is used, the key objective is to identify all significant bridge 

hierarchies. Additionally, since almost all the existing BMSs use the Overall Condition 

Rating (OCR) method for overall evaluation of bridge or element condition, the location 

information of bridge hierarchies is normally not taken into account in the condition 

ratings evaluation of bridge deterioration. The same type of bridge hierarchies with 

different locations are usually treated as one bridge hierarchy. As a result, here basic bridge 

elements denote one entity of all the same type of bridge elements rather than any 

individual bridge elements.  

4.2.1.2 Relative weights assignment for bridge hierarchies  

Since different bridge hierarchies have different functions and roles, the impacts of 

each bridge hierarchy on bridge deterioration should be identified. Relative weights of 

bridge hierarchies have been adopted by the current BMS to represent their impacts on the 

whole bridge system and to evaluate the overall condition ratings. In different BMS, 

relative weights of the same bridge hierarchy may be different. Relative weights can be 

assigned by bridge partitioners directly with their fully knowledge about bridge 

deterioration, or estimated based on the methods, such as, pair wise comparison matrix 

method (AHP or Eigenvector method) [138]  and Delphi method [29, 35].  

4.2.1.3 Condition ratings definition 

With the intention of bridge assessment, a number of exclusive condition ratings that 

describe bridge deterioration processes are essential to be defined. The condition ratings 
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are usually defined from good condition to failed condition and labelled with numbers. 

According to the literature review, different definitions are adopted in the current BMS. 

Hence, the proposed model I is designed to be compatible with any kind of definitions.  

4.2.1.4 Deterioration dependencies analysis 

Since all the bridge elements are physically interconnected, the deterioration of one 

bridge element can influence the deterioration of another connected bridge element. 

Deterioration dependencies happen when the deterioration of a malfunctioning element 

accelerates the deterioration of another. In practice many deterioration dependencies have 

been observed by bridge inspectors. For example, the deterioration of a concrete deck 

accelerates if its bearings do not function properly [142]. When the bearing freezes because 

of corrosion, the deck is subjected to expansion and contraction stresses that cause 

cracking. Therefore, it is necessary to model bridge deterioration with the consideration of 

deterioration dependencies. Bridge maintenance engineers can provide their knowledge 

about deterioration dependencies. However, elicitation interviews have to be carried out. 

Alternatively, if there are sufficient condition data for bridge elements, statistical methods 

such as correlation analysis can be implemented to calculate the correlation between two 

bridge elements, which indicates if deterioration dependency exists between the two 

elements [142]. Moreover, effects from environmental condition, maintenance action and 

observed information are considered as deterioration dependencies, since the deterioration 

of bridge elements also depends on all the information.  

4.2.2 DOOBNs model development 
Based on the previous consideration, DOOBNs are developed from top level (the 

whole bridge system) to bottom level (bridge elements). Overall it consists of two major 

parts: bridge hierarchies modelling and bridge elements modelling. The first part focuses 

on probabilistic modelling of bridge system by means of bridge hierarchies. The second 

part focuses on modelling of bridge elements deterioration exclusively. In this section, a 

conceptual model for condition ratings prediction is formulated. 

4.2.2.1 OOBNs model of bridge hierarchies 

Consider that a bridge system is hierarchically decomposed into a number of bridge 

hierarchies in L (L>2) levels with the whole bridge system in the highest Level 1 and basic 

bridge elements in the lowest Level L. Additionally, condition ratings of each bridge 
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hierarchy are defined over K exclusive assessment ratings denoted by S={S1,...,SK}. And it 

is possible that different bridge hierarchies are defined over different condition ratings. 

Suppose a generic bridge hierarchy C in Level M (M<L) is further decomposed into N 

bridge sub-hierarchies Ai with relative weights Wi (i =1, …, N) in Level M+1. Particularly 

bridge hierarchies Ai denote primary bridge elements when M+1 equals to L. Because of 

the decomposition relationship between the bridge hierarchy C and the several bridge sub-

hierarchies Ai, the deterioration of C is conditional on all her sub-hierarchies Ai. To model 

all the bridge hierarchies without being lost, the object oriented representation of BNs 

(OOBNs) are employed so that each time only one bridge hierarchy is focused on. All the 

nodes and links related to this bridge hierarchy can be encapsulated in one object.  The 

modelling of this genetic bridge hierarchy C by means of OOBNs is given by Figure 4-1, 

where input nodes are ellipses with dashed line border and output nodes are ellipses with 

shadow bold line borders.  

  

Figure 4-1. OOBNs model of a generic bridge hierarchy C for condition ratings prediction 

 

In Figure 4-1, a large number of bridge hierarchies Ai can be directly linked to the 

bridge hierarchy C as its parent nodes. However, according to Langseth and Portinale [89], 

normally the maximum number of parent nodes for each node is suggested to be controlled 

under three or fewer, because too many parent nodes can affect the computational 

efficiency of BNs inference. Therefore, if the number of Ai is very large, the OOBNs 

modelling in Figure 4-1 will absolutely lead to slow computational efficiency and may be 

intractable. To overcome this problem, unnecessary bridge hierarchies, which have little 

impacts on bridge deterioration, can be eliminated. Nonetheless, this will obviously 

sacrifice the model accuracy. An alternative way is to introduce auxiliary nodes to bridge 

hierarchies modelling. Since auxiliary nodes enable indirect connection between parent 

nodes and children nodes, the number of each node’s parent nodes can be effectively 

reduced. Taking this generic bridge hierarchy C as an example, if each bridge sub-

C

A1 A2 AN
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hierarchy Ai has three condition ratings (K=3) and the number of bridge hierarchies Ai 

equals to 9 (i =1, … , 9), direct modelling like the one in Figure 4-1 will make inference 

computation rather time-consuming. In this case, three auxiliary nodes (B1, B2, B3) can be 

are inserted between node C and its parent nodes Ai and become the new parent node. The 

OOBNs modelling of this bridge hierarchy C is represented in Figure 4-2, where input 

nodes are ellipses with dashed line borders and output nodes are ellipses with bold line 

borders. An instantiation of this network class is also given in the Figure 4-2, which has 

nine inputs Ai (i =1, … , 9) and one output C. By means of the auxiliary nodes, inference 

efficiency of the whole network can be improved dramatically. The auxiliary nodes (B1, B2, 

B3) do not have any practical meaning, and each auxiliary node is defined with some 

numbered states according to the weighted sums of every condition ratings combination of 

all its parent nodes. This state definition of auxiliary nodes will be further addressed in the 

parameters estimation part. Finally, It should be noticed that the auxiliary nodes cannot 

relief the burden of CPTs estimation but only facilitate BNs inference.  

                                      

Figure 4-2. OOBNs model of a generic bridge hierarchy C with auxiliary nodes for 
condition ratings prediction 

With OOBNs modelling of all the bridge hierarchies from Level 1 to Level M, the 

whole bridge system can be structured by simply connecting each bridge hierarchy in 

different levels. As one object has inputs and outputs, the logical relationships between 

different bridge hierarchies have been identified clearly. For instance, if a bridge is 

decomposed into three levels: a number of bridge components Cj and each bridge 

component is further decomposed into a number of bridge elements Ai, the system 

modelling of this bridge is represented in Figure 4-3, where input nodes are ellipses with 

dashed line borders and output nodes are ellipses with bold line borders. The whole bridge 

is in the highest level while bridge elements are in the lowest level.  
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Figure 4-3. OOBNs model of a bridge system in three levels for condition ratings 

prediction 

4.2.2.2 DOOBNs model of bridge elements 

The deterioration processes of bridge elements are normally modelled by stochastic 

processes, such as, Markovian [72] or semi-Markovian [99] stochastic processes, Gamma 

process [139] and Gaussian process. In principle, both discrete-time and continuous-time 

stochastic processes are applicable to deterioration modelling of bridge elements. 

However, owing to the limitation of current inference algorithms and slow convergence 

rate, continuous variables cannot be dealt with efficiently. Therefore, discrete-time 

stochastic processes are preferred. For simplicity, discrete-time Markov process is 

employed to model the deterioration of bridge elements in this research. Additionally, the 

discrete-time Markov process can be homogeneous or non-homogeneous. If one bridge 

element E is defined with H exclusive condition ratings, Figure 4-4 describes an OOBN 

model representing the temporal deterioration of bridge element E between time t-1 and t 

by means of discrete-time Markov process defined by CPT of variable E(t), where input 

nodes are ellipses with dashed line borders and output nodes are ellipses with shadow bold 

line borders.  

 

Figure 4-4. The OOBN model of a generic bridge element E for condition ratings 
prediction by means of discrete-time Markov process  
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To ensure the modelling consistency regarding actual deterioration of bridge 

elements, bridge deterioration factors related to maintenance actions, environmental effects 

and observed information should be considered jointly. As these factors are independent of 

the past, a set of variables X(t), Y(t) and Z(t) related to maintenance actions, environment 

levels and observation, respectively, can be individually added to the OOBN model in each 

time slice (Figure 4-5). The maintenance variables X(t) are defined for each bridge element 

with several states according to available maintenance actions. Different maintenance 

actions have different impacts on the deterioration of bridge elements. For instance, 

replacement and perfect repair will bring bridge elements into the new state. Minimal 

repair and no maintenance leave bridge elements in the unchanged state. Imperfect 

maintenance brings bridge elements into the state better than past state but worse than new 

state. For one bridge element, the probabilities over all the possible condition ratings can 

be used to express imperfect maintenance actions. The environmental variables Y(t) 

account for environmental effects, such as, traffic volumes, traffic loads, temperature, 

moisture and humidity. Four environmental states in the PONTIS BMS [60]: benign, low, 

moderate and severe are adopted. If common environmental variable is considered, the 

environmental variable of each bridge element can be connected to one common 

environmental variable. The observation variables Z(t) facilitate Bayesian updating when 

newly observed condition ratings data are available. Observations from visual inspection 

can directly reflect true condition ratings of bridge elements, while NDT and monitoring 

techniques only provide indirect information about bridge deterioration. This information 

can be characterised by a probability of detection (PoD) or measurement accuracy.  

 

Figure 4-5. OOBNs model of a generic bridge element E for condition ratings prediction 
including maintenance intervene, environmental effects and observation  

E(t-1) E(t)

X(t) Y(t) Z(t)
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Besides, deterioration dependencies amongst different bridge elements should be 

considered as well. Suppose that the bridge element E is identified with the influence from 

another two bridge elements E1 and E2, this deterioration dependency can be modelled by 

the OOBN structure depicted by Figure 4-6, where input nodes are ellipses with dashed 

line borders and output nodes are ellipses with shadow bold line borders.  

 

Figure 4-6. OOBNs model of a generic bridge element E for condition ratings prediction 

including deterioration dependency  

So far, a generic OOBNs model has been proposed for bridge elements deterioration 

at any time slice. To address the temporal deterioration of bridge elements, the OOBNs 

models at different time slices are connected to formulate a DOOBNs model (Figure 4-7). 

The outputs of the DOOBNs model are further linked to the corresponding bridge elements 

modelled in the part of bridge hierarchies. Therefore, the whole conceptual model for 

bridge condition ratings prediction by means of DOOBNs is completed. 

 

Figure 4-7. DOOBNs model of a generic bridge element for condition ratings prediction 

accounting for temporal deterioration  
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4.2.3 Parameters estimation 
The final step of the proposed model is to estimate the CPTs and priori probabilities. 

Overall, the whole estimation is a complex task and needs combine a variety of data 

sources. No single method is versatile and is able to fulfil the CPTs estimation in all the 

circumstances. In this section, parameters estimation for bridge hierarchies and bridge 

elements is addressed, respectively.  

4.2.3.1 Bridge hierarchies 

In this part, the condition ratings distributions of bridge hierarchies are assumed to be 

a uniform distribution. As all the existing BMSs use the OCR method for overall 

evaluation of bridge hierarchies, relative weights are used to estimate CPTs of bridge 

hierarchies. Recall a generic bridge hierarchy C in the last section, which is further 

decomposed into N bridge sub-hierarchies Ai with relative weights Wi (i =1, …, N). The 

condition rating of bridge factor C is conditional on the condition ratings of bridge 

hierarchies Ai. For each combination of condition ratings of bridge sub-hierarchies Ai (i =1, 

…, N), a weighted sum of condition rating R is calculated as 

𝑅 = ∑ (𝑟𝑖×𝑊𝑖)𝑁
𝑖=1
∑ 𝑊𝑖
𝑁
𝑖=1

                                                        (4-1) 

where ri is the condition rating of each bridge sub-hierarchy Ai. If R is an integer, the 

corresponding condition rating conditional on this combination in CPT is filled with 1. 

Otherwise, two rounded condition ratings towards negative and positive infinity, Rf and Rc 

(Rf <R<Rc), conditional on this combination in CPT are assigned with Rc-R and R- Rf, 

respectively. Furthermore, when the condition grades of two adjacent levels are different, 

the weighted sum of condition rating R is modified as  

𝑅 = ∑ (𝑟𝑖×𝑊𝑖)𝑁
𝑖=1
∑ 𝑊𝑖
𝑁
𝑖=1

× 𝑃
𝑄

                                                   (4-2) 

where Q is the condition ratings number of bridge sub-hierarchies Ai ; P is the condition 

ratings number of bridge hierarchy C. Then the CPTs are filled in exactly the same way as 

above. However, because condition grades of two adjacent levels are different, the 

resulting R is scaled up or down. Attention has to be paid to the combination that all the 

condition ratings of bridge sub-hierarchies Ai are denoted to be 1. The calculated R will not 

be an integer. In that situation, the CPT should be filled with 1. Moreover, the calculated 
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CPTs based on relative weights should be further examined. If some values are incorrect, 

the values directly obtained from expert knowledge are used instead. 

Each auxiliary node will be defined with some numbered states which are calculated 

from the weighted sums of every condition ratings combination of all its parent nodes. 

Considering the case in Figure 4-2, the CPTs associated to Ai (i=1,2,3, or 4,5,6 or 7,8,9) all 

correspond to the identity operator. For instance, given one combination of the condition 

ratings of Ai (i=1, 2, 3, or 4, 5, 6 or 7, 8, 9), only the numbered state corresponding to the 

weighted sums of this combination is equal to 1 with others probabilities being equal to 0. 

To further estimate the CPT of bridge hierarchy C, each auxiliary node Bi (i=1, 2, 3) is 

assigned with relative weight being equal to the sum of relative weights of all its parent 

nodes. The CPT of bridge factor C will be filled out based on the Equation 4-2. 

4.2.3.2 Bridge elements 

 Bridge condition data 

A BMS may have a bridge database including inventory data, condition ratings data 

(inspection data), appraisal data and maintenance data as well as monitoring data. By 

means of learning algorithms, all the CPTs related to bridge elements can be estimated 

based on the database. To date, a number of learning algorithms available have been listed 

by Murphy [116]. As for bridge elements modelled in Figure 4-6, parameters estimation 

always requires a large amount of data. As a result, available data are never sufficient 

compared with the number of evaluated parameters. In contrast, it is more realistic to 

estimate CPTs from condition ratings data for bridge elements modelled in Figure 4-4. 

Hence, the learning methods for this type of modelling are discussed in details. 

Normally, reliable CPTs estimation demands as much as possible historical condition 

ratings data without maintenance intervenes and it is required that at least two consecutive 

historical condition ratings data without maintenance intervenes are available. In this 

study, for simplicity, bridge elements deterioration is assumed to follow discrete-time 

Markov process. Two commonly used methods are the non-linear least square optimization 

method and the maximum likelihood estimation (MLE) method. The non-linear least 

square optimization method minimizes the summation of squared difference between 

actual relative percentage from database and the expected percentage predicted from 

transition probabilities of all the condition ratings during a certain time. The transition 

probabilities are estimated by solving a non-linear optimization problem. The objective 
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function and the constraints of this non-linear optimization problem can be written as 

follows [102]: 

𝑚𝑖𝑛∑ ∑ �𝑃𝑚,𝑛 − (𝑃0𝑻𝑛)𝑚�
2
𝐾(𝑛)𝑁

𝑛=1
𝑀
𝑚=1                                 (4-3) 

                                  Subject to   0≤ Ti,j≤1    i, j= 1,2,…,M  

∑ 𝑇𝑖,𝑗 = 1𝑀
𝑗=1                                                        (4-4) 

𝑻 = �
𝑇1,1 ⋯ 𝑇1,𝑀
⋮ ⋱ ⋮

𝑇𝑀,1 ⋯ 𝑇𝑀,𝑀

�                                                  (4-5) 

where P0 is a vector of the initial condition rating of a bridge element which is always 

assumed to be in good condition; Pm,n is actual relative percentage in condition rating m at 

age n; T is the transition probabilities matrix defined over a certain transition period 

(Equation 4-5); M is the number of condition ratings; N is the number of years of condition 

data available; K(n) is the number of bridge elements at age n for weighting each term. It 

makes sense that all Ti,j terms where j is larger than i are zero as the condition of any bridge 

element cannot improve without maintenance actions. In addition, generally, the 

assumption that condition of a bridge element will not jump down more than 1 condition in 

one transition period is often held. As a result, the estimated parameters are significantly 

reduced. The above non-linear problem can be solved easily by using the Optimization 

Toolbox in “MATLAB” Software.  

As for MLE method, the parameter Ti,j  can be simply estimated from historical 

condition data based on Equation 4-6 [74]. 

𝑇𝑖,𝑗 = 𝑛𝑖,𝑗
𝑛𝑖

                                                          (4-6) 

where ni.j is the number of transitions from condition rating i to condition rating j during a 

given time period; ni is the total number of bridge elements in condition rating i before the 

transition within the same time period. The relationship between ni.j and ni is formulated as 

Equation 4-7.  

∑ 𝑛𝑖,𝑗 = 𝑛𝑖𝑀
𝑗=1                                                       (4-7) 

If εi,j is the newly observed number of transitions from condition rating i to condition 

rating j during next time period and εi is the total newly observed number of bridge 
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elements in condition rating i before the transition within the same time period, the 

parameter Ti,j  can be easily updated as follows: 

𝑇𝑖,𝑗 = 𝑚𝑖𝑇𝑖,𝑗0 + (1−𝑚𝑖)
ℰ𝑖,𝑗
ℰ𝑖

                                          (4-8) 

where 𝑇𝑖,𝑗0  denotes the previous parameter, and  

ℰ𝑖 = ∑ ℰ𝑖,𝑗𝑀
𝑗=1                                                        (4-9) 

𝑚𝑖 = 𝑛𝑖
𝑛𝑖+ℰ𝑖

                                                          (4-10) 

Comparing the two methods, the MLE method is more straightforward and can be 

easily used. Also, the transition probabilities matrix can be easily updated when newly 

observed condition state data are available. Nonetheless, if the historical condition state 

data are recorded in the form of relative percentages at different time units, the least square 

method is more appropriate because it is impossible to sort out transition numbers from 

this kind of data. Bridge experts can give their insights into bridge element deterioration 

based on their experience. The knowledge can be converted into relative percentages of 

different condition ratings at different time intervals. In this case, the least square method 

is preferred. 

However, both the methods are affected by incomplete historical condition data. If 

historical condition data over a certain time period were not observed regularly, these data 

are called incomplete data. As for these data, although both the methods can still estimate 

transition probabilities matrix from incomplete historical condition data, there is no data-

augmentation involved. Furthermore, it will be rather difficult for the MLE method to 

obtain results analytically from these incomplete data [141]. A feasible way is to use an 

iterative method, for instance, the Expectation-maximization (EM) algorithm, which is a 

data-augmentation method and an extension of the MLE method [141]. The flowchart of 

the EM algorithm is depicted in Figure 4-8. Overall, the whole process is mainly 

comprised of two steps, the Expectation (E) step and the Maximization (M) step. First, the 

observed incomplete condition data and an initial estimate of transition probabilities matrix 

is given, then the E step rebuilds all the possible sets of complete condition data and 

estimates the expected complete likelihood function of these complete data with a 

transition probabilities matrix. Next, by maximising the expected complete likelihood 

function, a new estimate of transition probabilities matrix is obtained in the M step. With 



 71 

Chapter 4: Bridge health prediction in serviceability aspect 71 

this new estimate of transition probabilities matrix, the E step and M step are implemented 

again for another estimate of transition probabilities matrix. The both steps iterate until the 

estimated parameters converge. The EM algorithm for estimating transition probabilities of 

bridge elements is discussed in details as follows [141]: 

 

Figure 4-8.The flowchart of EM algorithm 

Given the observed historical condition data Y and a transition probabilities matrix T, 

several possible sets of ‘complete’ condition data X with different happening probabilities 

can be estimated. The likelihood of any set X conditional on the transition probabilities 

matrix T can be expressed by Equation 4-9 

𝐿(𝑋|𝑻) = ∏ ∏ 𝑇𝑖𝑗𝑁𝑖𝑗𝑆
𝑗=1

𝑆
𝑖=1                                        (4-11) 

where Nij is the total number of transitions from condition rating i to condition rating j 

within the ‘complete’ condition state data X ; S is the number of condition ratings. 

Therefore, the expectation of log-likelihood of X with a transition probabilities matrix T 

conditional on Y and a priori estimate of transition probabilities matrix T(P) is described as 

follows: 
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𝑄�𝑇�𝑇(𝑃)� = 𝐸�log𝐿(𝑋|𝑻)�𝑌,𝑇(𝑃)� = ��𝐸[𝑁𝑖𝑗|𝑌,𝑇(𝑃)]log (𝑇𝑖𝑗)
𝑆

𝑗=1

𝑆

𝑖=1

        

= ��𝑛𝑖𝑗
(𝑃)log (𝑇𝑖𝑗)

𝑆

𝑗=1

𝑆

𝑖=1

 

(4-12) 

where 𝑛𝑖𝑗
(𝑃) is the expected number of transitions from condition rating i to condition rating 

j conditional on a priori estimate of transition probabilities matrix T(P), and is further 

defined by Equation 4-13. 

𝑛𝑖𝑗
(𝑃) = 𝐸[𝑁𝑖𝑗|𝑌,𝑇(𝑃)]                                                (4-13) 

For the estimation of 𝑛𝑖𝑗
(𝑃), consider a bridge element is observed in condition rating f 

at time t0 and in condition rating r at time t0+t. The probability that a transition from 

condition rating i to condition rating j happens at time t0+k amid this observation, where 2≤ 

k≤ t-1, is given by Equation 4-14 

𝑃𝑖𝑗𝑘,𝑚𝑛𝑡 = (𝑻𝑘−1)𝑚𝑖𝑻𝑖𝑗(𝑻𝑡−𝑘)𝑗𝑛
(𝑻𝑡)𝑚𝑛

                                         (4-14) 

where (𝑻𝑡)𝑚𝑛 denotes the probability of a bridge element being in condition rating m and 

being in condition rating n after t time units. Following Equation 4-14, the expected 

number of transitions from condition state i to condition state j within this observation can 

be obtained:  

∑ 𝑃𝑖𝑗𝑘,𝑚𝑛𝑡
𝑡−1
𝑘=1                                                     (4-15) 

In addition, the expected number of transitions from condition rating i to condition 

rating j for all such observations is shown by Equation 4-16. 

𝑂𝑚𝑛𝑡 ∑ 𝑃𝑖𝑗𝑘,𝑚𝑛𝑡
𝑡−1
𝑘=1                                               (4-16) 

where Omnt denotes the number of such observed transitions being in condition rating m 

and being in condition rating n after t time units. Given all the observed condition rating 

data, expected number of transitions from condition raing i to condition rating j, 𝑛𝑖𝑗
(𝑃), is 

estimated as follows: 
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∑ ∑ ∑ 𝑂𝑚𝑛𝑡𝑡
𝑆
𝑛

𝑆
𝑚 ∑ 𝑃𝑖𝑗𝑘 ,𝑚𝑛𝑡

𝑡−1
𝑘=1                                           (4-17) 

So far, the Q function is completely defined. By maximizing this function, a new 

estimate of the transition probabilities matrix T is given by: 

𝑇𝑖𝑗 =
𝑛𝑖𝑗

(𝑃)

∑ 𝑛𝑖𝑞
(𝑃)𝑆

𝑞=1
                                                        (4-18) 

This estimated transition probabilities matrix T is substituted into the Q function, and the E 

steps and M step stops when the Q function converges. The final estimate of transition 

probabilities matrix T will be the optimized solution given the observed incomplete 

condition data. 

In this study, discrete-time Markov process is assumed with homogeneous transition 

probabilities matrix over time. But it may not be practical to hold this assumption. In fact, 

to meet homogeneity requirement, the condition data can be grouped at different time 

points so that it is reasonable to assume a homogenous transition probabilities matrix 

within each group. Then transition probabilities matrixes for different data groups can be 

estimated separately.  

 Expert knowledge 

Bridge practitioners with long-term working experience can acquire comprehensive 

bridge deterioration knowledge from the practice. The knowledge is referred to expert 

knowledge and deemed to be valuable for bridge deterioration modelling. Since the expert 

judgements have been verified in practice, it is straightforward to derive parameters based 

on them. Although subjective judgements may be involved, the newly obtained bridge 

condition data can mitigate the impacts of expert knowledge by means of periodic 

Bayesian updating of CPTs [27]. The elicitation process normally consists of five steps 

[134]: experts selection, experts training, questions preparation, expert judgement 

elicitation and results verification. First, several bridge maintenance engineers are selected 

according to their expertise and working experience. Since most of these engineers have no 

ideas about the art of probability assessment, training courses are necessary for them so 

that desired information can be provided. Additionally, the elicitation questions must be 

carefully designed to avoid subjective judgements. Questions can be designed as “What is 

the probability of a bridge element E being in condition rating K given all the information 

X?” or as “How likely is a bridge element E in condition rating K given all the information 

X?” Well designed questions facilitate the probability elicitation. Then the elicitor presents 
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the bridge maintenance engineers the prepared questions friendly so that answers can be 

properly given. It is essential to ensure the bridge maintenance engineers understand the 

questions well and more explanations are necessary. Finally, the obtained answers should 

be checked carefully by the elicitor in order to exclude any incorrect answer. The obtained 

answers can be converted into conditional probabilities directly or indirectly. If the bridge 

maintenance engineers cannot indicate exact numbers but only a few words for his degree 

of believes on a scale, for instance, certain (100%-90%), probable (90%-75%), likely 

(75%-50%), unlikely (50%-25%), improbable (25%-10%), impossible (10%-0), the 

average number of each scale can be seen as the estimated probabilities. Other issues 

relating to probability elicitation from expert knowledge can be found from [134]. Overall, 

the efficiency and quality of this solution are totally dependent on the abilities of bridge 

practitioners. However, for a bridge system, elicitation work involves a formidable amount 

of conditional probabilities, which will definitely affect the coherence of bridge engineers’ 

judgements. Also, the whole process tends to be quite time-consuming. Being aware of this 

disadvantage, all the efforts should be done to relieve the burden of elicitation before any 

actual probability elicitation work. In practical networks, some assumptions can ease the 

parameters elicitation from experts. For example, if it is reasonable to assume the influence 

of each parent node is independent, the Noisy-OR [125] or its extension Noisy-Max [41] 

can be applied. The joint CPTs are obtained from marginal conditional probability 

specified for each parent node by using the max function, so the number of parameters is 

reduced logarithmically.  

Basically, some CPTs can be filled in by the developer based on miscellaneous 

knowledge. For example, maintenance variables have a dominant influence on the bridge 

elements deterioration compared with other variables. By defining the impacts of different 

maintenance activities, the CPT of a bridge element can be identified partially. Normally, 

replacement and perfect repair bring bridge elements into good condition. Minimal repair 

and no maintenance leave bridge elements in the same condition as before. Imperfect 

maintenance brings bridge elements into the condition better than past one but worse than 

good condition. In this research, imperfect maintenance is represented by the probabilities 

over possible condition ratings of a bridge element. The CPTs of observation nodes can be 

estimated based on the nature of inspection methods. For instance, if observed information 

is obtained through visual inspection, the CPT of this observation associated to a bridge 

element is set to be 1. Moreover, if observations are obtained from NDT or monitoring 
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techniques, CPTs can be estimated from a probability of detection (PoD) model or 

measurement accuracy, respectively. 

 

 Combination of limited bridge condition data and expert knowledge  

Usually, when bridge condition data are limited or insufficient, CPTs estimation 

relies on expert knowledge. However, because of the subjective judgements from experts, 

the CPTs estimated from expert knowledge always tend to be biased. Meanwhile, the 

limited bridge data do provide some valuable information for CPTs estimation, which will 

improve the accuracy. So far, a formal method that assists the combination of limited 

environmental data and elicited expert knowledge in an ecological risk assessment has 

been presented by Pollino et al. [128]. In this study, a modified two-step method to 

combine the limited bridge data and expert knowledge is proposed as shown in Figure 4-9. 

The first step aims to formalise a criterion based on the limited bridge data and to regulate 

experts’ estimation so that less subjective estimation of initial CPTs is obtained. The 

second step is an iteration process for combining the limited bridge data and different sizes 

of hypothetical data sampled from the initial CPTs.  

It is of course that limited bridge data cannot be used to estimate the whole CPTs at 

all. Nonetheless, based on those limited bridge data, the marginal conditional probabilities 

that are conditional on only parts of parent variables can be obtained by using learning 

algorithms generally. For instance, bridge data that appear to be inadequate to estimate the 

CPTs in Figure 4-6 can still be utilised to parameterise the ones in Figure 4-4. Since the 

modelling in Figure 4-4 is a simplified case of the one in Figure 4-6, the parameterised 

CPT through limited bridge data can be considered as the marginal conditional probability 

specified as p(E(t)|E(t-1)) in Figure 4-6. In addition, the obtained marginal conditional 

probabilities can function as a criterion so that the experts can adjust their estimation to 

reduce their subjective judgements. Here, a common criterion applicable for different BNs 

structures is given. 
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Figure 4-9. The proposed two-step method for combination of limited bridge data and 
expert knowledge 

 

 
 

 

Figure 4-10. A general BN 

 

Z

X1 Xm Y1 Yn



 77 

Chapter 4: Bridge health prediction in serviceability aspect 77 

In Figure 4-10, a general BN is illustrated with a random variable Z conditional on a 

set of random variables X={X1,…,Xm} and a set of random variables Y={Y1,…,Yn}. X 

denotes all the parent variables for which marginal conditional probabilities could be 

obtained based on available data. Y denotes all the other parent variables without data. On 

the one hand, by implementing learning algorithms, the marginal conditional probabilities 

P(Z|X) are calculated based on available data first. On the other hand, P(Z|X) can be 

estimated by using Bayes' theorem shown as Equation 4-19. 

𝑃(𝑍|𝐗) = 𝑃(𝑍,𝐗)
𝑃(𝐗)

= ∑ 𝑃(𝑍,𝐗,𝐘)𝐘
𝑃(𝐗)

= ∑ 𝑃(𝑍|𝐗,𝐘)𝑃(𝐗,𝐘)𝐘
𝑃(𝐗)

                             (4-19) 

where 𝑃(𝑍|𝐗,𝐘) is the complete CPTs to be estimated from expert knowledge; 𝑃(𝑍,𝐗,𝐘),  

𝑃(𝑍,𝐗) , 𝑃(𝐗,𝐘) and 𝑃(𝐗) are the joint probabilities of the corresponding variables. If X 

and Y are independent, the above equation can be simplified into Equation 4-20. 

𝑃(𝑍|𝐗) = ∑ 𝑃(𝑍|𝐗,𝐘)𝑃(𝐗,𝐘)𝐘
𝑃(𝐗)

= ∑ 𝑃(𝑍|𝐗,𝐘)𝑃(𝐗)𝑃(𝐘)𝐘
𝑃(𝐗)

= ∑ 𝑃(𝑍|𝐗,𝐘)𝑃(𝐘)𝐘             (4-20) 

where 𝑃(𝐘) is the joint probabilities of all the parent variable without data. In addition, if 

each variable of Y is independent each other, Equation 4-20 can be further simplified into 

Equation 4-21 

𝑃(𝑍|𝐗) = ∑ 𝑃(𝑍|𝐗,𝐘)𝑃(𝐘)𝐘 = ∑ 𝑃(𝑍|𝐗,𝐘)𝑃(Y1)⋯𝑃(Yn)𝐘                 (4-21) 

where 𝑃(Y1)⋯𝑃(Yn)  are the marginal probabilities of each variable. Equation 4-19 is 

applicable for different BNs to help the experts regulate their estimation. With the marginal 

conditional probabilities P(Z|X) estimated from available data, the experts should make 

their estimation based on Equation 4-19. Depending on the relationships among different 

parent variables, Equation 4-19 may be changed into Equation 4-20 or Equation 4-21. 

Regarding to the different joint probabilities, the probabilities can also be estimated from 

expert knowledge directly. Alternatively, if conditional relationships exist, the joint 

probabilities are calculated by further using Bayes' theorem. 

In the first step, CPTs with the regulation from the criteria are estimated based on 

expert knowledge. During the expert elicitation process, the experts are required to assign a 

weight to each estimated parameter based on their confidence. If the expert is confident 

about his estimation, a high weight is assigned, and vice versa. Afterwards, these 

weightings are considered to be equivalent to the size of initial sampled data from the 

estimated CPTs. The scale of weightings is really dependent on the total size of data 
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needed by learning algorithms and the size of available data. This issue will not be 

discussed in details. 

In the second step, the hypothetical data are sampled from parent nodes to child 

nodes based on the CPTs estimated from expert knowledge. Then the sampled data and the 

available data are integrated into EM learning algorithm for parameters estimation. The 

newly obtained CPTs are compared with the original CPTs. Now there exist several 

methods for measuring the similarity between two probability distributions. Some of 

commonly used methods are Euclidean distance, Kullback-Leibler distance and 

Bhattacharyya distance. Higher distance between two CPTs indicates further 

improvements. Additionally, the newly obtained CPTs are also examined by the experts to 

see if each parameter is in the acceptable range. Any parameter treated as unrealistic is 

flagged for improvements and assigned with a new weighting value. Then the hypothetical 

data are generated again and the learning process is repeated. Finally, the experts take the 

responsibility to determine if the refined parameters are accepted or not. When further 

improvements are needed, the process is iterated. With regarding to weightings adjustment, 

an iterative algorithm [128] shown in Figure 4-11 can be applied. Again, the value of each 

weighting change is dependent on the scale of weighting. As for CPTs estimation of native 

fish BNs [128], an uplarge or downlarge was assigned with a weighting of five; 

upsmall/downsmall was assigned with a weighting of three; bounceup/bouncedown was 

assigned with a weighting of two; and a tweak was assigned with a weighting of one. 
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Figure 4-11.An iterative algorithm for weightings adjustment 

 Other sources  

There are also other sources available for parameters estimation, such as, 

experimental data and simulated data. Experimental data can be yielded from the 

experiments designed for bridge deterioration. However, it always involves a great deal of 

work but only acquires a small amount of data, which is not so cost-effective. Simulated 

data are generated from a theoretical deterioration model that is based on physical and 

chemical deterioration processes of bridge. By quantifying the parameters related to the 

bridge deterioration, the development of deterioration over time can be simulated in a 
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quantitative manner based on Monte Carlo simulation. As a result, the deterioration can be 

mapped into a number of condition ratings that are used as simulated historical condition 

data for CPTs estimation. Nevertheless, it is often computationally intensive to simulate 

bridge deterioration since there are plenty of correlated parameters and each parameter is 

probabilistic rather than deterministic. 

Overall, parameters estimation could be undertaken with different data sources. 

Proper methods should be chosen according to the data availability. It should be also 

noticed that the estimated CPTs need to be reviewed by bridge experts and engineers to 

determine if the CPTs really reflect the practical situation. Some modifications may be 

needed upon their comments. 

4.3 Case study of a railway bridge: condition ratings 
prediction 

 The proposed DOOBNs model is applied to a railway bridge “Albert Bridge” 

(Figure 4-12) located in Brisbane, Queensland. The bridge functioning as a railway bridge 

is a two-span steel truss bridge built in 1893. A tailored Model I is developed for the bridge 

for condition ratings prediction in the next 100 years. 

 

Figure 4-12. Picture of Albert Bridge in Brisbane, Queensland 

4.3.1 Development of DOOBNs model for condition ratings  
4.3.1.1 Bridge system analysis 

To facilitate the development of DOOBNs model, a systematic analysis for Albert 

Bridge is implemented with the help of bridge maintenance engineers. The bridge is 

hierarchically decomposed into four levels with relative weights for each bridge hierarchy 
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(Table 4-1). The relative weights were directly assigned by bridge practitioners based on 

the importance of each bridge hierarchy to the deterioration of the whole bridge systems. 

Bridge condition ratings defined by Department of Main Roads, Queensland [129] are 

adopted in this case study. The whole bridge system, superstructure and substructure are 

defined with five condition ratings (Table 2-2), with CS1 denoting “Good condition”, CS4 

denoting “Poor condition” and CS5 denoting “Unsafe condition”. Other bridge hierarchies 

(e.g. bridge elements) are defined with four condition ratings according to their materials 

and deterioration processes[129]. For steel bridge elements, four condition ratings are 

generally defined as CS1 (“Sound paint”), CS2 (“Paint distress”), CS3 (“Active corrosion”) 

and CS4 (“Strength loss”). For bridge elements made of stone masonry and red brick, four 

condition ratings are generally defined as CS1 (“Good condition”), CS2 (“Minor 

cracking”), CS3 (“Moderate cracking”) and CS4 (“Severe cracking”). In terms of detailed 

descriptions of all the condition states of bridge elements, please refer to the Bridge 

inspection manual [129]. Moreover, two deterioration dependencies phenomena among 

different bridge elements are identified. First, the riveted joints suffer from pack rusting 

and crevice corrosion. Because of tensioning, the pack rusting can cause elongation of 

rivets shank that finally reduces the shear capacity of rivets. In addition, when paint 

coating around rivets is failed, crevice corrosion happens to rivets shank, which can cause 

wasting of rivet shank. If one rivets joint fails, the load that it was carrying will be 

transferred to the adjacent joints. Therefore, with the increase of load, the adjacent joints 

will deteriorate quicker than before and affect the safety of the whole structure, finally. 

Second, owing to debris buildup in the bearing and corrosion, there is a minor effect on the 

bearing’s movement capabilities, which may cause cracking or spalling in the bearing 

support. However, in this case study, since rivet joints and bearing supports are not 

modelled individually but included in other bridge elements, only environmental effects 

and maintenance actions are considered. Four environmental levels [60]: Benign, Low, 

Moderate and Severe, are used, and the maintenance actions are assumed to be perfect. 
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Table 4-1. Decomposition of Albert Bridge with relative weights 

Level 1 

(Top level) 
Level 2 Level 3 

Level 4 

(Bottom level) 

The whole bridge 

Bridge 
superstructure (3) 

Truss member (2) 

Main girder (3) 

Upper chord (2) 

Diagonals (1) 

Vertical (1) 

End post (1) 

Top + bottom wind 
bracing (1) 

Diaphragm (1) 

Top wind bracing (1) 

Bottom wind bracing 
(1) 

Portal wind bracing 
(1) 

Top lateral bracing 
(1) 

Flooring system (2) 
Longitudinal girder 
(2) 

Cross girder (3) 

Bearing (2) 

Bridge substructure 
(3) 

Pier (2) 
Pier cap (1) 

Pier wall (1) 

Abutment (2) 
Wing wall (1) 

Abutment wall (1) 

 

4.3.1.2 DOOBNs model development of Albert Bridge 

Based on the system analysis above, the conditional relationships among bridge 

hierarchies have been identified. The OOBNs models for bridge hierarchies in different 

levels are presented in Figures 4-13-4-20, where input nodes are ellipses with dashed line 

border and output nodes are ellipses with shadow bold line borders. By connecting these 

OOBNs models in different levels, the BNs model of the whole bridge system (Figure 4-21) 

can be derived. Then, the DOOBN models, accounting for temporal deterioration processes 

of each bridge element, are further constructed by means of discrete-time Markov process. 

Additionally, with the consideration of environmental effects, maintenance actions as well 

as the observations of bridge elements, three variables are introduced to the DOOBN 

model. For instance, Figures 4-22 and 4-23 present the BNs class corresponding to 
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deterioration processes of a main girder and its DOOBN model for temporal behaviours, 

respectively. The outputs of this DOOBN model at each time slice are input into the bridge 

main girder modelled in Figure 4-21. Similarly, the outputs of other DOOBN models 

specified for other bridge elements at each time slice are also input into the corresponding 

bridge elements in Figure 4-21 so that condition ratings of the whole bridge are updated 

each time. 

 

Figure 4-13. OOBN model of the whole bridge in Level1  
 

 

Figure 4-14. OOBN model of the superstructure in Level 2  
 

 

Figure 4-15. OOBN model of the substructure in Level 2 
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Superstructure Substructure

Bearing
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Truss
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system
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Figure 4-16. OOBN model of the Truss members in Level 3 

 

 

 

Figure 4-17. OOBN model of the Top + bottom wind bracing in Level 3 

 

 

 

Figure 4-18. OOBN model of the Flooring system in Level 3 
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Figure 4-19. OOBN model of the Pier in Level 3 

 
 

 

 

 

 

Figure 4-20. OOBN model of the Abutment in Level 3 

 

 

Figure 4-21. The whole bridge system BNs model of Albert Bridge 
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Figure 4-22. BN class for deterioration processes of a main girder for condition ratings 
prediction 

 

 

 

 

Figure 4-23. DOOBNs model of a bridge main girder for condition ratings prediction 

4.3.1.3 CPTs estimation for the DOOBN model of Albert Bridge 

As there are no historical condition rating data available for “Albert Bridge”, the 

CPTs are essentially estimated from the relative weights in Table 4-1 and expert 

knowledge. Regarding bridge hierarchies, the weighted sums of condition ratings are 

calculated based on Equation 4-2. CPTs are filled out according to the calculated results. 

Table 4-2 shows the estimated CPT of the flooring system of which condition rating is 

conditional on the cross girder and longitudinal girder.  

Main girder
condition (t-1)

Main girder 
condition (t)

Environmental 
condition level

Maintenance 
actions

Observations 
(t)

Environmental 
condition level

Main girder
condition (t-1)

Main girder 
condition (t)

Environmental 
condition level

Main girder 
condition (t)

Main girder
condition (t+1)

Environmental 
condition level

Time slice t Time slice t+1
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Table 4-2. The CPT of flooring system 

Cross girder Sound paint Paint distress 

Longitudinal 
girder 

Sound 
paint 

Paint 
distress 

Longitudin
al girder 

Strength 
loss 

Sound 
paint 

Paint 
distress 

Active 
corrosion 

Strength 
loss 

Sound paint 1 0.6 0.4 0 0.4 0 0 0 
Paint distress 0 0.4 0.6 0.8 0.6 1 0.6 0.2 

Active 
condition 0 0 0 0.2 0 0 0.4 0.8 

Strength loss 0 0 0 0 0 0 0 0 

Cross girder Active corrosion Strength loss 

Longitudinal 
girder 

Sound 
paint 

Paint 
distress 

Active 
corrosion 

Strength 
loss 

Sound 
paint 

Paint 
distress 

Active 
corrosion 

Strength 
loss 

Sound paint 0 0 0 0 0 0 0 0 
Paint distress 0.8 0.4 0 0 0.2 0 0 0 

Active 
condition 0.2 0.6 1 0.6 0.8 0.8 0.4 0 

Strength loss 0 0 0 0.4 0 0.2 0.6 1 
 

For bridge elements, CPTs initially rely on expert knowledge. Based on 

comprehensive practical knowledge about bridge deterioration, the experts are able to 

provide their estimation about relative percentages of each condition rating under different 

environmental levels over a certain period of time. For instance, Table 4-3 illustrates the 

estimated condition percentages for the cross girder over 20 years, where the initial 

condition is assumed to be “Sound paint”. Based on these data, the least square method 

(Equation 4-3) is employed in order to minimise the differences between expert estimation 

and the expected percentages calculated from transition probabilities matrix. By using the 

Optimization Toolbox in MATLAB Software, all the CPTs associated to bridge elements 

can be estimated. Table 4-4 presents the estimated CPT associated to the bridge main 

girder under the environmental level of “low”. The CPT describes the discrete-time 

Markov process that models the bridge element deterioration with the considerations of 

environmental effects and maintenance actions. 

Table 4-3. Relative condition percentages for the cross girder under the environmental 
level of “severe” over 20 years provided by bridge experts 

 

 

 

 

Time (year) 0 5 10 15 20 
Sound paint 100% 10% 5% 0 0 
Paint distress 0 15% 10% 5% 0 
Active corrosion 0 75% 75% 45% 15% 
Strength loss 0 0 10% 50% 85% 
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Table 4-4. The CPT of a main girder under the environmental level of “low” 

Environment
al condition 

levels 
Low 

Maintenance 
action No maintenance Maintenance 

Main girder 
self (t-1) 

Sound 
paint 

Paint 
distress 

Active 
corrosion 

Strength 
loss 

Sound 
paint 

Paint 
distress 

Active 
corrosion 

Strength 
loss 

Sound paint 0.9802 0 0 0 1 1 1 1 
Paint distress 0.0198 0.9019 0 0 0 0 0 0 

Active 
condition 0 0.0981 0.9445 0 0 0 0 0 

Strength loss 0 0 0.0555 1 0 0 0 0 
 

4.3.2 Prediction results of condition ratings 
With the accomplishment of CPTs estimation, the Model I predicts the condition 

evolution of the whole bridge as well as bridge hierarchies in the next 100 years. The 

operation is supported by the software GeNIe [56], which actually runs the inference 

algorithm for the condition ratings prediction. In this case study, because the current status 

of Albert Bridge shows no damage at all, condition ratings of all the bridge elements are 

assumed to be CS1 (“Sound paint” or “Good condition”). Two scenarios are conducted. 

First, a perfect maintenance action is simulated to bridge main girder at 50th year. This 

maintenance action renews the main girder into the condition “Sound paint”, aiming to 

demonstrate its propagation through the DOOBN model. Second, to show the Bayesian 

updating ability, condition ratings data in Table 4-5 are simulated to bridge cross girder 

over 20 years. The simulation accords to normal inspection procedures. With a five-year 

inspection interval, visual inspection is implemented to rate the conditions of all the bridge 

main girders. The calculated percentages over different condition ratings are listed in Table 

4-5. In addition, the effects of different environmental conditions are considered.   

Table 4-5. Simulated condition rating percentages for bridge cross girder 

Inspection time 

(year) 

5 10 15 20 

Sound paint (%) 100 50 0 0 

Paint distress (%) 0 50 50 0 

Active condition (%) 0 0 50 5 

Strength loss (%) 0 0 0 95 

Total (%) 100 100 100 100 
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By running the DOOBN model, the condition ratings probabilities of all the bridge 

hierarchies in next 100 years under different environmental conditions are acquired. In the 

first scenario, Figure 4-24 illustrates the evolution curve of the bridge main girder under 

the environmental level of “moderate” over 100 years. At 50th year, the condition rating of 

bridge main girder was renewed because of the maintenance activity. The condition ratings 

probabilities of the truss members and the flooring system under the environmental level of 

“moderate” over 100 years were presented by Figure 4-25 and Figure 4-26, respectively. 

According to the causal relationships modelled by DOOBN, the maintenance activity 

actually plays a role in the evolution of bridge truss members. However, owing to the 

deterioration of other bridge elements, bridge truss members are not renewed to be the 

condition of “Sound paint”. Conversely, bridge flooring system is immune from the 

maintenance activity because no conditional dependencies between the bridge main girder 

and the bridge flooring system are shown in Figure 4-21. The maintenance activity also has 

an impact on both bridge superstructure and the whole bridge. Figure 4-27 and Figure 4-28 

exhibit the sudden changes at 50th years happening in both condition evolutions of 

superstructure and the whole bridge under the environmental level of “moderate”, 

respectively. Nonetheless, the sudden changes become less obvious as the modelling level 

turns to be higher. The same trend can also be found in Figure 4-29 and Figure 4-30 when 

the environmental condition comes to “Severe”.  

In the second scenario, the simulated information in Table 4-5 was used to update the 

condition probabilities of the bridge cross girder. The original and updated evolution 

curves of the bride cross girder under the condition level of “Low” over 100 years are 

presented in Figure 31 and Figure 32, respectively. By comparison, we can see there are a 

large number of updates in condition probabilities of the bridge cross girder based on the 

observation. Moreover, because of causal relationships modelled by the DOOBN model, 

the effects of the observed information also propagate from the bridge elements to the 

whole bridge. Figure 33 and Figure 34 illustrate the original and updated condition 

probabilities of bridge flooring system under the environmental level of “Low” over 100 

years, respectively. Obvious differences between these two curves have been found. 

However, as other bridge elements also deteriorate, the effects of the observed information 

become weaker and weaker when it propagates to higher levels. The original and updated 

condition evolutions of “Albert Bridge” are shown in Figure 35 and Figure 36, 

respectively. It only subjects to minor updates based on the simulated information.  
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Based on the two simulated scenarios, the Model I for “Albert Bridge” has approved 

the feasibility and merits of the proposed DOOBN model in bridge performance 

prediction. Not only the condition probabilities of the whole bridge but also the condition 

probabilities of other bridge hierarchies (bridge elements) were predicted. The DOOBN 

model is able to account for observed information and deterioration dependencies from 

maintenance actions and environmental effects so that more accurate prediction results are 

achieved. Although the long-term prediction results are not compared with the ones from 

the conventional methods due to the limited condition data, the Bayesian updating ability 

can secure the continuing improvement of the prediction results with more available 

condition data. In the future, the prediction results, which provide the insight into future 

performance, can be utilised for optimal planning of maintenance actions. 

 

 

 

Figure 4-24. Condition states probabilities of bridge main girder over the next 100 years 
under the environmental level of “Moderate” and a perfect maintenance action at 50th 

year 
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Figure 4-25. Condition states probabilities of bridge truss members over the next 100 years 
under the environmental level of “Moderate” and a perfect maintenance action on 

bridge main girder at 50th year 

 

 

Figure 4-26. Condition states probabilities of bridge flooring system over the next 100 
years under the environmental level of “Moderate” and a perfect maintenance action on 

bridge main girder at 50th year 
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Figure 4-27. Condition states probabilities of bridge superstructure over the next 100 years 
under the environmental level of “Moderate” and a perfect maintenance action on 

bridge main girder at 50th year 

 

 

Figure 4-28. Condition states probabilities of Albert Bridge over the next100 years under 
the environmental level of “Moderate” and a perfect maintenance action on bridge 

main girder at 50th year 
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Figure 4-29. Condition states probabilities of bridge superstructure over the next 100 years 
under the environmental level of “Severe” and a perfect maintenance action on bridge 

main girder at 50th year 

 

 

Figure 4-30. Condition states probabilities of Albert Bridge over the next100 years under 
the environmental level of “Severe” and a perfect maintenance action on bridge main 

girder at 50th year 
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Figure 4-31. Original condition states probabilities of bridge cross girder over the next 100 
years under the environmental level of “Low”  

 

 

 

Figure 4-32. Updated condition states probabilities of bridge cross girder with observation 
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Figure 4-33. Original condition states probabilities of bridge flooring system over the next 
100 years under the environmental level of “Low” 

 

 

Figure 4-34. Updated condition states probabilities of bridge flooring system with 
observation  
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Figure 4-35. Original condition states probabilities of Albert Bridge over the next 100 
years under the environmental level of “Low” 

 

 

Figure 4-36. Updated condition states probabilities of Albert Bridge with observation  
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4.4 Summary 
The objective of this chapter is to develop a Model I based on DOOBNs for 

generally applicable condition states prediction. The proposed model is characterised by 

probabilistic modelling of bridge deterioration in hierarchical way, and is outlined through 

three steps: modelling consideration, DOOBN development and parameters estimation. 

The first step carries out a systematic analysis aiming to provide the necessary information 

to establish DOOBN conceptual model. Then the DOOBNs are built up from two parts: 

bridge hierarchies and bridge elements. The last step focuses on the estimation of the CPTs 

for the DOOBN model. To demonstrate the practicability and benefits of our proposed 

DOOBN model, an application is given to a steel truss railway bridge. The tailored Model 

I enables object oriented representation of bridge systems in a hierarchical way. As long as 

bridge deterioration over 100 years was concerned, the condition states evolutions from 

bridge elements to the whole bridge under different environmental conditions were all 

predicted. Two simulated scenarios were conducted to demonstrate that the Model I can 

take into account the observed information and deterioration dependencies from 

maintenance actions and environmental effects.  

Further investigation should be implemented to apply Model I for bridges in different 

BMSs. The ability to model deterioration dependencies among bridge elements has not 

been verified in practice. With regards to CPTs estimation, if historical bridge condition 

data are available, it is always better to rely on bridge condition data rather than expert 

knowledge. Prediction results of Model I should be compared with the ones from other 

methods. Further study can be dedicated to the extension of the proposed model. By 

expanding the DOOBN model with utility nodes and decision nodes, influence diagrams 

(IDs) can be formulated as a decision tool for bridge maintenance optimization [13]. 
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Chapter 5: Bridge health prediction in safety 
aspect 

5.1 Introduction 
In this chapter, Model II for bridge structural reliability prediction is proposed. In 

Section 5.2 the development is addressed in details. Model II is outlined through three 

steps: modelling consideration, DOOBN development and parameters estimation. The 

proposed model not only evaluates time-variant structural reliability of bridge elements 

based on limit state functions, but also allows hierarchically representation of a complex 

bridge system with the consideration of complex probabilistic relationship among bridge 

systems. The Model II possesses the Bayesian updating ability and enhances the 

computational efficiency of reliability updating. Therefore, information from observation, 

maintenance and environment can be easily incorporated to deal with uncertainties in 

bridge deterioration. To validate the Model II, an application of the proposed model based 

on the existing literature is given in Section 5.3 to demonstrate its practicability. 

5.2 Model II: using structural reliability 
Considering the requirements of versatility for different types of bridges and of 

extensibility for maintenance optimization, the proposed model is designed through three 

steps: modelling consideration, DOOBNs development and parameters estimation. Bridge 

systems are presented in a hierarchical way by DOOBNs so that the system structural 

reliability can be evaluated based on structural reliability of bridge elements. The 

advantage of the proposed model lies in the consideration of complex probabilistic 

dependencies among bridge system rather than only parallel and/or series logical 

relationship. Temporal deterioration processes of bridge elements are modelled to achieve 

time-variant structural reliability. With the ability to handle uncertainty, the Model II 

provides an alternative computational method for structural reliability evaluation. The 

following sections discuss the three modelling steps in details. 

5.2.1 Modelling consideration 
The first step aims to analyse bridge systems hierarchically to facilitate the 

development of DOOBN. The identification of bridge sub-systems and bridge components 
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as well as bridge elements, and the development of limit state functions of each bridge 

element are included in this step. 

5.2.1.1 Bridge hierarchical decomposition 

Structural reliability evaluation of bridge systems requires the identification of all the 

individual bridge elements that contribute to the safety of the entire structure. Similar to 

the bridge decomposition in Section 4.2.1.1, different bridge decomposition methods can 

be taken. The decomposition focuses on the identification of structural bridge hierarchies. 

As for the evaluation of structural reliability of bridge systems, the same bridge hierarchies 

located in different area are treated as different individual bridge hierarchies so that the 

whole estimation is based on individual bridge elements. 

5.2.1.2 Limit state functions development 

Regarding structural reliability analysis of bridge elements, limit state functions need 

to be developed at first. As mentioned in previous section, basic limit state functions are 

always in the form of Equation 2.8. Specialised limit state functions should be formulated 

in details for each bridge element. And there may be not only one failure mode for each 

bridge element. The development of limit state functions starts from the selection of 

essential failure modes. Table 5-1 lists essential failure modes normally considered for 

some typical bridge elements. Generally, shear and moment are most commonly 

considered failure modes. And the performance functions for moment and shear failures in 

ultimate limit states are shown by Equation 5-1 and Equation 5-2, respectively.  

𝑔𝑚 = 𝑀𝑢 − 𝑀𝑑𝑙 −𝑀𝑙𝑙                                              (5-1) 
where Mu, Mdl, Mll are moment capacity, moment due to dead load and moment due to live 

load, respectively. 

𝑔𝑠ℎ = 𝑉𝑢 − 𝑉𝑑𝑙 − 𝑉𝑙𝑙                                                (5-2) 

where Vu, Vdl, Vll are shear capacity, shear due to dead load and shear due to live load, 

respectively.  
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Table 5-1. Critical failure modes for typical bridge elements 

Structural elements Failure modes considered 

Deck/slab Moment/flexure 

Girder Moment, shear 

Bearing Expansion  

Piers cap Shear, positive flexure, negative flexure 

Columns  Top columns-crushing, bottom columns-crushing 

Footing  One-way shear, two-way shear, flexure 

 

Furthermore, because there are different kinds of uncertainties associated to 

structural reliability estimation, such as material strength, dimensions that cannot be easily 

measured, live loads and unit weight of materials, all the variables related to limit state 

functions should be treated as random variables and their distributions should be defined as 

well [47]. Such random variables can be found from some standard specifications and 

literature. Overall, limit state functions could be developed for each structural element with 

basic knowledge of structural mechanics. An instance for detailed development of limit 

state functions is given by Estes [47]. 

5.2.2 DOOBN development 
In the second step, a conceptual model based on DOOBNs is constructed from top 

level (the whole bridge system) to bottom level (bridge elements). The conceptual model 

consists of two parts: bridge system and bridge elements. The first part focuses on 

hierarchical representation of bridge systems through several bridge factors. The complex 

relationship rather than parallel and/or series logical relationship can be considered. The 

second part focuses on the calculation of structural reliability of bridge elements over time. 

The limit state functions and deterioration processes of bridge elements are both modelled 

in this part. 

5.2.2.1 OOBNs model of bridge hierarchies 

In this part, bridge systems are modelled based on OOBNs in a similar way to the 

modelling of bridge system in Section 4.2.2.1. Consider that a bridge system is 

hierarchically decomposed into a number of bridge hierarchies in L (L>2) levels with the 

whole bridge in the highest Level 1 and bridge elements in the lowest Level L. 

Additionally, each bridge factor is defined with two states: failed and safe. Suppose a 
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generic bridge hierarchy S in Level M (M<L) is further decomposed into N bridge sub-

hierarchies Bi (i =1, …, N) in Level M+1, particularly Bi denotes primary bridge elements 

when M+1 equals to L. Similarly, the object oriented representation of BNs (OOBNs) is 

employed so that each time modelling process concentrates on only one bridge hierarchy 

and will not be overwhelming by plenty of other bridge hierarchies. All the bridge sub-

hierachies related to this bridge hierarchy are encapsulated in one object. The modelling of 

this genetic bridge hierarchy S by means of OOBNs is given by Figure 5-1. Then the whole 

bridge system is constructed by connecting all the individual bridge hierarchies that are 

modelled by OOBNs from Level 1 to Level M. Since in each object the logic relationships 

have been modelled clearly, the whole OOBNs of bridge system can be modelled by 

linking all the individual OOBNs. 

 

Figure 5-1. OOBNs model of a generic bridge hierarchy C for structural reliability 
prediction 

By contrast with traditional series and/or parallel representation of bridge systems, 

the OOBNs model not only has the equal ability to model series and/or parallel 

relationship, but also possesses more flexibility to handle probabilistic relationship in a 

complex bridge systems rather than deterministic relationship only. For instance, one 

bridge superstructure consists of four girders, and the superstructure is assumed to be failed 

if three adjacent girders are failed. The series-parallel model for this superstructure is 

shown by Figure 5-2. Whereas the equivalent BN model of this superstructure as well as a 

CPT are displayed in Figure 5-3 and Table 5-2, respectively. The failure assumption of 

three adjacent girders is expressed by the CPT so that the conditional failure relationship 

between the superstructure and girders can be implemented in the BNs model. The CPT 

decodes the deterministic series-parallel relationship into probabilities that are equal to 1 or 

0. Therefore, in this case the BNs model is equivalent to the traditional series-parallel 

model. Moreover, because of this CPT, the BNs model can easily model other types of 

S

B1 B2 BN
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failure assumptions by changing the values of the CPT. For example, if this bridge 

superstructure is assumed to be failed only if two adjacent girders are failed, the BN model 

can be adapted by means of a new CPT in Table 5-3. 

 

 

Figure 5-2. An example of series-parallel models for structural reliability of a bridge 
superstructure  

 

 

 

Figure 5-3. BNs model of a bridge superstructure for structural reliability prediction 
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Table 5-2. CPT model with failure assumption of three adjacent girders 

 
 
 
 
 

Girder1 F S 

Girder2 F S F S 

Girder3 F S F S F S F S 

Girder4 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 

Failed(F) 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

 

 

Table 5-3. CPT with failure assumption of two adjacent girders 

 
 
 
 
 

Girder1 F S 

Girder2 F S F S 

Girder3 F S F S F S F S 

Girder4 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 

Failed(F) 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 

 
One feature of the OOBNs model outperforming the traditional series-parallel model 

is the ability to model complex probabilistic relationship. So far, deterministic relationship 

is commonly held. However, because a bridge system is a complex system being 

composed of many inter-related bridge elements, this representation is never verified 

favourably in practice. Taking the same superstructure as an example, as it is not sure if 

only one or two failed girders will certainly cause the failure of the superstructure or not, it 

may not be correct to hold the failure assumption that only three adjacent girders or more 

will make the superstructure failed. Additionally, the failure of the superstructure should be 

treated in a probabilistic way based on the failure probabilities of the four girders. Owing 

to the CPTs, the OOBNs model can easily deal with complex probabilistic relationships in 

bridge systems. By setting different probabilities between 0 and 1 in CPTs, different types 
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of probabilistic failure relationships can be modelled appropriately. For instance, a new 

CPT defined in Table 5-4 encodes the probabilistic failure relationship between bridge 

superstructure and the four bridge girders. The CPT accounts for all the combinations of 

girders’ failures and are filled with different values. For each combination, the sum of 

probabilities over “safe” and “failed” equals to 1. Based on this example, the OOBNs 

model has demonstrated the advantage over the traditional series-parallel model, and it is 

more suitable to model structural reliability of complex bridge systems. The specifications 

for further bridge elements modelling will be given below. 

Table 5-4. CPT with the consideration of probabilistic failure relationship 

 
 
 
 
 

Girder
1 F S 

Girder
2 F S F S 

Girder
3 F S F S F S F S 

Girder
4 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0.1 0.2 0.1 0.4 0.4 0.8 0 0.2 0.4 0.8 0.2 0.8 0.8 1 

Failed 
(F) 1 1 0.9 0.8 0.9 0.6 0.6 0.2 1 0.8 0.6 0.2 0.8 0.2 0.2 0 

 

 

 

 

5.2.2.2 DOOBNs model of bridge elements 

This part aims to model time-variant structural reliability of bridge elements by 

means of DOOBNs. The development of DOOBNs model consists of two sections: 

structural reliability and temporal deterioration processes. In the first section, as bridge 

elements may suffer from multiple failure modes, such as, fatigue, moment and shear, the 

structural reliability should be estimated based on multiple limit state functions. However, 

in this research, only ultimate limit state functions are considered. Other types of limit state 

functions can be modelled in a heuristic way by adapting the relevant variables in DOOBN 

model. In the second section, temporal deterioration processes of bridge elements made of 

reinforcement concrete and steel are modelled.  
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 Structural Reliability 

Consider a general bridge element E of which structural reliability is dependent on a 

set of limit state functions g={ g1,…,gn }. A network class of BNs shown in Figure 5-4 is 

adopted to express overall structural reliabilities of the bridge element E with different 

types of failure modes. Furthermore, consider a generic limit state function g shown in 

Equation 5-3 that generally describes all types of limit state functions. This limit state 

function g is expressed by the difference between bridge resistance R and bridge demand 

load L, where L is further composed of dead load Ldl, live load Lll, wind load Lwl and 

earthquake load Lel. Additionally, the bridge resistance R is modelled as the function fR of a 

set parameters F related to yield strength/stress of steel, steel reinforcement or concrete; a 

set of parameters A related to section area of steel reinforcement, web area, or section 

modulus; and a set of parameters λR related to uncertainty factors of bridge resistance. 

While dead load Ldl, live load Lll, wind load Lwl and earthquake load Lel are further 

modelled as function fdl of a set of parameters λdl related to uncertainty factors of dead 

load, function fll of a set of parameters λll related to uncertainty factors of live load, 

function fwl of a set of parameters λwl related to uncertainty factors of wind load, and 

function fel of a set of parameters λel related to uncertainty factors of earthquake load, 

respectively. 

                       𝑔 = 𝑅 − 𝐿 

                              = 𝑅 − (𝐿𝑑𝑙 + 𝐿𝑙𝑙 + 𝐿𝑤𝑙 + 𝐿𝑒𝑙) 

                    = 𝑓𝑅(𝐅,𝐀, 𝛌𝑅)− (𝑓𝑑𝑙(𝛌dl) + 𝑓𝑙𝑙(𝛌ll) + 𝑓𝑤𝑙(𝛌wl) + 𝑓𝑒𝑙(𝛌el))             (5-3)   

This generic limit state function can represent different limit states defined according 

to different failure modes. For example, in terms of flexure in a steel girder, by ignoring 

wind load and earthquake load, the limit state function is adapted to Equation 5-4 

                        𝑔 = 𝑅 − 𝐿 

                               = 𝑅 − (𝐿𝑑𝑙 + 𝐿𝑙𝑙) 

               = 𝑓𝑅�𝐅𝐲,𝐀𝒛, 𝛌�lexure� − (𝑓𝑑𝑙(𝛌�lexure_dl) + 𝑓𝑙𝑙(𝛌�lexure_ll))            (5-4) 

where Fy denotes parameters associated to steel yield strength; Az denotes parameters 

associated to plastic section modulus; λflexure denotes parameters associated to uncertainty 
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factors of flexure in girders; λflexure_dl and λflexure_ll denote parameters associated to 

uncertainty factors of dead load moment and live load moment, respectively. 

The generic limit state function is formulated as BNs in Figure 5-5. The adapted BNs 

for flexure limit state function in steel girders are shown in Figure 5-6. 

 

 

Figure 5-4. A network class of BNs for structural reliability of a general bridge element 
based on n different limit state functions 

 

 

 

Figure 5-5. BNs model of a generic limit state function 
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Figure 5-6. BNs model of a steel girder in flexure limit state function 

When a limit state function is modelled by means of BNs for structural reliability 

estimation, one thing has to bear in mind is that if one child node has many parent nodes, 

the computational efficiency of the whole BNs inference can be significantly affected or 

sometimes intractable. Therefore, it is really necessary to reduce the number of its parent 

nodes for each node as many as possible. One viable way for this problem is to introduce 

new nodes between the child variable and the parent variables. Each new node indicates 

part of the original child node and becomes new parent node of the original child node so 

that the number of parent nodes for original child node is decreased. Meanwhile, each 

added node will also have fewer parent nodes, which improves the computational 

efficiency dramatically. One example referring to this solution is given in Figure 4-2. 

 Temporal deterioration processes 

Modelling of temporal deterioration processes of bridge elements is addressed in this 

part. The live load is assumed to be time-invariant distribution. As in practice the permitted 

weight of truck for certain bridge can be controlled, it is reasonable to hold this 

assumption. Another reason is that as this study focuses on modelling of structural 

reliability based on DOOBN rather than modelling of live load, it is possible to simplify 

the problem by hold this assumption. The live load is a deterministic distribution calculated 

from the 50 years load of Nowak live load model [118]. Therefore, only deterioration of 

bridge resistance contributes to the time-dependent structural reliability of bridge elements.  

g (structural 
reliability)

R L
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According to the discussion in Section 3.2, the main cause of bridge resistance 

deterioration is due to corrosion, which may result in the reduction of cross-section area of 

reinforcing steel, plastic section modulus, shear web area and so on. In this research, the 

corrosion deterioration process is modelled as a discrete time process. According to 

different materials, Equation 3-7 and Equation 3-11 are employed as the basis for 

DOOBNs modelling of corrosion deterioration process in steel and reinforced concrete, 

respectively. The two corresponding DOOBNs models are illustrated in Figure 5-7 and 

Figure 5-8, respectively. In Figure 5-7, C, as an output, is corrosion loss (corrosion 

penetration depth) after t years; A is the corrosion loss after one year, and B is a regression 

coefficient numerically. In Figure 5-8, Tcorr denotes the corrosion initiation time; Rcorr 

denotes the corrosion rate; D(t) denotes the diameter of reinforced steel bar at time t. 

Additionally, the node “corrosion indication” is discrete variable with two states “Yes” and 

“No”.  

 

 

Figure 5-7. DOOBN modelling for corrosion deterioration process in bridge elements 
made of steel 

In both cases, the nodes t-1 and t represent time variables in two consecutive time 

slices and are assigned as input and output, respectively. Here, t and t-1 are defined as 

discrete time variables. The time variable t is conditional on previous time variable t-1. By 

introducing the time variable t, the commonly held Markovian assumption in most of BNs 

applications is released for structural reliability modelling in this research. The time-
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variant corrosion deterioration is implemented by connecting the object of corrosion 

deterioration in each time slice. 

 

 

 

Figure 5-8. DOOBN modelling for corrosion deterioration process in bridge elements 
made of reinforced concrete 

To ensure the correctness of DOOBNs modelling for bridge elements’ real temporal 

deterioration, available event information about maintenance intervenes, environmental 

effects and observation information should be taken into consideration as well. As these 

factors are independent of each other and the past, a set of nodes standing for maintenance 

actions, environment levels and observations can be individually added in each time slice 

according to data availability. For instance, the extended DOOBNs models for corrosion 

deterioration process in steel and reinforced concrete, which include all types of event 

information, are displayed in Figure 5-9 and Figure 5-10, respectively. For bridge elements 

made of steel, different maintenance actions have effects on corrosion loss and time 

variable t. The maintenance intervene variable is defined with several states according to 

available maintenance actions. For instance, replacement and perfect repair remove 

corrosion loss and reset the time variable t to zero. Minimal repair and no maintenance 

leave corrosion loss the same as before. Imperfect maintenance relieves the corrosion loss 

and resets time variable t to early time value. The probabilities over all the possible time 
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value can be used to represent imperfect maintenance actions. Furthermore, observation 

variable accounts for corrosion information obtained from visual inspection, NDT and 

monitoring techniques. This observation could be a discrete random variable with two 

states “corrosion” and “no corrosion” or a continuous random variable, for instance, a 

measured corrosion penetration depth. In the previous case, a probability of detection (PoD) 

model can be adopted to characterize the observation information, in the latter case, 

measurement error can be utilised to characterize the observation information. With 

regarding to environmental variable in Figure 5-9, the effects of different environmental 

levels on variables A and B should be defined. For example, two environmental states 

“urban environment” and “rural environment” can be simply used to address the influence 

of environments on variables A and B [8]. 

Similarly, in Figure 5-10, the maintenance intervene variable is also defined with 

available maintenance actions, which renew the diameter of reinforced steel bar and time 

variable t to some extents. Additionally, observation information reflecting real corrosion 

deterioration processes inside concrete is characterised as well to facilitate Bayesian 

updating of related corrosion variables. For corrosion deterioration in reinforced concrete, 

the corrosion initiation time and corrosion rate are supposed to be largely dependent on 

environmental factors. To address the effects of environmental factors, one example is that 

three environmental states “Low”, “Medium” and “High” could be adopted to express the 

environmental effects [152].  

 

Figure 5-9. OOBN modelling for corrosion deterioration process in steel considering 
maintenance intervene, environmental effects and observation 
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Figure 5-10. OOBN modelling for corrosion deterioration process in reinforced concrete 
considering maintenance actions, environmental effects and inspection results 

By now, the modelling of structural reliability and temporal deterioration processes 

are completed. These two parts are connected so as to present time-variant structural 

reliability. The connection is implemented through a set of variables A that are conditional 

on variable C in Figure 5-9 or variable D(t) in Figure 5-10 depending on the material used. 

For time-variant structural reliability, DOOBNs models of a generic limit state function 

with regarding to steel and reinforced concrete are displayed in Figure 5-11 and Figure 5-

12, respectively. Finally, the output of DOOBNs models of bridge elements are connected 

to the corresponding bridge elements modelled in OOBNs model of bridge system so as to 

implement time-variant structural reliability of bridge system. 
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Figure 5-11. DOOBNs model for time-variant structural reliability based on a general limit 
state function in steel 

 

 

 

Figure 5-12. DOOBNs model for time-variant structural reliability based on a general limit 
state function in reinforced concrete
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5.2.3 Parameters estimation 
The final step of the proposed model is to parameterise the conceptual DOOBN 

model by means of estimation of conditional probabilities tables (CPTs) and priori 

probabilities of root nodes, which could be the most difficult in the whole modelling 

process. Overall, plenty of probabilities need to estimate so that the whole network 

functions well and renders a global distribution of bridge system health. Since no single 

method is adaptable and is able to fulfil all the estimation, it needs combine all different 

kinds of data sources. However, to complete the estimation, it is also necessary to 

discretize continuous variables into discrete variables. Due to the limitation of current 

inference algorithms and slow convergence rate, continuous variables cannot be dealt with 

efficiently. Furthermore, current inference algorithms cannot handle the situation 

adequately that continuous parent variables have discrete children variables, which actually 

happens in this research. As a result, continuous variables should be replaced by a finite 

number of discrete states so that CPTs and priori probabilities based on discrete states can 

be derived.  

5.2.3.1 CPTs and priori probabilities estimation 

 Bridge hierarchies 

The CPTs in bridge systems part can be straightforwardly estimated based on 

traditional series and/or parallel representation of bridge systems. However, if probabilistic 

relationship is considered, CPTs should be evaluated through statistical data and expert 

knowledge. When a number of historical failure data about bridge systems are available, 

CPTs are filled in based on these data preferentially. Taking the general bridge hierarchy S 

in Figure 5-1 as an example, given a certain combination of N parent variables Bi 

(i=1,…,N), the conditional failure  probability of S under this combination is estimated by  

𝑝𝑆
(𝐹) = 𝑛𝑆

(𝐹)

𝑛𝑆
(𝐹)+𝑛𝑆

(𝑆)                                                      (5-5) 

where 𝑛𝑆
(𝐹) is the observed number of failure events under this combination; 𝑛𝑆

(𝑆)  is the 

observed number of safe events under this combination. Nonetheless, this kind of data 

always suffers from insufficiency in practice. As a result, expert knowledge is utilised as it 

is quite straightforward for CPTs estimation. CPTs are filled in based on daily obtained 

knowledge of bridge experts and bridge engineers. The elicitation processes introduced in 

section 4.2.3.2, can be also applied here.  
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 Bridge elements 

In this part, parameters estimation mainly relies on the existing literature and 

deterministic equations. Most priori probabilities can be obtained from the existing 

literature directly. However, some priori probabilities, for example, corrosion initiation 

time, cannot be obtained directly. In this case, Monte Carlo simulation based on physical 

corrosion initiation equation like Equation 3-9 can be used to calculate the simulated priori 

probabilities. The simulation for corrosion initiation time is shown in the Appendix D. 

Moreover, priori probabilities of root nodes related to bridge demand load are calculated 

based on Novak’s live load [118] or AASHTO specification [2].  

In this research, deterministic equations are largely used to estimate the CPTs of 

DOOBNs model that is built for structural reliability estimation of bridge elements. Since 

modelling of structural reliability is built based on deterministic limit state functions, CPTs 

could be derived from the functions directly. In other words, the relationship described by 

the deterministic equations, is directly encoded into CPTs. Moreover, Equation 3-7 and 

Equation 3-10 describing corrosion in bridge deterioration are utilised to estimate the CPTs 

related to modelling of temporal deterioration processes. As deterministic equations are 

formulated based on objective information, subjective judgement involved in expert 

knowledge could be avoided.  

In addition, miscellaneous knowledge is utilised as well. For instance, maintenance 

variables have a dominant influence on the bridge elements deterioration. By defining the 

impacts of different maintenance activities on the time variable t, corrosion loss C or 

diameter of reinforced steel, the CPTs related to maintenance variables can be filled in 

partially. Normally, replacement and perfect repair remove bridge resistance loss caused 

by corrosion and reset the time variable t to zero. Minimal repair and no maintenance leave 

bridge deterioration as the same as before. Imperfect maintenance relieves the bridge 

deterioration and resets time variable t to early time value. The probabilities over all the 

possible discrete time values and deterioration variables can be used to represent imperfect 

maintenance actions. Also, CPTs related to environmental variables are estimated based on 

the effects of different environmental states. For instance, under different environmental 

states both variables A and B in Equation 3-7 are assigned with different probability 

distributions according to the existing literature [8]. Similarly, corrosion initiation time in 

Equation 3-10 is supposed to result in different simulated initiation time distributions based 

on different deterioration parameters under different environmental states [152]. In light of 
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observations, CPTs can be estimated based on the accuracy of inspection methods. For 

observations obtained from NDT and monitoring techniques, CPTs can be estimated from 

probability of detection (PoD) model and measurement accuracy, respectively. Finally, 

shown in Figure 5-4, overall structural reliability of a bridge element is conditional on 

structural reliabilities in multiple failure modes. As each failure mode plays the same role 

in bridge safety, series relationship among different failure modes is held for CPT 

estimation. 

5.2.3.2 Discretization of continuous variables 

In the conceptual DOOBNs model, most nodes in bridge elements part are 

continuous variables that follow continuous distributions. To facilitate the inference 

algorithms, discretization has to be carried out sequentially from parent nodes to children 

nodes. In this research univariate discretization is chosen simply because bivariate 

discretization is incompatible with BNs. In addition, the same discretization scheme is 

utilised for all the time slices. To represent a continuous distribution as several discretized 

intervals, the continuous distribution needs to truncate at both ends. The truncating points 

are rather important for the discretization accuracy. In practice, it has been learned from 

empirical knowledge that truncating a continuous distribution at five standard deviations 

from the mean generates a reasonable approximation. In Section 5.3, a large number of 

continuous distributions truncated based on this rule with more or fewer improvements are 

given. Before formal discretization is implemented to a coutinous distribution, another 

issue is to deal with the tails of the distribution. With regarding to structural reliability, the 

probability mass of the tail is lumped into the outermost state of the probable value range 

as recommended [55]. The probable values range of continuous nodes can be identified 

based on truncated probability distributions of variables concerned. Moreover, there are 

also some continuous nodes of which distributions are unknown. For those nodes, 

simulation techniques, such as, MCS can be used to evaluate the probable value range 

based on limit state functions. Other information, such as, literature, empirical and 

common knowledge can be are used for those nodes as well. For instance, the value of 

reinforced steel should be between zero and its maximum diameter.  

Next, discretization interval length should be determined carefully within the 

probable values range to make sure that the discretized distribution meets the requirement 

of minimum accuracy for a continuous distribution. Interval length could be equal length 

or equal frequency as well as other alternatives. The choice of certain discretization 
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interval length is determined by the objectives of study and types of continuous 

distributions, such as, symmetric distributions or asymmetric distributions. In this research, 

equal length interval is mostly chosen, since it has been approved as a simple and effective 

way to discretization [149]. The number of discretization intervals is crucial for accurate 

results and should be chosen under the optimal balance between accuracy and speed. 

Normally, the important variables need more discretization intervals so that important 

information content can be captured. To keep the discretization step as simple as possible, 

we will not consider achieving the optimal number of discretization intervals in this 

research. However, considering the importance, different numbers of discretization 

intervals for different nodes can be found in Section 5.3.  

Afterwards, for root nodes, the probability of each discrete state can be easily 

assigned with cumulative distribution function (CDF) over the corresponding discretization 

interval. For example, if a root continuous variable r is discretized into n exclusive discrete 

states 𝑟(𝑖) (i=1,…,n), the probability of each discrete state 𝑝(𝑟(𝑖)) is expressed as follows: 

𝑝(𝑟(𝑖)) = 𝐹𝑟(𝑟𝑢𝑏
(𝑖))− 𝐹𝑟(𝑟𝑙𝑏

(𝑖))                                             (5-6) 

where Fr is the cumulative distribution function (CDF) of r; 𝑟𝑢𝑏
(𝑖) and 𝑟𝑙𝑏

(𝑖)  are the upper 

bound and lower bound of the discrete state 𝑟(𝑖), respectively.  

However, for other nodes, it is rather difficult to estimate the probability of each 

discrete state. A detailed discussion about discretization for continuous random variables 

can be found in the paper [149]. Now, we consider a general variable X that is discretized 

into m exclusive discrete states 𝑥(𝑗) (j=1, …, m). The variable X has a set of parent 

variables  𝐘 = {y𝟏, y𝟐, … , y𝑙} , (l=1,…, L). Owing to the sequential discretization from 

parent nodes to children nodes, all the parent variables Y have been discretized into 

𝐘(𝑘) = {𝑦1
(𝑘1),𝑦2

(𝑘2), … ,𝑦𝑙
(𝑘𝑙)}, ( k1=1,…,K1; k2=1,…,K2;…; kl=1,…,Kl). For the continuous 

variable X, the probability of each discrete state 𝑥(𝑗) conditional on 𝐘(𝑘) is expressed as 

follows: 

𝑝(𝑥(𝑗)|𝐘(𝑘)) = 𝐹𝑋′ (𝑥𝑢𝑏
(𝑗)|𝐘(𝑘)) − 𝐹𝑋′ (𝑥𝑙𝑏

(𝑗)|𝐘(𝑘))                            (5-7) 

where 𝐹𝑋′  is the cumulative distribution function (CDF) of X conditional on 𝐘(𝑘); 𝑥𝑢𝑏
(𝑗) and 

𝑥𝑙𝑏
(𝑗)  are the upper bound and lower bound of the discrete state  𝑥(𝑗) , respectively. 

Additionally, 𝐹𝑋′  can be estimated by  
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𝐹𝑋�𝑋�𝐘(𝑘)� = ∫ 𝐹𝑋(𝑋|𝐘)𝐘(𝑘+)

𝐘(𝑘−) 𝑓𝑌�𝐘�𝐘(𝑘)�𝑑𝐘                             (5-8) 

where 𝐹𝑋 is the original cumulative distribution function (CDF) of X conditional on Y; 

𝐘(𝑘+) and 𝐘(𝑘−)  denote the upper bounds and lower bounds of all the discrete state 

components in 𝐘(𝑘) , respectively; 𝑓𝑌�𝐘�𝐘(𝑘)� is the original probability density function 

(PDF) of Y, 𝑓𝑌(𝐘), truncated in the interval 𝐘(𝑘−) < 𝐘(𝑘) < 𝐘(𝑘+). 

To solve the above equation, we must know 𝑓𝑌(𝐘) at first. However, normally, as 

only conditional distribution is defined in BNs, some assumptions, such as, Gaussian 

distribution and exponential distribution, have to be made for 𝑓𝑌(𝐘) so as to facilitate the 

calculation. Specifically, when all the parent variables Y are root variables, 𝑓𝑌�𝐘�𝐘(𝑘)�  

can be easily obtained since 𝑓𝑌(𝐘)  is already known. Nonetheless, in practice, the 

introduced method is not often applied. Instead, the more efficient sampling algorithms, 

such as, likelihood sampling, logic sampling and backward sampling, are used by current 

commercial BNs softwares to derive discrete CPTs. The sampling techniques can be easily 

implemented and meanwhile provide reasonable accuracy at relative fast computational 

speed.  

5.3 Case study of Bridge E-17-AH: structural 
reliability prediction 

The proposed DOOBNs model for bridge structural reliability prediction is applied to 

a highway bridge “E-17-AH” (Figure 5-13) located in Denver, Colorado. The bridge has 

three equal length spans and is mainly made of reinforced concrete. More information 

about this bridge can be found in the PhD thesis [47]. Since the bridge has been modelled 

for system structural reliability prediction by using traditional methods in the previous 

study [47], some information presented in that study are directly utilised for this 

application. A customized DOOBNs model is developed to predict the structural reliability 

of this bridge over 50 years. The Comparisons between the DOOBNs model and traditional 

methods, for instance, FORM, are given to demonstrate the accuracy. Moreover, the 

advantages of proposed DOOBNs model outperforming the traditional method are also 

illustrated in this application.  
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Figure 5-13. Bridge E-17-AH, Denver, Colorado 

5.3.1 DOOBNs development of Bridge E-17-AH for bridge 
structural reliability 

5.3.1.1 System analysis of Bridge E-17-AH 

On behave of DOOBNs model development, the structure of Bridge E-17-AH need 

to analyse at first. In the previous study, a series-parallel model has been presented by 

Estes, which identifies all the bridge structural elements systematically [47]. To reduce the 

computation burden owing to a large number of bridge elements and to keep this 

application as simple as possible, the same simplified series-parallel model (Figure 5-14) is 

chosen as the basis for DOOBNs model with the assumption that the failure of bridge 

system requires the failure of three adjacent girders [47]. Basically, the bridge structure is 

composed of major bridge elements, including slab, exterior Girder 1, interior-exterior 

Girder 2, interior Girders 3 to 5, pier and column footing.  

 

Figure 5-14. Simplified series-parallel representation of Bridge E-17-AH[47] 
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Furthermore, to estimate bridge structural reliability, limit state functions for each 

identified bridge element are necessary to formulate. The previous study had displayed 

limit state functions for all the major failure modes of each bridge element. Generally, slab 

and column footing suffer from flexure failure mode; pier suffers from shear failure mode; 

girders suffer from both failure modes. The two limit state functions for bridge slab and 

exterior Girder 1 in shear are shown as follows [47]:  

Slab flexure 

𝑔𝑠𝑙𝑎𝑏 𝑓𝑙𝑒𝑥 = 𝛾𝑚𝑓𝑐 �0.349𝜆𝑟𝑒𝑏𝑎𝑟𝑓𝑦𝜆𝑑𝑒𝑓𝑓 −
0.3844𝜆𝑟𝑒𝑏𝑎𝑟2 𝑓𝑦2

244.8𝑓𝑐′
� − 0.137𝜆𝑎𝑠𝑝ℎ 

−0.471𝜆𝑐𝑜𝑛𝑐 −  4.27𝜆𝑡𝑟𝑘                                                                       (5-9) 

where γmfc is uncertainty factor for concrete flexure; λrebar is uncertainty factor for 

reinforcing steel area; fy is yield stress of reinforcing steel; λdeff is effective depth of 

reinforcing steel; 𝑓𝑐′  is 28 day yield strength of concrete; λconc is uncertainty factor for 

weight of concrete on deck; λasph is uncertainty factor for weight of asphalt on deck; λtrk is 

uncertainty factor for HS-20 truck in analysis of deck. 

Exterior Girder 1 in shear 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟1  𝑠ℎ𝑒𝑎𝑟 = 10.38𝐹𝑦𝛾𝑚𝑠𝑔 − (13.27𝜆𝑐𝑜𝑛𝑐 + 3.4𝜆𝑠𝑡𝑒𝑒𝑙 + 28.33𝑉𝑡𝑟𝑘−𝑒𝐷𝐹𝑒𝐼𝑏𝑒𝑎𝑚) (5-10) 

where Fy is yield strength of steel in girders; γmsg is model uncertainty factor regarding to 

shear in girders. λconc is uncertainty factor for weight of concrete on deck; λsteel is 

uncertainty factor for weight of steel girders; Vtrk-e uncertainty factor for live load shear in 

exterior girder; DFe is uncertainty for live load distribution of exterior girders; Ibeam 

uncertainty factor for impact on girders. The other limit state functions for all the other 

bridge elements can be found in Appendix B.  

Furthermore, to take into account temporal bridge deterioration owing to corrosion, 

physical deterioration equations, such as, Equation 3-7 and Equation 3-10, are integrated 

into the limit state functions. Additionally, to build up DOOBNs model if one child node 

has many parent nodes, the estimation of CPTs would be intractable and quite time 

consuming. Therefore, to facilitate the CPTs estimation in this example, the original limit 

state functions are rewritten into several new equations with newly introduced variables. 

Equation 5-9 is rewritten as follows: 
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Slab flexure 

𝑔𝑠𝑙𝑎𝑏𝑓𝑙𝑒𝑥 = 𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑠𝑙𝑎𝑏  𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 − (𝑀𝑠𝑙𝑎𝑏 𝑑𝑙 + 𝑀𝑠𝑙𝑎𝑏  𝑙𝑙) (5-11) 

𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝛾𝑚𝑓𝑐(𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 1 − 𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 2)                  (5-12) 

𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 1 = 6.75𝐴𝑡 𝑠𝑙𝑎𝑏𝑓𝑦𝜆𝑑𝑒𝑓𝑓
12

                                      (5-13) 

𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 2 = 𝐴𝑡 𝑠𝑙𝑎𝑏
2 𝑓𝑦2

244.8𝑓𝑐′
                                             (5-14) 

𝐴𝑡 𝑠𝑙𝑎𝑏 = 2𝜋𝐷𝑠𝑙𝑎𝑏
2 𝜆𝑟𝑒𝑏𝑎𝑟
4

                                                (5-15) 

𝐷𝑠𝑙𝑎𝑏(𝑡) = 𝐷𝑠𝑙𝑎𝑏(0)− 𝑅𝑐𝑜𝑟𝑟 𝑠𝑙𝑎𝑏(𝑡 − 𝑇𝑐𝑜𝑟𝑟 𝑠𝑙𝑎𝑏)                      (5-16) 

𝑀𝑠𝑙𝑎𝑏 𝑑𝑙 = 0.137𝜆𝑎𝑠𝑝ℎ + 0.471𝜆𝑐𝑜𝑛𝑐                                 (5-17) 

𝑀𝑠𝑙𝑎𝑏  𝑙𝑙 = 4.26𝜆𝑡𝑟𝑘                                                (5-18) 

where 𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 is the flexure capacity of the slab; 𝐿𝑠𝑙𝑎𝑏  𝑚𝑜𝑚𝑒𝑛𝑡 is the flexure demand 

for the slab; 𝑀𝑠𝑙𝑎𝑏 𝑑𝑙 is the dead load demand in flexure for the slab; 𝑀𝑠𝑙𝑎𝑏  𝑙𝑙 is the live 

load demand in flexure for the slab; 𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 1 and 𝑅𝑠𝑙𝑎𝑏 𝑚𝑜𝑚𝑒𝑛𝑡 2 are two parts of total 

flexure capacity of slab; 𝐴𝑡 𝑠𝑙𝑎𝑏  is the temporal changed cross section area of reinforced 

steel in slab; 𝐷𝑠𝑙𝑎𝑏(𝑡) is the temporal changed diameter of single reinforced steel bar in 

slab; 𝑅𝑐𝑜𝑟𝑟 𝑠𝑙𝑎𝑏   is the corrosion rate in slab; 𝑇𝑐𝑜𝑟𝑟 𝑠𝑙𝑎𝑏  is the corrosion initiation time in 

slab. 

For steel girders, if corrosion is assumed to penetrate the top and sides of the bottom 

flanges in addition to each side of the web, new equations based on Equation 5-10 for 

time-variant structural reliability are given by 

Exterior Girder 1 in shear 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟                            (5-19) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟 = 0.58𝐹𝑦𝛾𝑚𝑠𝑔𝑑𝑤𝑡𝑤 = 18.2062𝐹𝑦𝛾𝑚𝑠𝑔 �0.57− 𝑑𝑐𝑜𝑟𝑟1
12700

�          (5-20) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙 + 𝑉𝑔𝑖𝑟𝑑𝑒𝑟1  𝑙𝑙                              (5-21)  

𝑑𝑐𝑜𝑟𝑟 1 = 𝐴1𝑡𝐵1                                                  (5-22)  

𝑉𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙 = 13.27𝜆𝑐𝑜𝑛𝑐 + 3.4𝜆𝑠𝑡𝑒𝑒𝑙                                  (5-23)  
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𝑉𝑔𝑖𝑟𝑑𝑒𝑟1 𝑙𝑙 = 28.33𝑉𝑡𝑟𝑘−𝑒𝐷𝐹𝑒𝐼𝑏𝑒𝑎𝑚                                  (5-24) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟  is the shear capacity of exterior girder 1; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟1 𝑠ℎ𝑒𝑎𝑟  is the shear 

demand for exterior girder 1; 𝑑𝑐𝑜𝑟𝑟1  is the corrosion loss of exterior girder 1 at the 

considered time; 𝐴1  and 𝐵1  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑉𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙 and 𝑉𝑔𝑖𝑟𝑑𝑒𝑟1  𝑙𝑙  are dead load and live load demand in 

shear for girder 1. In the same way, all the other limit states functions are rewritten for 

time-variant structural reliability shown in Appendix A.  

5.3.1.2 DOOBNs model of Bridge E-17-AH 

Based on the system analysis, conceptual DOOBNs model is set up in this part. First, 

in terms of the whole bridge system, because of the simplified series-parallel model 

(Figure 5-14), the bridge system OOBNs model for Bridge E-17-AH can be easily built up 

in Figure 5-15, where the nodes with different colours centred denote three hierarchical 

levels of Bridge E-17-AH. The next step is to further model time-variant structural 

reliability of each bridge element based on DOOBNs. Taking the slab and exterior Girder 1 

as examples, the modelling consists of two components: structural reliability model and 

temporal deterioration model. According to the identified variables in limit state function 

of slab flexure, the BNs model for slab structural reliability in flexure is formulated in 

Figure 5-16. Moreover, without any information about maintenance intervene, 

environmental effects and observation, the DOOBN model of slab for temporal 

deterioration processes is shown in Figure 5-17. As indicated by Equation 5-15, the node 

“At (slab)” is conditional on the node “D (slab)_T”, so the DOOBNs model of slab for 

time-variant structural reliability is achieved by connecting these two nodes. In Figure 5-18, 

the two red dash lines indicate temporal relationship between two nodes, which enable 

dynamic evolution to facilitate time-variant estimation of structural reliability. Additionally, 

the nodes with white colour centred signify the variables related to bridge corrosion 

deterioration; the node with black colour centred signifies the goal of slab structural 

reliability. 
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Figure 5-15. OOBNs model of the whole bridge system for structural reliability 

 

 

 

 

Figure 5-16. BNs model for slab structural reliability in flexure 
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Figure 5-17. DOOBN model of slab for temporal deterioration processes  

 

 

 

Figure 5-18. DOOBN model of slab for time-variant structural reliability 
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Time (slab)_T Corrosion indication (slab)
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In light of exterior Girder 1, one thing has to be born in mind is that Girder 1 suffers 

from both flexure and shear. Based on the revised limit state functions, the BNs models for 

structural reliability without the consideration of temporal deterioration in both failure 

modes are formulated in Figure 5-19 and Figure 5-20, respectively. To address corrosion 

deterioration process, DOOBNs model is given as well (Figure 5-21). According to 

Equation 5-20 and B-12, both flexure and shear capacity is dependent on corrosion loss. As 

a result, by linking the temporal deterioration component and structural reliability 

component as well as some common variables, such as, Fy, the DOOBNs model of 

exterior Girder 1 is described by Figure 5-22. Overall, the structural reliability of Girder 1 

is dependent on its both flexure structural reliability and shear structural reliability. In a 

similar way, the DOOBNs model of other bridge elements are also displayed from Figure 

5-23 to Figure 5-27. For column footing, as the deterioration are assumed to be ignored 

compared with other elements [47], the BNs model is presented in Figure 5-28. The 

outputs of all the these bridge elements models are used as inputs of OOBNs model in 

Figure 5-15 to estimate time-variant structural reliability of the whole bridge system. 

 

Figure 5-19. BNs model for Girder 1 structural reliability in shear 

 

Figure 5-20. BNs model for Girder 1 structural reliability in flexure 



126 

126 Chapter 5: Bridge health prediction in safety aspect 

 

 

 

Figure 5-21. DOOBNs model of Girder 1 for temporal deterioration processes  

 

 

 

Figure 5-22. DOOBNs model of Girder 1 for time-variant structural reliability 

Time (girder 1)_T-1

Time (girder1)_T

B1

dcorr1

A1

Corrosion deterioration T=2Corrosion deterioration T=1
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Figure 5-23. DOOBNs model of pier for time-variant structural reliability 

 

 

Figure 5-24. DOOBNs model of interior-exterior Girder 2 for time-variant structural 
reliability 
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Figure 5-25. DOOBNs model of interior Girder 3 for time-variant structural reliability 

 

 

 

 

Figure 5-26. DOOBNs model of interior Girder 4 for time-variant structural reliability 
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Figure 5-27. DOOBNs model of interior Girder 5 for time-variant structural reliability 

 

 

Figure 5-28. BNs model of column footing for time-variant structural reliability 

5.3.1.3 Parameters estimation for developed DOOBNs model 

After the conceptual DOOBNs model of Bridge E-17-AH is completed, the CPTs 

and priori probabilities have to be filled out. According to the data availability in this 

application, parameters estimation is carried out largely based on the existing literature and 

the limit state equations. Moreover, each continuous node of DOOBNs model is 
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discretized into a finite number of discrete states to facilitate the implementation of 

inference algorithms.   

 Assignment of CPTs and priori probabilities  

For comparison purpose, CPTs associated to bridge hierarchies are easily estimated 

from traditional series-parallel relationship and the assumption that the failure of bridge 

system requires the failure of three adjacent girders. Tables 5-5, 5-6 and 5-7 illustrate the 

estimated CPTs, where we can see that the CPTs decode the deterministic series-parallel 

relationship into probability of either 1 or 0. Additionally, Table 5-8 shows the CPT based 

on the failure assumption of two adjacent girders. However, all these CPTs express 

deterministic relationship that is never verified in practice, and it is more reasonable to 

hold probabilistic relationship for bridge systems. For this application, since neither 

statistical data nor expert knowledge is available, the accurate estimation of probabilistic 

CPTs is impossible. To demonstrate the advantages and flexibility of proposed DOOBNs 

model, hypothetical CPTs are used to represent the probabilistic relationship in bridge 

systems. Tables 5-9 and 5-10 display the hypothetical CPTs considering probabilistic 

failure likelihood. In Table 5-9, the concern is that the deterioration of column footing can 

be ignored compared with the deterioration of pier, therefore, the failure of column footing 

plays less important role in the failure of bridge substructure. While, in Table 5-10, the 

concern is about how the failures of different girders contribute to the failure of the whole 

superstructure. To consider the real case, different probabilities in the interval of value [0, 

1] are assigned. 

 

Table 5-5. CPT of the whole bridge based on series-parallel relationship 

 
 
 
 
 

Deck F S 

Superstructure F S F S 

Substructure F S F S F S F S 

The whole 
 bridge 

Safe(S) 0 0 0 0 0 0 0 1 

Failed(F) 1 1 1 1 1 1 1 0 
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Table 5-6. CPT of bridge substructure based on series relationship 

 
 
 
 
 

Column footing F S 

Pier F S F S 

Bridge  
substructure 

Safe(S) 0 0 0 1 

Failed(F) 1 1 1 0 

 

Table 5-7. CPT of bridge superstructure with the failure assumption of three adjacent 
girders 

 
 
 
 

 

Girder1 F 

Girder2 F S 

Girder3 F S F S 

Girder4 F S F S F S F S 

Girder5 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 

Failed(F) 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 

 
Girder1 S 

Girder2 F S 

Girder3 F S F S 

Girder4 F S F S F S F S 

Girder5 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 

Failed(F) 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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Table 5-8. CPT of bridge superstructure with the failure assumption of two adjacent girders 

 
 
 
 

 

Girder1 F 

Girder2 F S 

Girder3 F S F S 

Girder4 F S F S F S F S 

Girder5 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 

Failed(F) 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 

 
Girder1 S 

Girder2 F S 

Girder3 F S F S 

Girder4 F S F S F S F S 

Girder5 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 

Failed(F) 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 

 

 

Table 5-9. CPT of bridge substructure with the consideration of failure uncertainty 

 
 
 
 
 

Column footing F S 

Pier F S F S 

Bridge  
substructure 

Safe(S) 0 0.8 0.2 1 

Failed(F) 1 0.2 0.8 0 
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Table 5-10. CPT of bridge superstructure with the consideration of failure uncertainty 

 
 
 
 

 

Girder1 F 

Girder2 F S 

Girder3 F S F S 

Girder4 F S F S F S F S 

Girder5 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0 0 0.1 0.2 0.2 0.2 0 0.2 0.3 0.4 0.2 0.4 0.4 0.5 

Failed(F) 1 1 1 1 0.9 0.8 0.8 0.8 1 0.8 0.7 0.6 0.8 0.6 0.6 0.5 

 
Girder1 S 

Girder2 F S 

Girder3 F S F S 

Girder4 F S F S F S F S 

Girder5 F S F S F S F S F S F S F S F S 

Bridge 
superstructure 

Safe(S) 0 0 0.2 0.2 0.2 0.4 0.4 0.5 0 0.2 0.4 0.5 0.2 0.5 0.5 1 

Failed(F) 1 1 0.8 0.8 0.8 0.6 0.6 0.5 1 0.8 0.6 0.5 0.8 0.5 0.5 0 

 

With regarding to the CPTs associated to bridge elements, deterministic equations 

used for the conceptual model are directly utilised to elicit the parameters. Since most of 

the original variables are continuous variables, discretization is necessary for CPTs in 

discrete states so as to enhance inference computational efficiency. Moreover, the prior 

parameters of each bridge element can be found from the PhD thesis [47] and the existing 

literatures [8, 47, 154]. For instance, all the available probabilistic parameters of slab are 

summarised in Table 5-11. The available parameters of other bridge elements are listed in 

Appendix B. To estimate the priori probabilities of corrosion initiation time of slab and 

pier, the MCS based on physical equations is implemented, respectively. The detailed 
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codes by means of MATLAB and the values of the parameters related to corrosion 

deterioration can be found in Appendix D.  

Table 5-11. Probabilistic parameters of slab [47, 154] 

 
 

 

 

 

 

 

 

 

 

 Discretization schemes 

As most of the variables are defined in continuous states, and the identified CPTs and 

priori probabilities for DOOBNs model are continuous as well, the discretization is 

implemented to derive CPTs and priori probabilities in discrete states. The discretization 

scheme for slab flexure is summarized in Table 5-12. Equal length discretization interval is 

chosen in this application, different variables are assigned with different numbers of 

discrete intervals. The probabilities of each discrete state are assigned with cumulative 

distribution function (CDF) over the corresponding interval. With discretized nodes, the 

new CPTs can be estimated based on the deterministic equations. By sampling the intervals 

of the parent nodes and inserting the sampled values into the equations, a large number of 

function values are available for each configuration of the parents’ sampled values. By 

taking the relative frequency occurrence of the function values in each interval of the 

specified child node, the CPTs with discrete states are obtained for each child node. In fact, 

the whole process is supported by the software BayesiaLab [16] and GeNie [56], which 

actually run the sampling algorithms for discretization. The discretization schemes for 

other bridge elements are presented in Appendix C. Since there are so many discretized 

variable Distribution Mean Standard deviation 

Dslab (inch) Normal 0.625 0.0187 

Rcorr slab (mils/year) Normal 1.989 0.231 

λrebar Normal 1 0.015 

γmfc Normal 1.02 0.061 

λdeff Normal 1 0.02 

f y (ksi) Normal 56 6.16 

𝒇𝒄′  (ksi) Normal 2.76 0.497 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

M slab dl (ft-kip) Normal 0.63 0.084 

λtrk Normal 1.27 0.036 

M slab ll (ft-kip) Normal 5.41 0.153 
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CPTs and the size of each CPT is quite large, the discretized CPTs in this application are 

only provided upon request. 

 

Table 5-12. Discretization schemes for slab flexure  

Variable Probable range Number of states Final interval boundaries 

Dslab (inch) 0.32-0.72 12 0,0.32:0.04:0.72,∞ 

Tcorr slab (year) 0-50 51 0:1:50 

Time(slab) 0-50 51 0:1:50 

Rcorr slab (mils/year) 0.8-3.2 12 0,0.8:(3.2-0.8)/10:3.2,∞ 

λrebar 0.9-1.1 12 0,0.9:(1.1-0.9)/10:1.1,∞ 

γmfc 0.7-1.3 12 0,0.7:0.6/10:1.3, ∞ 

λdeff     0.9-1.1 12 0,0.9:0.02:1.1, ∞ 

f y (ksi) 26-86 12 0,26:(86-26)/10:86,∞ 

𝒇𝒄′   (ksi) 0.3-5.3 12 0,0.2:5/10:5.3, ∞ 

At slab (in2) 0.14-0.82 12 0,0.14:0.68/10:0.82,∞ 

Mslab dl (ft-kip) 0.2-2.2 12 0,0.2:2/10:2.2, ∞ 

Mslab ll (ft-kip) 4.6-8.2 12 0,4.6:3.6/10:8.2, ∞ 

Rslab moment capacity 0-28 11 0:28/10:28,∞ 

Rslab moment capacity 2 0-4.8 11 0:4.8/10:4.8, ∞ 

Rslab moment capacity 1 0-30 11 0:30/10:30, ∞ 

Lslab load moment 4.8-11 12 0,4.8:6.2/10:11,∞ 

 

5.3.2 Prediction results of structural reliability 
In this part, the completed DOOBN deterioration model is operated to predict the 

structural reliability of the whole bridge and its bridge elements over 50 years. With the 

support from the software GeNIe [56] and BayesiaLab [16], the inference algorithms for 

the structural reliability prediction can be easily executed. In this application, all the bridge 

elements are initialized with no deterioration at all. The corrosion loss and time are 

assumed to be zero in the beginning. Three scenarios are conducted for the verification of 

proposed DOOBNs model. First of all, based on series-parallel relationship and the 

assumption of three adjacent girders, the prediction results are compared with the ones 

calculated in the previous study [47] where the traditional method, FORM, had been 

adopted for structural reliability prediction. Second, Prediction results based on the 

assumption of two adjacent girders and hypothetical probabilistic relationship, 
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respectively, are utilised to display the merit of proposed DOOBNs outdoing the traditional 

methods. At last, to further demonstrate the advantages, simulated event information, such 

as, maintenance actions, observations and environmental effects are included for updated 

structural reliability prediction.  

 Scenario one 

In order to compare with traditional methods, the CPTs shown in Tables 5-5, 5-6 and 

5-7 are used for bridge system in this scenario. By running the DOOBNs model, time-

variant structural reliability of the whole bridge as well as bridge elements is predicted 

during a period of 50 years. Figures 5-29, 5-30 and 5-31 display the comparisons between 

predicted results from DOOBNs and those calculated in previous study based on FORM 

[47]. For the purpose of convenience, the calculated failure probabilities are expressed in 

the form of reliability index. From the pictures, we can observe that both the results based 

on DOOBNs model and FORM indicate the same trends of reliability indexes. Although 

there are minor differences between the two groups of results, they are keeping close to 

each other all the time. Moreover, since the results calculated from FORM are only 

approximate estimation of structural reliability rather than accurate assessment, the minor 

differences never impede the prediction results from DOOBNs model to be reasonable 

evaluation. As a result, the comparisons have demonstrated the accuracy of the proposed 

DOOBNs model. 

 

Figure 5-29. Comparison of reliability index of bridge system and column footing over 

time for Bridge E-AH-17 
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Figure 5-30. Comparison of reliability index of Girder 3 in both shear and flexure over 
time for Bridge E-AH-17 

 

 

 

Figure 5-31. Comparison of reliability index of slab and pier over time for Bridge E-AH-
17 
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 Scenario two 

This scenario aims to explore the advantage of the proposed DOOBNs model. The 

DOOBNs model allows hierarchically representation of a complex bridge system with the 

consideration of not only deterministic parallel and/or series relationship but also 

probabilistic failure dependency between bridge system and bridge elements. Moreover, by 

means of CPTs, any types of failure assumptions can be easily modelled by changing the 

corresponding values in the CPTs. Therefore, if the failure assumption of two adjacent 

girders is held, we can simply adjust to the CPT shown in Table 5-8. The comparisons of 

prediction results resulting from the two different failure assumptions are presented in 

Figure 5-32. We can see that the reliability indexes of bridge superstructure with the failure 

assumption of two adjacent girders decrease. However, the reliability indexes of bridge 

system are identical all the time. This is due to the failure probability of bridge 

superstructure is relatively small compared with bridge substructure and deck. Additionally, 

reliability indexes of all the other bridge elements are also the same. 

 

Figure 5-32. Comparisons of reliability index with two different failure assumptions 

 
Furthermore, probabilistic relationship needs to consider as in practice there are lots 

of bridge failures happened occasionally. Different values between 0 and 1 are assigned in 

CPTs so as to model all kinds of failure relationships appropriately. For instance, with 

regarding to hypothetical probabilistic likelihoods of failure encoded by CPTs given by 
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Table 5-9 and Table 5-10, the updated prediction results are compared with the ones with 

failure assumption of three adjacent girders (Figure 5-33). By contrast, the failure 

probabilities of both bridge system and bridge superstructure escalate, while the failure 

probability of bridge substructure reduces, inversely. This is caused by the fact that the 

failure assumption turns to underestimate the failure probability of bridge superstructure, 

while series relationship overestimates the failure probability of bridge substructure. In 

addition, failure probabilities of other bridge elements are unchanged with the new CPTs. 

Based on the two examples the merit of proposed DOOBNs model to handle not only 

deterministic relationship but also probabilistic relationship in bridge systems has been 

well displayed. 

 

Figure 5-33. Comparisons of reliability index with failure uncertainty and failure 
assumption of three adjacent girders 

 
 Scenario three 

To demonstrate the automatic Bayesian updating ability of the proposed DOOBNs 

model, event information regarding to bridge deterioration processes are considered in this 

scenario. Additionally, since none of this information is available for this application in 

practice, simulated information is utilised to exhibit the ability. Here, available information 

from observation, maintenance actions and environment is simulated to bridge interior 

Girder 3, Girder 4 and Girder 5. Measurements of corrosion depth shown in Table 5-13 are 
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simulated to these interior Girders. These measurements are assumed to be the true 

corrosion depth plus Normal distribution with µ=0 and σ=1 as follows: 

Measurements=dcorr +N (0, 1)                                       (5-25) 

Moreover, the same discretization scheme as dcorr is taken to the measurements.   

Maintenance actions scheduled in Table 5-14 are simulated to interior girders as well. 

There are three kinds of maintenance actions: no maintenance, imperfect maintenance and 

perfect maintenance. We assume that the perfect maintenance compensates corrosion loss 

and renew interior girders, while imperfect maintenance is assumed to have 50% chance to 

compensate corrosion loss and to renew interior girders. According to the literature[8], 

environmental levels is defined with two states “rural environment” and “urban 

environment”. The distributions of variable A and B under different environmental levels 

are described in Table 5-15[8]. Taking interior Girder 3 as an example, the DOOBN model 

for temporal deterioration processes is revised to consider the available information 

(Figure 5-34). Also, the revised DOOBNs model for time-variant structural reliability is 

given by Figure 5-35. The environmental level of Girder 3 is deemed to be “rural 

environment”. 

Table 5-13. Measurement results of corrosion depth 

Measurement 

Times (years) 

5 10 15 20 25 30 35 40 45 

Measurements 

(10-6m) 

95 275 423 601 818 934 1080 1422 1721 

 

Table 5 14. Maintenance activities on interior girders during 50 years 

 

 

 

 

 

 

 

Time (year) 15 45 

Maintenance 

actions 

Imperfect maintenance 

renew interior girders with 

50% likelihood 

Perfect maintenance 

renew interior girders with 

100% likelihood 
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Table5-14. Distributions of A and B for different environmental levels[8] 
 

 

 

 

 

 

 

 

 

Figure 5-34. Revised DOOBNs model of interior Girder 3 for temporal deterioration 
processes including available event information 

 
 

Time (girder 3)_T-1

Time (girder3)_T
B3dcorr3

A3

ObservationMaintenance actions

Environmental levels

Corrosion deterioration T=2Corrosion deterioration T=1

Time (girder 3)_T-1

dcorr3 dcorr3

Time (girder 3)_T-1

Time (girder 3)_T Time (girder 3)_T

Variables Rural environment Urban environment 

A N(34,3.06) N(80.2,33.684) 

B N(0.65,0.065) N(0.593,0.2372) 

 



142 

142 Chapter 5: Bridge health prediction in safety aspect 

 

Figure 5-35. Revised DOOBNs model of interior Girder 3 for time-variant structural 
reliability including available event information 

To validate the automatic updating ability, reliability indexes of interior girders as 

well as bridge superstructure are updated based on the simulated event information and the 

failure assumption of three adjacent girders. Based on the simulated measurements Figure 

5-36 represents the resulted posterior reliability indexes of Girder 3 and bridge 

superstructure under the “rural environment”. Under the same environmental level, Figure 

5-37 shows the updated evolution of reliability index of Girder 3 in shear considering the 

simulated maintenance activities. The updated reliability indexes of Girder 3 in flexure and 

bridge superstructure are also given by Figures 5-38 and 5-39, respectively. By comparing 

these figures, we can find that the shear of Girder3 is so sensitive to the simulated 

information. In contrast, reliability indexes of Girder 3 in flexure and bridge superstructure 

are not changed so much due to the simulated information. The reasons are that the 

corrosion deterioration does not contribute to the reduction of flexure structural reliability 

very much, and the failure probability in flexure is relatively larger. In addition, the whole 

bridge system is nearly not influenced by the simulated information since the failure 

probability of bridge superstructure is too small to affect the final result slightly. Through 
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Figures 5-36 to 5-39, automatic updating ability of the proposed DOOBN model has been 

illustrated. This ability brings in more accurate prediction results of structural reliability, 

which benefits bridge maintenance optimization, eventually. 

 

Figure 5-36. Updated reliability indexes of Girder 3 in both shear and flexure, and bridge 
superstructure based on simulated measurements and DOOBNs model II 

 

 

Figure 5-37. Updated reliability index of Girder 3 in shear based on simulated maintenance 
actions and DOOBNs model II 
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Figure 5-38. Updated reliability index of Girder 3 in flexure based on simulated 
maintenance actions and DOOBNs model II 

 

 

 

 

Figure 5-39. Updated reliability index of bridge superstructure based on simulated 
maintenance actions and DOOBNs model II 
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demonstrated. The comparisons show that the DOOBNs model can perform reasonable 

results like traditional methods, such as FORM. In addition, the DOOBNs model is more 

suitable for the modelling of complex bridge system. Not only deterministic relationship 

but also probabilistic relationship can be handled by the DOOBNs model. The automatic 

Bayesian updating ability enhances computational efficiency of reliability updating. 

Therefore, information from observation, maintenance and environment can be easily 

incorporated to deal with uncertainties in bridge deterioration. 

5.4 Summary 
In this chapter, Model II for structural reliability prediction has been developed. The 

proposed DOOBNs model is generally applicable for different bridge structures, and is 

outlined through three steps: modelling consideration, DOOBN development and 

parameters estimation. In the first step, a bridge is hierarchically decomposed into a 

number of bridge elements. For each bridge element, limit state functions are developed. 

Then conceptual DOOBNs model is formulated through two parts: bridge system and 

bridge elements. In the part of bridge system, By means of the CPTs, both series-parallel  

logical relationship and complex probabilistic relationship can be effectively modelled. In 

the part of bridge elements, limit state functions and corrosion deterioration processes are 

modelled by DOOBNs. Moreover, event information about observations, maintenance 

actions and environment is included to reduce the prediction uncertainty. The last step 

focuses on the estimation of the CPTs, where deterministic equations are mainly used. To 

facilitate the inference computational efficiency, discretization is implemented for all the 

continuous variables. To verify the proposed DOOBN model, one application was given 

based on previous study [47]. As long as safety performance over 50 years is concerned, 

structural reliability from bridge elements to the whole bridge system is predicted. Three 

scenarios were conducted to demonstrate the advantages. The Model II is better choice for 

the modelling of complex bridge system. The Bayesian updating ability can improves the 

reliability updating efficiency so that event information can be incorporated efficiently. 

Based on all the merits, we can draw the conclusion that the proposed DOOBNs model is 

more appropriate for structural reliability prediction. 

In the further, more research work should be focused on applying the proposed 

DOOBNs model to other bridge structures. Instead of simulated event information used in 

the application, real event information is expected for the validation. The discretization 
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used in the DOOBNs model could bring the errors when a finite number of discrete states 

are utilised to approximate a continuous distribution. Therefore, optimal discretization 

schemes are demanded to eliminate these errors. Further study should be dedicated to the 

extension of the proposed model for bridge maintenance optimization. By expanding the 

proposed DOOBNs model with utility nodes and decision nodes, influence diagrams (IDs) 

as a decision tool can be derived [13]. 
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Chapter 6: Integrated health prediction 

6.1 Introduction 
Based on the two previous chapters, this chapter integrates Models I and II for bridge 

health predictions in both serviceability and safety aspects. Cost-effective maintenance 

strategies are achieved based on health prediction in these two performance criteria. 

However, since the existing approaches are segregated and mutually exclusive, their 

prediction results in these two aspects cannot be used jointly for maintenance optimization. 

The integrated model, Model III, has the ability to model bridge deterioration in terms of 

both condition ratings and structural reliability. In Section 6.2, the modelling of bridge 

condition ratings is modified and the modelling integration is implemented by means of 

bridge essential failure modes. To validate Model III, an application based on data from 

open database and the existing literature is presented in Section 6.3.  

6.2 Model III: using condition ratings and structural 
reliability jointly 

In this section, an extended model for integrated bridge health prediction is 

developed based on Model I and Model II. To facilitate the integration, modified Model I 

for bridge condition ratings are presented at first. Then Models I and II are integrated 

through the modelling of bridge essential failure modes, such as, corrosion, cracking and 

spalling. The integration also includes the event information, such as, observed 

information, maintenance intervenes and environmental effects for each bridge element. At 

last, parameters estimation for the extended model needs to be accomplished. By 

modelling the underlying relationship between condition ratings and structural reliability, 

Model III generates enhanced prediction results to the same deterioration processes. As a 

result, prediction results in two performance criteria are calibrated and improved. 

Compared with Models I and II, Model III not only provides health prediction in two 

performance criteria but also calibrates prediction results with the consideration of latent 

correlations between condition ratings and structural reliability so that more accurate and 

consistent results can be achieved. Because Models I and II have been specified in 

previous chapters, only the extension part will be addressed in the following sections. 
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6.2.1 DOOBNs development 
6.2.1.1 Modelling modification of bridge condition ratings 

Regarding Model I, bridge condition ratings are predicted without distinguishing the 

locations of the same type of bridge elements. This is due to the routine inspection 

procedures used by the current BMSs.  As a result, the same bridge elements with different 

locations are treated as one bridge entity. However, in Model II, bridge elements are 

treated individual entities. The difference has obstructed the modelling integration. 

Inspired by the segment-based inspection procedure [133], this compatible inspection 

method are adopted so that both previous and new inspection data can be used 

concurrently. Every time when an inspection is implemented, condition ratings of all the 

individual bridge elements will be assigned and recorded. Hence, Model I is modified to 

model not only one entity of the same bridge elements but also a number of individual 

bridge elements with different locations. The entity is conditional on these new individual 

bridge elements. For instance, if there are N different girders in a bridge, the entity of 

bridge girder is modelled as Figure 6-1.  

 

Figure 6-1. Modified OOBNs model of a bridge girder 

In addition, without any specifications, the weights of all the new bridge elements are 

treated equally. The same condition ratings definition and DOOBNs modelling are applied 

to new individual bridge elements. However, since data and expert knowledge about 

condition ratings evolution of each individual bridge element are always insufficient, the 

transition probabilities of all these new bridge elements are assumed to be the same. 

Apparently, with this assumption the parameters estimation for these new bridge elements 

is simplified. The modelling modification enables basic modelling unit in Model I 

representing physical bridge elements rather than one entity of the same bridge elements, 

which paves the roads for the further modelling integration. 

Girder

Girder_1 Girder_2 Girder_N
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6.2.1.2 Modelling integration through critical failure modes 

Although the condition ratings and structural reliability are two different bridge 

health performance criteria, they both concern the deterioration processes correlated to 

bridge critical failure modes, such as corrosion, crack and spalling. Therefore, these 

essential failure modes can be modelled in order to achieve the integrated modelling of 

bridge deterioration in both performance criteria. As only reinforced concrete and steel are 

considered in this research, their modelling integrations are illustrated, respectively. 

 Steel 

In light of bridge elements made of steel, only corrosion is identified as a critical 

failure mode. The corrosion deterioration process described by Equation 3-7 has been 

already modelled by DOOBN in Figure 5-7. However, this equation cannot reflect the real 

corrosion deterioration processes since painting for corrosion prevention on the surface of 

bridge elements is not considered. More information about painting effects is needed. On 

the other hand, valuable information about painting effects has been already expressed in 

details through the specification of condition ratings. As a result, for a steel bridge element, 

the modelling of corrosion deterioration processes regarding structural reliability 

prediction can be calibrated by its condition ratings from visual inspection. Based on this 

point, modellings of condition ratings and structural reliability can be integrated. The 

modified DOOBN modelling in steel is shown as Figure 6-2. In condition ratings 

definition, the extent of the corrosion on bridge elements is described from no corrosion to 

advanced corrosion. Considering painting effects for more accurate results, the node of 

corrosion starting time “ t ” is dependent on the node of condition ratings in Figure 6-2.  

Moreover, if event information regarding to deterioration observations, maintenance 

actions and environmental effects is available for bridge elements, the event variables 

regarding condition ratings and structural reliability, respectively, can be integrated to 

reduce the number of nodes and size of the whole network. Generally, Figure 6-3 presents 

the integrated OOBNs modelling for steel bridge elements with the consideration of 

observations, maintenance intervene and environmental levels. The integration will bring 

observation variables with more parents, so new CPTs need to be estimated. Bearing in 

mind that integrated event variables may have different effects on the condition ratings and 

structural reliability. For instance, some condition loss oriented maintenance actions may 
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have no influence on structural reliability. Hence, the corresponding CPTs may be different 

as well.  

 

 

 

Figure 6-2. Modified DOOBN model for corrosion deterioration process in steel bridge 
elements 

 

 

Figure 6-3. Modelling integration for steel bridge elements considering event information 
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 Reinforced concrete 

For bridge elements made of reinforced concrete, there are three identified essential 

failure modes: corrosion, crack and spalling. Temporally, corrosion is initiated at first 

when critical chloride concentration is reached. After the initiation of corrosion, further 

deterioration will cause reinforced concrete cover to crack. Afterward larger and larger 

crack width will bring in spalling eventually. The deterioration processes in reinforced 

concrete have been explained in details by Section 3.2.2. Based on Equation 3-11, Figure 

5-8 has specified the DOOBN modelling for corrosion deterioration process. However, 

failure modes of crack and spalling are excluded in this model. Based on Equations 3-17 

and 3-19, the DOOBN model is extended to account for the other failure modes. In Figure 

6-4, Tcorr denotes the time to corrosion initiation since the beginning; Tcrack denotes the time 

to crack initiation since the beginning; Tspalling denotes the time to spalling initiation time 

since the beginning. The node “crack indication” and node “spalling indication” are both 

discrete variables with two states “Yes” and “No”. 

To predict condition ratings accurately, the estimated deterioration rates are essential. 

Nonetheless, the calculated deterioration rates always tend to be underestimated because 

there are less observed data regarding severe bridge deterioration. As observed condition 

data are assessed directly from bridge inspectors’ experience, intuition and judgement, or 

indirectly from advanced sensing techniques and NDT, some errors are expected among 

these data. Moreover, expert knowledge used to estimate deterioration rates may not be 

often available. For reinforced concrete bridge elements, bridge experts cannot easily 

acquire good knowledge about bridge deterioration processes since deterioration 

happening inside bridge elements is invisible. Therefore, the predicted results based on 

Model I are not so reliable. To enhance the accuracy, one alternative way is to calibrate 

deterioration rates with physical and chemical models of deterioration processes. As the 

essential failure modes of bridge deterioration have been modelled, prediction results of 

condition ratings can be easily calibrated. Figure 6-5 illustrates the modelling integration, 

where the condition ratings of a general bridge element “E(t)” is conditional on the 

indications of three essential failure modes. Event information can be integrated as Figure 

6-3. 
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Figure 6-4. Modified DOOBN model for temporal deterioration process in bridge elements 
made of reinforced concrete 

 

 

Figure 6-5. Modelling integration for reinforced concrete bridge elements 
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6.2.2 Parameters estimation  

Model III is completed with the extended work above. As parameters estimation 

Models I and II have been specified in previous chapters, only CPTs and priori 

probabilities related to the extension part are addressed in this section. Overall, the 

parameters estimation is mainly based on physical equations of deterioration processes and 

condition ratings definition. 

As the basis of essential failure modes, such as, corrosion, crack and spalling, 

physical equations of deterioration processes are directly used to estimate priori 

probabilities and CPTs. For instance, priori probabilities of crack and spalling initiation 

time are derived from Equations 3-9, 3-14 and 3-18 based on MCS. The distributions of 

crack and spalling initiation time are estimated by MCS with parameter values from the 

existing literature. In accordance with other variables, the estimated distributions need to 

be discretized to facilitate inference algorithms. The detailed simulation processes can be 

found in Appendix D. The CPTs related to node “crack indication” and node “spalling 

indication” are estimated based on Equations 3-17 and 3-19. 

For the CPTs regarding modelling integration, condition ratings specification is used. 

The extents of corrosion deterioration are described, for instance, no corrosion, paint 

distress, rust deformation, active corrosion and section loss. Considering practical paint 

protection, in Figure 6-2, the node of corrosion time “ t ” is conditional on the node of 

condition ratings in order to determine whether structural reliability deterioration of steel 

bridge elements has actually started or not. The corresponding CPT is set to zero until 

corrosion is actually initiated. In terms of bridge elements made of reinforced concrete, the 

evolutions of condition ratings are adjusted by bridge essential failure modes. For example, 

if the state of node “crack indication” in Figure 6-5 is true, probabilities of all the condition 

ratings describing no crack are set to zero. 

6.3 Case study of Bridge E-17-AH: integrated health 
prediction 

For the purpose of validation, Model III is applied to Bridge E-17-AH for integrated 

health prediction. The application is based on open database “National Bridge Inventory” 

(NBI) and the previous study from the literature [47]. Moreover, as Bridge E-17-AH has 

been modelled in the last chapter, the repeated work will not be addressed in this 
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application again. A customized Model III based on DOOBNs is developed to predict both 

condition ratings and structural reliability of this bridge over 50 years. To demonstrate the 

integrated health prediction, the predicted results are compared with the ones obtained 

from Models I and II. With simulated event information, the automatic Bayesian updating 

ability can be also illustrated in this application, where prediction results in both 

performance criteria are updated. 

6.3.1 National Bridge Inventory (NBI) database 
Towards integrated health prediction, historical condition information about Bridge 

E-17-AH is necessary. In this application, we resort to the National Bridge Inventory (NBI) 

which is a huge database covering just fewer than 600,000 of the United States’ bridges 

located on public roads, including Interstate Highways, U.S. highways, State and county 

roads, as well as publicly-accessible bridges on Federal lands [50]. The summary analysis 

of the number, location, and general condition of highway bridges within each State is 

given state by state. The NBI information is collected annually to Federal Highway 

Administration (FHWA) by the state highway agencies all around the U.S. The data are all 

recorded in NBI data format, which has 116 items and totally 432 characters for each data 

record. The explanations for each item can be found from the report [51]. The NBI data are 

easily downloaded from the internet in ASCII files and used for different purposes.   

For this application, a number of bridges located in Colorado, similar to Bridge E-17-

AH, were chosen to secure enough amounts of data for parameters estimation. The 

selection criteria are to consider “Record Type”, “Route Signing Prefix”, “Kind of 

Material/Design” and “Type of Design/Construction” in NBI data record [51]. As a result, 

a number of condition records at NBI#58 (deck), #59(superstructure) and #60 (substructure) 

were selected out. The history of the selected data lasts from 1992 to 2010. For unknown 

reasons, the condition data of some bridges are not available all the time. Therefore, the 

selected data are regarded as incomplete data.  

6.3.2 DOOBNs development of Bridge E-17-AH for integrated 
health prediction 

6.4.2.1 Modelling consideration for integrated health prediction 

In order to construct an integrated DOOBNs model, the system analysis of Bridge E-

17-AH in the last chapter is extended. Based on the simplified series-parallel model 

(Figure 5-14) the bridge has been hierarchically decomposed into three levels with 
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identified bridge elements including five girders, one slab, one pier and one column 

footing. Since the deterioration of column footing can be ignored compared with other 

elements [47], it is excluded from the condition ratings modelling of Bridge E-17-AH. 

Moreover, all the five girders are treated equally and assigned with the same relative 

weights. The condition ratings definition outlined by FHWA (Table 2-2) is employed [51], 

where condition rating 9 denotes excellent condition and condition rating 0 denotes failed 

condition. Because the worst record in the selected data is condition rating 3, the predicted 

probabilities of condition ratings less than 3 will be zero all the time. Therefore, only 

condition ratings more than 2 are considered in this application. Finally, no deterioration 

dependencies among these bridge elements are identified.  

6.4.2.2 Integrated DOOBNs model 

Customised Model III is conceptually formulated in this section. Based on the system 

analysis, Model I for Bridge E-17-AH can be developed as Figure 6-6, where the node 

with red colour centred signifies the whole bridge; the nodes with light blue colour centred 

signify bridge deck, superstructure and substructure; the nodes with black colour centred 

signify bridge elements; the red dash lines represent temporal deterioration for each bridge 

element: a bridge element node (T-1) and its evolution node (T) are defined as a discrete 

time Markov process modelled by the CPT. As the developed Models I and II are separate 

and irrelevant, the latent correlations between condition ratings and structural reliability are 

missed and prediction results may not be consistent reflecting true deterioration. Therefore, 

these two models are integrated into Model III.  

The integration is actually performed in bridge elements level. For the bridge girders 

made of steel, the condition states embodying valuable information about painting effects 

are used to calibrate the corrosion deterioration processes for structural reliability 

prediction. The integrated DOOBNs models of the five girders are displayed from Figure 

6-7 to Figure 6-11. From the figures, we can see that both condition states and structural 

reliability are modelled in one network, and the node of structural reliability is indirectly 

conditional on the node of condition states. For the bridge slab and pier made of reinforced 

concrete, essential failure modes of corrosion, crack and spalling are modelled to assist the 

integration. Taking the bridge slab as an example, the extended DOOBNs model of its 

essential failure modes is illustrated in Figure 6-12. By means of this temporal 

deterioration model, the evolutions of these two performance criteria are linked each other 
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for integrated health prediction. Figure 6-13 and Figure 6-14 present the integrated 

DOOBNs models of the slab and pier. For Bridge E-17-AH, as long as the integrated 

DOOBNs model of each bridge element is completed, the nodes of condition states and 

structural reliability in these models are further connected to the previous OOBNs models 

of the whole bridge system. The updated health prediction results of bridge elements are 

further utilised to update the condition states and structural reliability of the whole bridge 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6. DOOBNs model of bridge system for condition states 
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Figure 6-7. DOOBNs model of Girder 1 for integrated health prediction 

 

 

 

Figure 6-8. DOOBNs model of Girder 2 for integrated health prediction 
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Figure 6-9. DOOBNs model of Girder 3 for integrated health prediction 

 

 

Figure 6-10. DOOBNs model of Girder 4 for integrated health prediction 
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Figure 6-11. DOOBNs model of Girder 5 for integrated health prediction 

 

 

 

 

Figure 6-12. DOOBNs model of slab critical failure modes  
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Figure 6-13. DOOBNs model of slab for integrated health prediction 

 

 

Figure 6-14. DOOBNs model of pier for integrated health prediction 
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6.4.2.3 Parameters estimation for the integrated DOOBNs model 

The parameters estimation of the newly obtained DOOBNs model for integrated 

health prediction is addressed here. As CPTs and priori probabilities regarding structural 

reliability of Bridge E-17-AH have been tackled in the last chapter, this parameters 

estimation focuses on condition states part and integration part. 

 Condition ratings part 

With the relative weight of each bridge element, the CPTs of the whole bridge 

system are easily estimated based on Equation 4-2. Therefore, more effects are made to 

estimate the CPTs associated to bridge elements. According to the data availability, the 

selected data from NBI database are chosen in this application. However, the condition 

data are only related to bridge deck, superstructure and substructure rather than bridge 

elements. For the sake of CPTs estimation, the bridge deck, superstructure and substructure 

are assumed to be slab, girders and pier based on the simplified series-parallel model 

(Figure 5-14). The selected data denote the condition states evolutions of bridge elements. 

Since the data are deemed as incomplete data, an appropriate algorithm, the Expectation-

maximization (EM), is employed. To implement the EM algorithm, the number of 

transitions from condition rating i to condition rating j (i,j=9,8,…,3) for each bridge 

element is calculated at first. Based on the MATLAB Software, all the CPTs associated to 

bridge elements can be estimated. Table 6-1 shows the CPT of bridge slab, which actually 

models the discrete time Markov process of the slab. Furthermore, with the assumption of 

the same deterioration rates, the CPT of the girders is given by Table 6-2. From the two 

CPTs, we can see that after experiencing the initial condition rating 9, bridge elements tend 

to stay at their current condition ratings. 
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Table 6-1. CPT of bridge slab based on EM algorithm 

 

 

 

Table 6-2. CPT of girders based on EM algorithm 

 

 

 

Condition 

states Slab    

(t-1) 

Condition

9 

Condition

8 

Condition

7 

Condition

6 

Condition

5 

Condition

4 

Condition

3 

Condition9 0.3333 0.6667 0 0 0 0 0 

Condition8 0 0.8732 0.1268 0 0 0 0 

Condition7 0 0 0.9619 0.0381 0 0 0 

Condition6 0 0 0 0.9591 0.0409 0 0 

Condition5 0 0 0 0 0.9516 0.0484 0 

Condition4 0 0 0 0 0 0.9789 0.0211 

Condition3 0 0 0 0 0 0 1 

Condition 

states Slab    

(t-1) 

Condition

9 

Condition

8 

Condition

7 

Condition

6 

Condition

5 

Condition

4 

Condition

3 

Condition9 0.3333 0.6667 0 0 0 0 0 

Condition8 0 0.8925 0.1075 0 0 0 0 

Condition7 0 0 0.9547 0.0453 0 0 0 

Condition6 0 0 0 0.9693 0.0307 0 0 

Condition5 0 0 0 0 0.9788 0.0212 0 

Condition4 0 0 0 0 0 0.9655 0.0345 

Condition3 0 0 0 0 0 0 1 
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  The integration part 

After the parameters estimation for condition states is finished, some new parameters 

raised by the modelling integration need to be estimated as well. As discussed in Section 

6.2.2, physical equations of deterioration processes and condition ratings definition are 

adopted. For bridge elements made of reinforced concrete, the priori probabilities of 

corrosion, crack and spalling initiation time in Figure 6-12 are estimated based on 

Equations 3-9, 3-14 and 3-18. With specified probabilistic parameters for slab and pier, 

MCS is implemented to derive the corresponding distributions. In addition, these initiation 

time distributions are dsicretized with 1 year equal interval over 50 years. The detailed 

codes by means of MATLAB and all the parameters used for the estimation can be found 

in Appendix D. These equations help estimate the CPTs of the failure modes indications. 

To estimate the CPTs regarding the modelling integration, we rely on the condition states 

definition outlined by FHWA (Table 2-2) [51]. For steel bridge elements, when the 

condition rating is more than 6, the corresponding CPT of the node “Time (girders)” 

should be set to zero. For bridge elements made of reinforced concrete, when the node 

“corrosion indication” is true, probabilities of the condition ratings more than 7 are set to 

zero; when the node “crack indication” is true, probabilities of the condition ratings more 

than 6 are set to zero; when the node “spalling indication” is true, probabilities of the 

condition ratings more than 5 are set to zero. 

6.3.3 Prediction results of integrated health performance 
The complete DOOBNs model for integrated health prediction is implemented to 

predict both condition states and structural reliability over 50 years. The operation is 

supported by the same software GeNIe [163] and BayesiaLab [165]. To begin with, all the 

bridge elements are initialized with the condition states showing no deterioration at all 

(CS9). The corrosion loss and initiation time are all assumed to be zero at the beginning. 

Furthermore, to validate the proposed DOOBNs model III, we have conducted two 

scenarios. In order to demonstrate integrated health prediction, in the first scenario the 

prediction results of condition states and structural reliability are compared with the ones 

calculated from the separated DOOBNs models. The second scenario aims to validate the 

Bayesian updating ability of the proposed DOOBNs model III. With simulated 

maintenance actions, both condition states and structural reliability predictions are updated 

from the bridge elements to the whole bridge system.  
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 Scenario one 

By running the DOOBNs model III, we can predict both condition states and 

structural reliability of Bridge E-17-AH during a period of 50 years. Owing to the 

modelling integration, all the original prediction results are expected to be updated from 

bridge elements to the whole bridge system. For the purpose of comparison, we also 

predict condition states and structural reliability based on Models I and II. Figures 6-15, 6-

16, 6-17 and 6-18 illustrate the prediction results of condition states of bridge girders, 

bridge slab, bridge pier as well as the whole bridge system, respectively, based on Model I. 

By contrast, Figures 6-19, 6-20 and 6-20 present the updated prediction results after the 

integration. Except bridge girders, the condition states of all the other bridge elements and 

the whole bridge system are updated. This is because that condition states of bridge girders 

can be easily observed through visual inspection. The prediction results are believed to be 

accurate and employed to calibrate the prediction results of structural reliability. As the 

condition states of bridge slab and pier are invisible, special equipments are needed for 

inspection. Therefore, the prediction results are supposed to be inaccurate. They can be 

calibrated by essential failure modes.  

 

 

Figure 6-15. Condition states evolution of bridge girders based on model I 
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Figure 6-16. Condition states evolution of bridge slab based on model I 

 

 

 

 

 

Figure 6-17. Condition states evolution of bridge pier based on model I 
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Figure 6-18. Condition states evolution of the whole system based on model I 

 

 

 

 

 
Figure 6-19. Updated condition states evolution of bridge slab based on model III 
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Figure 6-20. Updated condition states evolution of bridge pier based on model III 

 

 

 

 
Figure 6-21. Updated condition states evolution of bridge pier based on model III 
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other bridge elements resulting from Model III are supposed to increase owing to the 

considered painting effects. However, the reliability index of the whole bridge system 

seems identical all the time. This is due to the failure probability of bridge superstructure is 

relatively small compared with those of bridge substructure and deck. As the reliability 

indexes of bridge deck and substructure remain the same, it is impossible that the 

reliability index of the whole bridge system augments dramatically.    

 

Figure 6-22. Comparison of reliability indexes of Girder 3 in flexure resulting from model 

II and model III 

 

 

Figure 6-23. Comparison of reliability indexes of Girder 3 in shear resulting from model II 

and model III 

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 5 10 15 20 25 30 35 40 45 50

Girder 3 flexure from DOOBNs model 2 Girder 3 flexure from DOOBNs model 3

Re
lia

bi
lit

yi
nd

ex

Time (year)

5

5.5

6

6.5

7

7.5

8

0 5 10 15 20 25 30 35 40 45 50

Girder 3 shear from DOOBNs model 2 Girder 3 shear from DOOBNs model 3

R
el

ia
bi

lit
y

in
de

x

Time (year)



 169 

Chapter 6: Integrated health prediction 169 

 

Figure 6-24. Comparisons of reliability indexes of bridge superstructure and the whole 

bridge system resulting from model II and model III 

 Scenario Two 

To ensure the correctness of prediction results, event information reflecting bridge 

real deterioration processes needs to be taken into account. The Model III possessing the 

Bayesian updating ability can effectively incorporate the event information for the latest 

prediction results. In this section, the Bayesian updating ability is verified through 

simulated maintenance activities upon bridge Girder 1. Table 6-3 shows the scheduled 

maintenance activities. Similar to the last chapter, there are also three kinds of maintenance 

actions: no maintenance, imperfect maintenance and perfect maintenance. We assume that 

the perfect maintenance compensates corrosion loss and renews Girder 1; imperfect 

maintenance has 50% chance to do so. Moreover, the DOOBNs model of Girder 1 is 

amended to include the maintenance actions as well (Figure 6-25).  

Table 6-3. Maintenance activities for Girder 1 during 50 years 
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Figure 6-25. Modified DOOBNs model of Girder 1 for integrated health prediction 

including maintenance actions 

 

 

Based on the simulated maintenance actives, the prediction results of Girder 1 are 

updated primarily. With these updated results, condition states and structural reliability of 

bridge superstructure and the whole bridge system are both recalculated. Figures 6-26, 6-

27 and 6-28 display the updated evolution curves of bridge condition states. At 20th year 

and 45th year, the maintenance activities conducted has raised significant impacts on the 

condition states evolution of Girder 1. Because of the causal relationships, the maintenance 

activity has influence on the deterioration evolution of bridge superstructure and the whole 

bridge system. However, the influence becomes weaker when it comes to the whole bridge 

system owing to deterioration effects of other bridge elements. 
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Figure 6-26. Updated condition states evolution of Girder 1 based on model III and 

maintenance activities 

 

 

 

Figure 6-27. Updated condition states evolution of bridge superstructure based on model 

III and maintenance activities 
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Figure 6-28. Updated condition states evolution of the whole bridge system based on 

model III and maintenance activities 

 

 

Similarly, Figures 6-29, 6-30 and 6-31 present the updated reliability indexes of 
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Figure 6-29. Updated reliability index of Girder 1 in shear based on model III and 

maintenance activities  

 

 

 

Figure 6-30. Updated reliability index of Girder 1 in shear based on model III and 

maintenance activities 
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Figure 6-31. Updated reliability index of Girder 1 in shear based on model III and 

maintenance activities 
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failure modes. Moreover, with available event information, the corresponding variables 

about observations, maintenance actions and environment can be also integrated to reduce 

the size of the whole network. In the second step, the new raised CPTs and priori 

probabilities are mainly estimated based on physical equations of deterioration processes 

and condition states definition. To demonstrate the feasibility of the proposed DOOBNs 

model III, we applied the proposed model to Bridge E-17-AH. Based on an open database 

“National Bridge Inventory” (NBI) and the previous study from the literature [47], both 

condition states and structural reliability of this bridge are predicted over 50 years. We 

implemented two scenarios to display the advantages. In the first scenario, the predicted 

results based on the DOOBNs model III are compared with the ones obtained from 

DOOBNs model I and II to demonstrate the integrated health prediction. By considering 

the correlations between condition states and structural reliability, more reasonable 

prediction results are expected. In the second scenario, based on the simulated maintenance 

actions, the automatic Bayesian updating ability of the DOOBNs model III is also 

illustrated in this application. The ability helps incorporate event information efficiently so 

that the prediction results reflecting bridge real deterioration processes can be delivered. 

Based on the two scenarios, the proposed DOOBNs model III is deemed more desirable.  

In the future, more research work is demanded to apply the proposed DOOBNs 

model III to other bridge structures. More data are also required so that some unnecessary 

assumptions could be released. Instead of simulated event information, event information 

obtained in practice is expected for the model validation as well. The most importantly, 

more efforts should be devoted to the extension of the proposed model for bridge 

maintenance optimization. By adding utility nodes and decision nodes to the proposed 

model, influence diagrams (IDs) are obtained to function as a powerful maintenance 

decision tool [13]. 
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Chapter 7: Conclusions and Future work 

7.1 Summary of background and established models 
To ensure the reliability and serviceability of a bridge, appropriate maintenance 

strategies need to be implemented. Recently, there is an increasing demand of reduction of 

maintenance cost without compromising the serviceability. To this end, identification of 

bridge deterioration models is crucial for health prediction and optimization of the 

maintenance strategy. In this work, comprehensive literature review indicated several 

research problems that have not been sufficiently investigated, such as 

 Existing approaches are not capable of modelling bridge deterioration 

performance in both serviceability and safety aspects in an integrated manner so 

that both performance criteria can be evaluated coherently. 

 Although it is a well accepted that a bridge is a complex system composed of 

many inter-related bridge elements, system approaches have not been 

successfully developed for bridge deterioration modelling. 

 The existing models are not able to deal with multiple bridge deterioration factors 

concurrently, such as deterioration dependencies between different bridge 

elements, different inspection and maintenance methods and environmental 

effects. Consequently, accurate and robust prediction models are still lacking. 

 Existing models are deficient in updating the prediction methodology. Bayesian 

method has been proved to be an effective tool for this purpose. However, its 

applicability for bridge health prediction needs to be investigated.    

 An effective platform is required so that a variety of information, such as 

monitoring data, expert knowledge and physical laws can be integrated for 

uncertainties reduction. 

 The assumption of series and/or parallel system relationship for bridge level 

reliability is always held in all structural reliability estimation of bridge systems 

To adopt a complex system modelling approach to deal with the above deficiencies, 

three novel models based on DOOBNs have been proposed. The Model I focuses on bridge 
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deterioration in serviceability using condition ratings as the health index. The probabilistic 

deterioration is represented in a hierarchical way so that the contribution of each bridge 

element to bridge deterioration can be included. Deterioration of bridge elements over time 

is modelled based on a discrete-time Markov process. The Model II concentrates on bridge 

deterioration in safety. The structural reliability of bridge systems is estimated from 

structural elements to the entire bridge. With CPTs, both series-parallel relationship and 

complex probabilistic relationship in bridge systems can be effectively modelled. The 

structural reliability of each bridge element is based on its limit state functions, considering 

the probability distributions of resistance and applied load. Both Models I and II are 

established in three steps: modelling consideration, DOOBN development and parameter 

estimation. Model III integrates Models I and II to address bridge health performance in 

both serviceability and safety. The modelling of bridge condition ratings is modified so 

that every basic modelling unit represents one physical bridge element. According to the 

specific materials used, the integration of condition ratings and structural reliability is 

implemented through essential failure modes. Overall, this work developed three novel 

DOOBNs based bridge deterioration models with the following features: 

 Recognition of implicit correlation between condition ratings and structural 

reliability. Although condition ratings and structural reliability are two different 

performance indicators for bridge health they both reflect fundamental bridge 

deterioration processes. By combining these two parameters, bridge deterioration 

in serviceability and safety can be addressed in an integrated way.  

 The object oriented representation of bridge dynamic deterioration behaviours 

from bridge elements to the entire bridge. This representation eases integrated 

bridge health management for the purpose of maintenance optimization.  

 Adaptive representation of bridge systems for structural reliability estimation. 

Limit state functions regarding bridge elements are modelled as the basis of 

bridge systems estimation. Without relying on deterministic series and/or parallel 

relationship among bridge elements, inappropriate assumptions can be realised so 

that potential errors about bridge system estimation can be minimised. With this 

adaptive ability, structural reliability of bridge systems under different 

circumstances can be estimated more practically and accurately. 
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 Concurrent consideration of bridge deterioration factors, such as, deterioration 

dependency, observation and environmental conditions as well as maintenance 

intervene. This method provides more accurate health prediction. 

 Multiple data sources for parameters estimation. Considering different data 

availabilities, detailed specifications for CPTs and priori probabilities estimation 

based on bridge inspection data, expert knowledge, theoretical deterioration 

equations and limit state functions as well as miscellaneous knowledge are all 

formulated. The specifications guarantee the proposed prediction model is ready 

to use. By including various types of data, prediction accuracies can be enhanced 

and data scarcity problems of current research can be mitigated. 

 Automatic Bayesian ability for better updating efficiency and more accurate 

prediction results 

To validate these models, three case studies have been conducted. Carefully selected 

data and knowledge from bridge experts, the National Bridge Inventory (NBI) and the 

existing literature [47] have been utilised for model validation. In addition, event 

information has been generated using simulation to demonstrate the automatic Bayesian 

updating ability of these models. The prediction results of condition ratings and structural 

reliability have been presented and interpreted for the basic bridge elements and the whole 

bridge system. The results obtained from Model II were compared with the ones obtained 

from traditional structural reliability methods. Overall, the results have confirmed the 

feasibility of these models for bridge health prediction. Note that three models can be used 

separately or jointly. The implementation of the three new models is expected to be more 

effective and vigorous than the existing modelling approaches.  

7.2 Additional functionality of the model 
Some other potential functionalities of the established models, which are not 

demonstrated in this thesis, include the following:    

 The proposed models are capable of handling both time-variant and time-

invariant live loading effects. Although a time-invariant distribution of live load 

is assumed in this research, the live load is generally expected to be dynamic and 

follow a time-variant distribution. This can be achieved by incorporating 

different live load models. For instance, Novak’s live load [118] can be 
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integrated for dynamic loading effects. Compared with static live loading effects, 

more computational time is expected.  

 The proposed models are capable of handling the change of environment 

temperature. This is important for bridge health prediction as the climate change 

is expected to affect bridge health dramatically. For condition ratings prediction, 

deterioration rates of each bridge element under different temperature conditions 

can be estimated separately with actual condition data. For structural reliability 

prediction, temperature will influence the deterioration processes, such as 

corrosion, crack and spalling. Parameter values of physical deterioration 

equations are assigned conditional on their temperature conditions. 

 The proposed models are capable of considering different material and load 

conditions. For bridge elements made of different materials, the corresponding 

prior probabilities related to material yield strength/stress are assigned with 

different distributions. For different load types, such as axial, bending and shear, 

pertinent limit state functions can be developed for each element. Its structural 

reliability will be estimated based on the formulated multiple limit state functions. 

 As a causal modelling approach, the proposed models are capable of capturing 

the dependencies among the whole bridge system, and doing “what-if ” analysis. 

This analysis is a common characteristic of bridge health management and will 

help to identify significant bridge structural elements among a complex bridge 

system so that maintenance actions can be implemented effectively. 

7.3 Future work 
To make the proposed models more applicable in practice, several new research 

challenges have been identified as follows:   

 Further modifications and validations of the proposed models 

a) Overall, Model I is not restricted to any special type of bridge materials. 

However, Models II and III are constrained to bridges made of reinforced 

concrete and carbon steel only, since these two types of materials are the most 

commonly used for bridges. However, there are bridges made of other 

material, for instance, timber, stone masonry and other composite materials. 
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In order to cater to the entire bridge population, the proposed models have to 

be extended for other materials. 

b) For structural reliability prediction, limit state functions for each bridge 

element are established. In this research, only ultimate limit state functions 

are considered. However, other types of limit state functions, such as, 

serviceability limit state functions and fatigue limit state functions, need to be 

considered as well. By adapting the relevant variables, Model II is capable of 

modelling other types in a heuristic way. In the future research, all types of 

limit state functions should be taken into account concurrently. 

c) Modelling of critical failure modes for bridge deterioration is based on a 

number of chosen physical deterioration equations for corrosion, crack and 

spalling. A better understanding of the bridge deterioration process will help 

improve and broaden the applicability of the proposed models. 

d) With the development of inference algorithms, the errors caused by 

discretization can be eliminated. One alternative way is to choose hybrid BNs, 

which allow both discrete and continuous variables within one network. 

Langseth et al [88] summarised and discussed all the inference algorithms in 

hybrid BNs.                                  

e) More bridge data are required for complete model validation. Real event 

information can be utilised to verify the Bayesian updating ability. Prediction 

results based on different data sources can be verified by comparing with 

each other.  

f) To facilitate the application, proper software tools need to be developed. This 

will certainly help the bridge practitioners to practice the proposed models.   

 Influence Diagrams (IDs) for bridge maintenance optimization 

Based on health prediction results, further study should be dedicated to the extension 

of the proposed models. By adding decision nodes and utility nodes to DOOBNs, influence 

diagrams (IDs) based on the proposed integrated health prediction model can be 

constructed as an effective decision tool for bridge maintenance optimization. The decision 

nodes define the maintenance actions concerned by the user. The utility nodes conditional 

on probabilistic and/or decision nodes are the measures of decision nodes. The developed 
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IDs can compute the expected utility (EU) of each maintenance action. Based on the 

maximum expected utility (MEU) principle, the alternative with the highest EU is chosen. 

With the consideration of the impacts of each maintenance action on bridge deterioration 

in both serviceability and safety aspects, IDs provide the best maintenance decisions for 

decision makers in a cost-effective and a sustainable manner. IDs have been appropriately 

utilised as a decision tool for a number of applications, such as marine and offshore 

application, industrial process control, steam turbine maintenance decisions and pavement 

management decisions [11, 12, 43, 55, 77, 169]. Both inspection planning and maintenance 

actions can be optimised based on IDs. Attoh-Okine and Chajes [13] discussed advantages 

and disadvantages of IDs in bridge health management. IDs are more effective than 

decision trees, especially in compactness and information flow. Further investigation is 

needed to apply IDs to bridge maintenance optimization.  
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Appendices 

Appendix A: Limit state functions  
Pier shear [47] 

𝑔𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 = 8.28𝜆𝑑𝑒𝑓𝑓𝐴𝑣 𝑝𝑖𝑒𝑟𝑓𝑦𝛾𝑚𝑠𝑐 + 2.682�𝑓𝑐′𝛾𝑚𝑠𝑐 − 15.78𝜆𝑎𝑠𝑝ℎ − 68.04𝜆𝑐𝑜𝑛𝑐

− 10.02𝜆𝑠𝑡𝑒𝑒𝑙 − 42.50𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚 

(A-1) 

where 𝜆𝑑𝑒𝑓𝑓  is effective depth of reinforcing steel; 𝐴𝑣 𝑝𝑖𝑒𝑟 is the area of shear steel in pier;  

𝑓𝑦  is yield stress of reinforcing steel; 𝛾𝑚𝑠𝑐  is uncertainty factor for concrete shear; 𝑓𝑐′ is 28 

day yield strength of concrete; 𝜆𝑐𝑜𝑛𝑐 is uncertainty factor for weight of concrete on deck; 

𝜆𝑎𝑠𝑝ℎ  is uncertainty factor for weight of asphalt on deck; 𝜆𝑠𝑡𝑒𝑒𝑙 is uncertainty factor for 

weight of steel girders; 𝑉𝑡𝑟𝑘−𝑖uncertainty factor for live load shear in interior girder; 𝐷𝐹𝑖 is 

uncertainty for live load distribution of interior girders; Ibeam uncertainty factor for impact 

on girders. The new equations for time-variant structural reliability are given by 

𝑔𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 − 𝐿𝑝𝑖𝑒𝑟 𝑠ℎ𝑒𝑎𝑟                                                      (A-2) 

𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟=𝛾𝑚𝑠𝑐(𝑅𝑝𝑖𝑒𝑟 𝑠ℎ𝑒𝑎𝑟 1 + 𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 2)                             (A-3) 

𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 1 = 8.28𝜆𝑑𝑒𝑓𝑓𝑓𝑦(
4𝜋𝐷𝑝𝑖𝑒𝑟

2

4
)                                   (A-4) 

𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 2 = 2.682�𝑓𝑐′                                                                (A-5) 

𝐷𝑝𝑖𝑒𝑟(𝑡) = 𝐷𝑝𝑖𝑒𝑟(0)− 𝑅𝑐𝑜𝑟𝑟 𝑝𝑖𝑒𝑟(𝑡 − 𝑇𝑐𝑜𝑟𝑟 𝑝𝑖𝑒𝑟)                      (A-6) 

𝐿𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑝𝑖𝑒𝑟  𝑑𝑙 + 𝑉𝑝𝑖𝑒𝑟  𝑙𝑙                                      (A-7) 

𝑉𝑝𝑖𝑒𝑟  𝑑𝑙 = 15.78𝜆𝑎𝑠𝑝ℎ + 68.04𝜆𝑐𝑜𝑛𝑐 + 10.02𝜆𝑠𝑡𝑒𝑒𝑙                     (A-8) 

𝑉𝑝𝑖𝑒𝑟  𝑙𝑙 = 42.50𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                      (A-9) 

where 𝑅𝑝𝑖𝑒𝑟 𝑠ℎ𝑒𝑎𝑟  is the shear capacity of the pier; 𝐿𝑝𝑖𝑒𝑟 𝑠ℎ𝑒𝑎𝑟  is the shear demand for the 

pier; 𝑉𝑝𝑖𝑒𝑟  𝑑𝑙  is the dead load demand in shear for the pier; 𝑉𝑝𝑖𝑒𝑟  𝑙𝑙  is the live load demand 

in shear for the pier; 𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 1 and 𝑅𝑝𝑖𝑒𝑟  𝑠ℎ𝑒𝑎𝑟 2 are two parts of total shear capacity of 

the pier; 𝐴𝑡 𝑠𝑙𝑎𝑏  is the temporal changed cross section area of reinforced steel in slab; 
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𝐷𝑝𝑖𝑒𝑟(𝑡) is the temporal changed diameter of single reinforced steel bar in pier; 𝑅𝑐𝑜𝑟𝑟 𝑝𝑖𝑒𝑟   

is the corrosion rate in the pier; 𝑇𝑐𝑜𝑟𝑟 𝑝𝑖𝑒𝑟 is the corrosion initiation time in the pier. 

Exterior girder 1 flexure [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡 = 36.54𝐹𝑦𝛾𝑚𝑓𝑔 − (145.32𝜆𝑐𝑜𝑛𝑐 + 37.3𝜆𝑠𝑡𝑒𝑒𝑙 + 𝑀𝑡𝑟𝑘−𝑒𝐷𝐹𝑒𝐼𝑏𝑒𝑎𝑚) 

                      (A-10) 
where Fy is yield strength of steel in girders; γmfg is model uncertainty factor regarding to 

flexure in girders. λconc is uncertainty factor for weight of concrete on deck; λsteel is 

uncertainty factor for weight of steel girders; Vtrk-e uncertainty factor for live load shear in 

exterior girder; DFe is uncertainty for live load distribution of exterior girders; Ibeam 

uncertainty factor for impact on girders. The new equations for time-variant structural 

reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡                        (A-11) 

 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑦𝑍𝛾𝑚𝑓𝑔

12
=

𝐹𝑦𝛾𝑚𝑓𝑔(439.6−407.78𝑑𝑐𝑜𝑟𝑟1
25400 −341.64(𝑑𝑐𝑜𝑟𝑟125400 )2)

12
           (A-12) 

𝑑𝑐𝑜𝑟𝑟1 = 𝐴1𝑡𝐵1                                                      (A-13)                                     

𝐿𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙 + 𝑀𝑔𝑖𝑟𝑑𝑒𝑟1 𝑙𝑙                             (A-14) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙 = 145.32𝜆𝑐𝑜𝑛𝑐 + 37.3𝜆𝑠𝑡𝑒𝑒𝑙                              (A-15) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟1 𝑙𝑙 = 𝑀𝑡𝑟𝑘−𝑒𝐷𝐹𝑒𝐼𝑏𝑒𝑎𝑚                                       (A-16) 

where𝑅𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡  is the flexure capacity of exterior girder 1; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟1 𝑚𝑜𝑚𝑒𝑛𝑡  is the 

flexure demand for exterior girder 1; 𝑑𝑐𝑜𝑟𝑟1 is the corrosion loss of exterior girder 1 at the 

considered time; 𝐴1  and 𝐵1  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑀𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙 and 𝑀𝑔𝑖𝑟𝑑𝑒𝑟1 𝑑𝑙  are dead load and live load demand in 

flexure for girder 1. 

Interior-exterior girder 2 shear [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟2 𝑠ℎ𝑒𝑎𝑟 = 10.55𝐹𝑦𝛾𝑚𝑠𝑔 − (22.29𝜆𝑐𝑜𝑛𝑐 + 2.63𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙

+ 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖−𝑒𝐼𝑏𝑒𝑎𝑚) 

                        (A-17) 
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where Fy is yield strength of steel in girders; γmsg is model uncertainty factor regarding to 

shear in girders. λconc is uncertainty factor for weight of concrete on deck; λsteel is 

uncertainty factor for weight of steel girders; Vtrk-i uncertainty factor for live load shear in 

interior girder; DFi-e is uncertainty for live load distribution of interior-exterior girders; 

Ibeam uncertainty factor for impact on girders. The new equations for time-variant structural 

reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟2  𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟2 𝑠ℎ𝑒𝑎𝑟 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟2  𝑠ℎ𝑒𝑎𝑟                         (A-18) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟2  𝑠ℎ𝑒𝑎𝑟 = 0.58𝐹𝑦𝛾𝑚𝑠𝑔𝑑𝑤𝑡𝑤 = 18.183𝐹𝑦𝛾𝑚𝑠𝑔 �0.58− 𝑑𝑐𝑜𝑟𝑟2
12700

�        (A-19) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟2  𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑔𝑖𝑟𝑑𝑒𝑟2 𝑑𝑙 + 𝑉𝑔𝑖𝑟𝑑𝑒𝑟2  𝑙𝑙                                (A-20) 

𝑑𝑐𝑜𝑟𝑟2 = 𝐴2𝑡𝐵2                                                    (A-21) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟2 𝑑𝑙 = 22.29𝜆𝑐𝑜𝑛𝑐 + 2.63𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙                        (A-22) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟2 𝑙𝑙 = 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖−𝑒𝐼𝑏𝑒𝑎𝑚                               (A-23) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟2 𝑠ℎ𝑒𝑎𝑟  is the shear capacity of interior-exterior girder 2; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟2  𝑠ℎ𝑒𝑎𝑟 is the 

shear demand for interior-exterior girder 2; 𝑑𝑐𝑜𝑟𝑟2 is the corrosion loss of interior-exterior 

girder 2 at the considered time; 𝐴2  and 𝐵2  are the corrosion loss after one year and a 

regression coefficient numerically; 𝑉𝑔𝑖𝑟𝑑𝑒𝑟2 𝑑𝑙 and 𝑉𝑔𝑖𝑟𝑑𝑒𝑟2  𝑙𝑙  are dead load and live load 

demand in shear for girder 2. 

Interior-exterior girder 2 flexure [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡 = 39.8𝐹𝑦𝛾𝑚𝑓𝑔 − (244.08𝜆𝑐𝑜𝑛𝑐 + 28.8𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙 

                                             +𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖−𝑒𝐼𝑏𝑒𝑎𝑚)                                                         (A-24) 

where Fy is yield strength of steel in girders; γmfg is model uncertainty factor regarding to 

flexure in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 

uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders; 𝑀𝑡𝑟𝑘−𝑖  uncertainty factor for live load flexure in interior girder; DFi-e is 

uncertainty for live load distribution of interior-exterior girders; Ibeam uncertainty factor for 

impact on girders. The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡                      (A-25) 
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𝑅𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑦𝑍𝛾𝑚𝑓𝑔

12
=

𝐹𝑦𝛾𝑚𝑓𝑔(477.79−407.78𝑑𝑐𝑜𝑟𝑟2
25400 −341.64(𝑑𝑐𝑜𝑟𝑟225400 )2)

12
         (A-26) 

𝑑𝑐𝑜𝑟𝑟2 = 𝐴2𝑡𝐵2                                                (A-27) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑔𝑖𝑟𝑑𝑒𝑟2 𝑑𝑙 + 𝑀𝑔𝑖𝑟𝑑𝑒𝑟2 𝑙𝑙                        (A-28) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟2 𝑑𝑙 = 244.08𝜆𝑐𝑜𝑛𝑐 + 28.8𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙                  (A-29) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟2 𝑙𝑙 = 𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖−𝑒𝐼𝑏𝑒𝑎𝑚                                   (A-30) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡  is the flexure capacity of interior girder 2; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟2 𝑚𝑜𝑚𝑒𝑛𝑡  is the 

flexure demand for interior girder 2; 𝑑𝑐𝑜𝑟𝑟2 is the corrosion loss of interior girder 2 at the 

considered time; 𝐴2  and 𝐵2  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑀𝑔𝑖𝑟𝑑𝑒𝑟2 𝑑𝑙 and 𝑀𝑔𝑖𝑟𝑑𝑒𝑟2 𝑙𝑙 are dead load and live load demand in 

flexure for girder 2. 

Interior girder 3 shear [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟3 𝑠ℎ𝑒𝑎𝑟 = 10.55𝐹𝑦𝛾𝑚𝑠𝑔 − (18.04𝜆𝑐𝑜𝑛𝑐 + 5.26𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙

+ 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚) 

(A-31) 

where Fy is yield strength of steel in girders; γmsg is model uncertainty factor regarding to 

shear in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 

uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders; Vtrk-i uncertainty factor for live load shear in interior girder; DFi is uncertainty 

for live load distribution of interior girders; Ibeam uncertainty factor for impact on girders. 

The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟3  𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟3 𝑠ℎ𝑒𝑎𝑟 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟3  𝑠ℎ𝑒𝑎𝑟                         (A-32) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟3  𝑠ℎ𝑒𝑎𝑟 = 0.58𝐹𝑦𝑑𝑤𝑡𝑤 = 18.183𝐹𝑦 �0.58− 𝑑𝑐𝑜𝑟𝑟3
12700

�               (A-33) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟3  𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑔𝑖𝑟𝑑𝑒𝑟3 𝑑𝑙 + 𝑉𝑔𝑖𝑟𝑑𝑒𝑟3  𝑙𝑙                               (A-34) 

𝑑𝑐𝑜𝑟𝑟3 = 𝐴3𝑡𝐵3                                                    (A-35) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟3 𝑑𝑙 = 18.04𝜆𝑐𝑜𝑛𝑐 + 5.26𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙                      (A-36) 
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𝑉𝑔𝑖𝑟𝑑𝑒𝑟3 𝑙𝑙 = 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                  (A-37) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟3 𝑠ℎ𝑒𝑎𝑟  is the shear capacity of interior girder 3; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟3  𝑠ℎ𝑒𝑎𝑟  is the shear 

demand for interior girder 3; 𝑑𝑐𝑜𝑟𝑟3  is the corrosion loss of interior girder 3 at the 

considered time; 𝐴3  and 𝐵3  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑉𝑔𝑖𝑟𝑑𝑒𝑟3 𝑑𝑙 and 𝑉𝑔𝑖𝑟𝑑𝑒𝑟3  𝑙𝑙  are dead load and live load demand in 

shear for girder 3. 

Interior girder 3 flexure [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡 = 39.8𝐹𝑦𝛾𝑚𝑓𝑔 − (197.65𝜆𝑐𝑜𝑛𝑐 + 57.64𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙 +

 𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚)  

(A-38) 

where Fy is yield strength of steel in girders; γmfg is model uncertainty factor regarding to 

flexure in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 

uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders;  𝑀𝑡𝑟𝑘−𝑖  uncertainty factor for live load flexure on interior girders; DFi is 

uncertainty for live load distribution of interior girders; Ibeam uncertainty factor for impact 

on girders. The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡                    (A-39) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑦𝑍𝛾𝑚𝑓𝑔

12
=

𝐹𝑦𝛾𝑚𝑓𝑔(477.79−407.78𝑑𝑐𝑜𝑟𝑟 3
25400 −341.64(𝑑𝑐𝑜𝑟𝑟 3

25400 )2)

12
          (A-40) 

𝑑𝑐𝑜𝑟𝑟 3 = 𝐴3𝑡𝐵3                                               (A-41) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑔𝑖𝑟𝑑𝑒𝑟3 𝑑𝑙 + 𝑀𝑔𝑖𝑟𝑑𝑒𝑟3 𝑙𝑙                       (A-42) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟3 𝑑𝑙 = 197.65𝜆𝑐𝑜𝑛𝑐 + 57.64𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙                (A-43) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟3 𝑙𝑙 = 𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                    (A-44) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡  is the flexure capacity of interior girder 3; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟3 𝑚𝑜𝑚𝑒𝑛𝑡  is the 

flexure demand for interior girder 3; 𝑑𝑐𝑜𝑟𝑟3 is the corrosion loss of interior girder 3 at the 

considered time; 𝐴3  and 𝐵3  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑀𝑔𝑖𝑟𝑑𝑒𝑟3 𝑑𝑙and 𝑀𝑔𝑖𝑟𝑑𝑒𝑟3 𝑙𝑙 are dead load and live load demand in 

flexure for girder 3. 
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Interior girder 4 shear [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟4  𝑠ℎ𝑒𝑎𝑟 = 10.55𝐹𝑦𝛾𝑚𝑠𝑔 − (18.04𝜆𝑐𝑜𝑛𝑐 + 5.26𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙

+ 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚) 

(A-45) 

where Fy is yield strength of steel in girders; γmsg is model uncertainty factor regarding to 

shear in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 

uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders; Vtrk-i uncertainty factor for live load shear in interior girder; DFi is uncertainty 

for live load distribution of interior girders; Ibeam uncertainty factor for impact on girders. 

The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟4 𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟4 𝑠ℎ𝑒𝑎𝑟 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟4 𝑠ℎ𝑒𝑎𝑟                         (A-46) 

𝑅 𝑔𝑖𝑟𝑑𝑒𝑟4 𝑠ℎ𝑒𝑎𝑟 = 0.58𝐹𝑦𝑑𝑤𝑡𝑤 = 18.183𝐹𝑦 �0.58− 𝑑𝑐𝑜𝑟𝑟4
12700

�               (A-47) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟4 𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑔𝑖𝑟𝑑𝑒𝑟4 𝑑𝑙 + 𝑉𝑔𝑖𝑟𝑑𝑒𝑟4 𝑙𝑙                             (A-48) 

𝑑𝑐𝑜𝑟𝑟4 = 𝐴4𝑡𝐵4                                                (A-49) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟4 𝑑𝑙 = 18.04𝜆𝑐𝑜𝑛𝑐 + 5.26𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙                      (A-50) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟4 𝑙𝑙 = 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                 (A-51) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟4 𝑠ℎ𝑒𝑎𝑟  is the shear capacity of interior girder 4; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟4  𝑠ℎ𝑒𝑎𝑟  is the shear 

demand for interior girder 4; 𝑑𝑐𝑜𝑟𝑟4  is the corrosion loss of interior girder 4 at the 

considered time; 𝐴4  and 𝐵4  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑉𝑔𝑖𝑟𝑑𝑒𝑟4 𝑑𝑙 and 𝑉𝑔𝑖𝑟𝑑𝑒𝑟4  𝑙𝑙  are dead load and live load demand in 

shear for girder 4. 

Interior girder 4 flexure [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡 = 39.8𝐹𝑦𝛾𝑚𝑓𝑔 − (197.65𝜆𝑐𝑜𝑛𝑐 + 57.64𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙 

                                             +𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚)  

(A-52) 
where Fy is yield strength of steel in girders; γmfg is model uncertainty factor regarding to 

flexure in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 
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uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders;  𝑀𝑡𝑟𝑘−𝑖  uncertainty factor for live load flexure on interior girders; DFi is 

uncertainty for live load distribution of interior girders; Ibeam uncertainty factor for impact 

on girders. The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡                        (A-53) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑦𝑍𝛾𝑚𝑓𝑔

12
=

𝐹𝑦𝛾𝑚𝑓𝑔(477.79−407.78𝑑𝑐𝑜𝑟𝑟4
25400 −341.64(𝑑𝑐𝑜𝑟𝑟425400 )2)

12
           (A-54) 

𝑑𝑐𝑜𝑟𝑟4 = 𝐴4𝑡𝐵4                                                   (A-55) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑔𝑖𝑟𝑑𝑒𝑟4 𝑑𝑙 + 𝑀𝑔𝑖𝑟𝑑𝑒𝑟4 𝑙𝑙                           (A-56) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟4 𝑑𝑙 = 197.65𝜆𝑐𝑜𝑛𝑐 + 57.64𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙                (A-57) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟4 𝑙𝑙 = 𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                      (A-58) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡  is the flexure capacity of interior girder 4; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟4 𝑚𝑜𝑚𝑒𝑛𝑡  is the 

flexure demand for interior girder 4; 𝑑𝑐𝑜𝑟𝑟4 is the corrosion loss of interior girder 4 at the 

considered time; 𝐴4  and 𝐵4  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑀𝑔𝑖𝑟𝑑𝑒𝑟4 𝑑𝑙and 𝑀𝑔𝑖𝑟𝑑𝑒𝑟4 𝑙𝑙 are dead load and live load demand in 

flexure for girder 4. 

Interior girder 5 shear [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟 = 10.55𝐹𝑦𝛾𝑚𝑠𝑔 − (18.04𝜆𝑐𝑜𝑛𝑐 + 5.26𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙

+ 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚) 

(A-59) 
where Fy is yield strength of steel in girders; γmsg is model uncertainty factor regarding to 

shear in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 

uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders; Vtrk-i uncertainty factor for live load shear in interior girder; DFi is uncertainty 

for live load distribution of interior girders; Ibeam uncertainty factor for impact on girders. 

The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟                           (A-60) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟 = 0.58𝐹𝑦𝑑𝑤𝑡𝑤 = 18.183𝐹𝑦 �0.58− 𝑑𝑐𝑜𝑟𝑟5
12700

�                 (A-61) 
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𝐿𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟 = 𝑉𝑔𝑖𝑟𝑑𝑒𝑟5 𝑑𝑙 + 𝑉𝑔𝑖𝑟𝑑𝑒𝑟5  𝑙𝑙                                 (A-62) 

𝑑𝑐𝑜𝑟𝑟5 = 𝐴5𝑡𝐵5                                                   (A-63) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟5 𝑑𝑙 = 18.04𝜆𝑐𝑜𝑛𝑐 + 5.26𝜆𝑎𝑠𝑝ℎ + 2.89𝜆𝑠𝑡𝑒𝑒𝑙                       (A-64) 

𝑉𝑔𝑖𝑟𝑑𝑒𝑟5  𝑙𝑙 = 28.33𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                   (A-65) 

where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟  is the shear capacity of interior girder 5; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟5  𝑠ℎ𝑒𝑎𝑟  is the shear 

demand for interior girder 5; 𝑑𝑐𝑜𝑟𝑟5  is the corrosion loss of interior girder 5 at the 

considered time; 𝐴5  and 𝐵5  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑉𝑔𝑖𝑟𝑑𝑒𝑟5 𝑑𝑙 and 𝑉𝑔𝑖𝑟𝑑𝑒𝑟5  𝑙𝑙  are dead load and live load demand in 

shear for girder 5. 

Interior girder 5 flexure [47] 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡 = 39.8𝐹𝑦𝛾𝑚𝑓𝑔 − (197.65𝜆𝑐𝑜𝑛𝑐 + 57.64𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙 

                                             +𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚)  

(A-66) 
where Fy is yield strength of steel in girders; γmfg is model uncertainty factor regarding to 

flexure in girders. λconc is uncertainty factor for weight of concrete on deck; 𝜆𝑎𝑠𝑝ℎ  is 

uncertainty factor for weight of asphalt on deck; λsteel is uncertainty factor for weight of 

steel girders;  𝑀𝑡𝑟𝑘−𝑖  uncertainty factor for live load flexure on interior girders; DFi is 

uncertainty for live load distribution of interior girders; Ibeam uncertainty factor for impact 

on girders. The new equations for time-variant structural reliability are given by 

𝑔𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡                   (A-67) 

𝑅𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑦𝑍𝛾𝑚𝑓𝑔

12
=

𝐹𝑦𝛾𝑚𝑓𝑔(477.79−407.78𝑑𝑐𝑜𝑟𝑟5
25400 −341.64(𝑑𝑐𝑜𝑟𝑟525400 )2)

12
         (A-68) 

𝑑𝑐𝑜𝑟𝑟5 = 𝐴5𝑡𝐵5                                                 (A-69) 

𝐿𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑔𝑖𝑟𝑑𝑒𝑟5 𝑑𝑙 + 𝑀𝑔𝑖𝑟𝑑𝑒𝑟5 𝑙𝑙                        (A-70) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟5 𝑑𝑙 = 197.65𝜆𝑐𝑜𝑛𝑐 + 57.64𝜆𝑎𝑠𝑝ℎ + 31.7𝜆𝑠𝑡𝑒𝑒𝑙               (A-71) 

𝑀𝑔𝑖𝑟𝑑𝑒𝑟5 𝑙𝑙 = 𝑀𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                    (A-72) 
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where 𝑅𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡  is the flexure capacity of interior girder 5; 𝐿𝑔𝑖𝑟𝑑𝑒𝑟5 𝑚𝑜𝑚𝑒𝑛𝑡  is the 

flexure demand for interior girder 5; 𝑑𝑐𝑜𝑟𝑟5 is the corrosion loss of interior girder 5 at the 

considered time; 𝐴5  and 𝐵5  are the corrosion loss after one year and a regression 

coefficient numerically; 𝑀𝑔𝑖𝑟𝑑𝑒𝑟5 𝑑𝑙and 𝑀𝑔𝑖𝑟𝑑𝑒𝑟5 𝑙𝑙 are dead load and live load demand in 

flexure for girder 5. 

Column footing flexure [47] 

𝑔𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 = 7.75𝜆𝑟𝑒𝑏𝑎𝑟𝑓𝑦𝜆𝑑𝑒𝑓𝑓𝛾𝑚𝑓𝑐 − 0.132 𝜆𝑟𝑒𝑏𝑎𝑟
2 𝑓𝑦2𝛾𝑚𝑓𝑐

𝑓𝑐′
− 10.65𝜆𝑎𝑠𝑝ℎ −

                                64.44𝜆𝑐𝑜𝑛𝑐 − 6.93𝜆𝑠𝑡𝑒𝑒𝑙 − 27𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚 − 3.4𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖−𝑒𝐼𝑏𝑒𝑎𝑚  

(A-73) 

Where 𝜆𝑟𝑒𝑏𝑎𝑟 is uncertainty factor of reinforcing steel are; 𝑓𝑦  is yield stress of reinforcing 

steel; 𝜆𝑑𝑒𝑓𝑓  is effective depth of reinforcing steel; γmfc is model uncertainty factor 

regarding to concrete flexure; 𝑓𝑐′ is 28 day yield strength of concrete; 𝜆𝑎𝑠𝑝ℎ is uncertainty 

factor for weight of asphalt on deck; λconc is uncertainty factor for weight of concrete on 

deck; λsteel is uncertainty factor for weight of steel girders; Vtrk-i uncertainty factor for live 

load shear on interior girder; DFi is uncertainty for live load distribution of interior girders; 

𝐷𝐹𝑖−𝑒 is uncertainty for live load distribution of interior-exterior girders; Ibeam uncertainty 

factor for impact on girders. The new equations for time-variant structural reliability are 

given by  

𝑔𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝐿𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡    (A-74) 

𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝛾𝑚𝑓𝑐(𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 1 − 𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 2)  

(A-75) 

𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 1 = 7.75𝜆𝑟𝑒𝑏𝑎𝑟𝑓𝑦𝜆𝑑𝑒𝑓𝑓                         (A-76) 

𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 2 = 0.132 𝜆𝑟𝑒𝑏𝑎𝑟
2 𝑓𝑦2

𝑓𝑐′
                             (A-77) 

𝐿𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑑𝑙 + 𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙              (A-78) 

𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑑𝑙 = 10.65𝜆𝑎𝑠𝑝ℎ + 64.44𝜆𝑐𝑜𝑛𝑐 + 6.93𝜆𝑠𝑡𝑒𝑒𝑙                 (A-79) 

𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 = 𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 1 + 𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 2                (A-80) 

𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 1 = 27𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖𝐼𝑏𝑒𝑎𝑚                                 (A-81) 
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𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 2 = 3.4𝑉𝑡𝑟𝑘−𝑖𝐷𝐹𝑖−𝑒𝐼𝑏𝑒𝑎𝑚                                (A-82) 

where 𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 is the flexure capacity of column footing; 

𝐿𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡  is the flexure demand for column footing; 

𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 1 and  𝑅𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 2 are two parts of total flexure 

capacity of column footing; 𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑑𝑙  and 𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 are dead load and live 

load demand in flexure for column footing, respectively;  𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 1  and 

𝑀𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑙 2 are two parts of total live load demand in flexure for column footing. 

 

 

Appendix B: Probabilistic parameters of each bridge 
element 

 

                  Table B-1. Probabilistic parameters of Pier in shear [47, 154] 
variable Distribution Mean Standard deviation 

Dpier (inch) Normal 0.5 0.015 

Rcorr pier (mils/year) Normal 1.989 0.231 

γmsc Normal 1.075 0.108 

λdeff     Normal 1 0.02 

f y (ksi) Normal 56 6.16 

𝒇𝒄′  (ksi) Normal 2.76 0.497 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

Vtrk-i Normal 1.27 0.036 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 

Vpier dl shear (kips) Normal 97.54 11.9 
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Table B-2. Probabilistic parameters of Exterior Girder 1 in shear [47, 154] 
variable Distribution Mean Standard deviation 

A1  Normal 80.2 33.684 

B1 Normal 0.593 0.2372 

Fy(ksi) Normal 36.33 4.21 

γmsg Normal 1.14 0.137 

λconc Normal 1.05 0.105 

λsteel Normal 1.03 0.082 

Vgirder1 dl Normal 17.4355 1.67215 

Vtrk-e Normal 0.905 0.064 

DFe Normal 0.982 0.122 

Ibeam Normal 1.14 0.114 

 

 

Table B-3. Probabilistic parameters of Exterior Girder 1 in flexure [47, 154] 
variable Distribution Mean Standard deviation 

A1  Normal 80.2 33.684 

B1 Normal 0.593 0.2372 

Fy(ksi) Normal 36.33 4.21 

γmfg Normal 1.11 0.128 

λconc Normal 1.05 0.105 

λsteel Normal 1.03 0.082 

M girder1  dl (fit-kip) Normal 191 18.32 

Mtrk-e  

(fit-kip) 

Normal 306 22.76 

DFe Normal 0.982 0.122 

Ibeam Normal 1.14 0.114 
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Table B-4. Probabilistic parameters of Interior-exterior Girder 2 in shear [47, 154] 

 
variable Distribution Mean Standard deviation 

A2  Normal 80.2 33.684 

B2 Normal 0.593 0.2372 

Fy(ksi) Normal 36.33 4.21 

γmsg Normal 1.14 0.137 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

Vgirder2 dl Normal 29 3.235 

Vtrk-i Normal 1.27 0.036 

DFi-e Normal 1.14 0.142 

Ibeam Normal 1.14 0.114 

 

 

 

Table B-5. Probabilistic parameters of Interior-exterior Girder 2 in flexure [47, 154] 

 
variable Distribution Mean Standard deviation 

A2  Normal 80.2 33.684 

B2 Normal 0.593 0.2372 

Fy(ksi) Normal 36.33 4.21 

γmfg Normal 1.11 0.128 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

M girder2  dl (fit-kip) Normal 317.735 35.43 

Mtrk-i (fit-kip) Normal 435.6 14.76 

DFi-e Normal 1.14 0.142 

Ibeam Normal 1.14 0.114 
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Table B-6. Probabilistic parameters of Interior Girder 3 in shear [47, 154] 

 
variable Distribution Mean Standard deviation 

A3  Normal 34 3.06 

B3 Normal 0.65 0.065 

Fy(ksi) Normal 36.33 4.21 

γmsg Normal 1.14 0.137 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

Vgirder3 dl Normal 27.1787 3.45 

Vtrk-i Normal 1.27 0.036 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 

 

 

 

Table B-7. Probabilistic parameters of Interior Girder 3 in flexure [47, 154] 

 
 

 

 

 

 

 

 

 

 

 

 

variable Distribution Mean Standard deviation 

A3 Normal 34 3.06 

B3 Normal 0.65 0.065 

Fy(ksi) Normal 36.33 4.21 

γmfg Normal 1.11 0.128 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

M girder3  dl (fit-kip) Normal 297.8235 37.76 

Mtrk-i  

(fit-kip) 

Normal 435..6 14.76 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 
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Table B-8. Probabilistic parameters of Interior Girder 4 shear [47, 154] 
 

 

 

 

 

 

 

 

 

 

 

 

Table B-9. Probabilistic parameters of Interior Girder 4 flexure [47, 154] 
 

 

 

 

 

 

 

 

 

 

 

 

variable Distribution Mean Standard deviation 

A4  Normal 34 3.06 

B4 Normal 0.65 0.065 

Fy(ksi) Normal 36.33 4.21 

γmsg Normal 1.14 0.137 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

Vgirder4  dl Normal 27.1787 3.45 

Vtrk-i Normal 1.27 0.036 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 

variable Distribution Mean Standard deviation 

A4 Normal 34 3.06 

B4 Normal 0.65 0.065 

Fy(ksi) Normal 36.33 4.21 

γmfg Normal 1.11 0.128 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

Mgirder4  dl (fit-kip) Normal 297.8235 37.76 

Mtrk-i  

(fit-kip) 

Normal 435..6 14.76 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 
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Table B-10. Probabilistic parameters of Exterior Interior Girder 5 shear [47, 154] 

 
variable Distribution Mean Standard deviation 

A5  Normal 34 3.06 

B5 Normal 0.65 0.065 

Fy(ksi) Normal 36.33 4.21 

γmsg Normal 1.14 0.137 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

V girder5 dl Normal 27.1787 3.45 

Vtrk-i Normal 1.27 0.036 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 

 

 

 

Table B-11. Probabilistic parameters of Interior Girder 5 flexure [47, 154] 

 
 

 

 

 

 

 

 

 

 

 

variable Distribution Mean Standard deviation 

A5 Normal 34 3.06 

B5 Normal 0.65 0.065 

Fy(ksi) Normal 36.33 4.21 

γmfg Normal 1.11 0.128 

λconc Normal 1.05 0.105 

λasph Normal 1 0.25 

λsteel Normal 1.03 0.082 

M girder5  dl (fit-kip) Normal 297.8235 37.76 

Mtrk-i  

(fit-kip) 

Normal 435..6 14.76 

DFi Normal 1.309 0.163 

Ibeam Normal 1.14 0.114 
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Table B-12. Probabilistic parameters of Column footing in flexure [47, 154] 

 
variable Distribution Mean Standard deviation 

λrebar Normal 1 0.015 

γmfc Normal 1.02 0.061 

λdeff     Normal 1 0.02 

f y (ksi) Normal 56 6.16 

𝒇𝒄′  (ksi) Normal 2.76 0.497 

λconc Normal 1.05 0.105 

λsteel Normal 1.03 0.082 

λasph Normal 1 0.25 

Mcolumn footing dl Normal 85.45 9.997 

Vtrk-i Normal 1.27 0.36 

DFi Normal 1.309 0.163 

DFi-e Normal 1.14 0.142 

Ibeam Normal 1.14 0.114 

 

Appendix C: Discretization schema 
Pier shear 

Variable Probable range Discretized states Final interval boundaries 

Dpier (inch) 0.4-0.6 12 0,0.4: (0.6-0.4)/10:0.6,∞ 

Tcorr pier pier (year) 0-50 51 0:1:50 

Time(slab) 0-50 51 0:1:50 

Rcorr pier (mils/year) 0.8-3.2 12 0,0.8:(3.2-0.8)/10:3.2,∞ 

γmsc 0.6-1.6 12 0,0.6:0.1:1.6, ∞ 

λdeff     0.9-1.1 12 0,0.9:0.02:1.1, ∞ 

f y (ksi) 26-86 12 0,26:(86-26)/10:86,∞ 

𝒇𝒄′   (ksi) 0.3-5.3 12 0,0.2:5/10:5.3, ∞ 

Vpier dl shear (kips) 40-160 12 0,40:120/10:160, ∞ 

Vtrk-i 1-1.5 12 0,1:0.05:1.5,∞ 

DFi 0.5-2.1 12 0,0.5:(2.1-0.5)/10:2.1,∞ 

Ibeam 0.6-1.8 12 0,0.6:(1.8-0.6)/10:1.8,∞ 

Vpier ll shear (kips) 10-240 22 0,10:10.5:240, ∞ 

Rpier shear capacity (kips) 70-1000 12 0,70:93:1000,∞ 

Rpier shear capacity 2 (kips) 75-205 12 0,75:130/10:205, ∞ 

Rpier shear capacity 1 (kips) 78-900 12 0,78:82.2:900, ∞ 

Lpier load shear (kips) 60-300 32 0,60:8:300,∞ 
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Exterior Girder 1 in shear 

Variable Probable range Discretized states Final interval boundaries 

A1 0-200 41 0:5:200,∞ 

B1 0-1.5 31 0:1.5/30:1.5,∞ 

Time (girder 1) 0-50 51 0:1:50 

dcorr1 (10-6m) 0-7239 50 0:7239/50:7239 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmsg 0.45-1.8 22 0,0.45:1.35/20:1.8,∞ 

V  girder1 dl (kips) 9-25 42 0,9:16/40:25,∞ 

Vgirder1  ll (kips) 12-150 52 0,12:138/50:150,∞ 

Vtrk-e(kips) 0.5-1.3 22 0,0.5:.0.8/20:1.3,∞ 

DFe 0.4-1.6 22 0,0.4:1.2/20:1.6,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

R girder1  shear (kips) 0-600 102 0:600/100:600,∞ 

Lgirder1  shear (kips) 20-180 82 0,20:(180-20)/80:180,∞ 

 

Exterior Girder 1 in flexure 

Variable Probable 

range 

Discretized states Final interval boundaries 

A1 0-200 41 0:5:200,∞ 

B1 0-1.5 31 0:1.5/30:1.5,∞ 

Time (girder 1) 0-50 51 0:1:50 

dcorr1 (10-6m) 0-7239 50 0:7239/50:7239 

Fy(ksi) 15-57 12 0,15:(57-15)/10:57,∞ 

γmfg 0.5-1.8 12 0,0.5:0.13:1.8, ∞ 

M girder1  dl   

(ft-kip) 

100-280 12 0,100:180/10:280,∞ 

Mtrk-e(ft-kip) 190-420 12 0,190:23:420,∞ 

DFe 0.4-1.6 12 0,0.4:0.12:1.6,∞ 

Ibeam 0.6-1.8 12 0,0.6:0.12:1.8,∞ 

M girder1  ll  

(ft-kip) 

100-660 12 0,100:56:660, ∞ 

R girder1  moment ( ft-kip) 500-3100 12 0,500:260:3100,∞ 

L girder1  moment (ft-kip) 250-850 12 0,250:60:850,∞ 

 



210 

210 Appendices  

Interior-Exterior Girder 2 in shear 

Variable Probable range Discretized states Final interval boundaries 

A2 0-200 41 0:5:200,∞ 

B2 0-1.5 31 0:1.5/30:1.5,∞ 

Time (girder 2) 0-50 51 0:1:50 

dcorr2 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmsg 0.45-1.8 22 0,0.45:1.35/20:1.8,∞ 

V  girder2 dl (kips) 13-45 42 0,13:32/40:45,∞ 

Vgirder2  ll (kips) 10-110 52 0,10:20:110,∞ 

Vtrk-i(kips) 1-1.5 22 0,1:0.5/20:1.5,∞ 

DFi-e 0.4-1.9 22 0,0.4:1.5/20:1.6,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

R girder1  shear (kips) 0-600 81 0:600/100:600,∞ 

Lgirder1  shear (kips) 20-160 82 0,20:140/80:140,∞ 

 

 

Interior-Exterior Girder 2 in flexure 

Variable Probable range Discretized states Final interval boundaries 

A2 0-200 41 0:5:200,∞ 

B2 0-1.5 31 0:1.5/30:1.5,∞ 

Time (girder 2) 0-50 51 0:1:50 

dcorr2 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 12 0,15:(57-15)/10:57,∞ 

γmfg 0.5-1.8 12 0,0.5:0.13:1.8, ∞ 

M girder2  dl   

(ft-kip) 

150-490 12 0,150:34:490,∞ 

Mtrk-i(ft-kip) 360-510 12 0,360:15:510,∞ 

DFi-e 0.4-1.9 12 0,0.4:0.15:1.6,∞ 

Ibeam 0.6-1.8 12 0,0.6:0.12:1.8,∞ 

M girder2  ll  (ft-kip) 200-1100 12 0,200:90:1100, ∞ 

R girder2  moment ( ft-kip) 500-3100 102 0,500:2600/100:3100,∞ 

L girder2  moment (ft-kip) 300-1600 62 0,300:1300/60:1600,∞ 
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Interior Girder 3 in shear 

Variable Probable range Discretized states Final interval boundaries 

A3 19-49 32 0,19:1:49,∞ 

B3 0.3-1 32 0,0.3: (1-0.3)/30:1,∞ 

Time (girder 3) 0-50 51 0:1:50 

dcorr 3 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmsg    

V  girder3 dl (kips) 15-49 42 0,15:(49-15)/40:49,∞ 

Vgirder3  ll (kips) 1-106 42 0,1:(106-1)/40:106,∞ 

Vtrk-i(kips) 1-1.5 22 0,1:0.5/20:1.5,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

R girder3  shear (kips) 0-600 81 0:600/80:600,∞ 

Lgirder3  shear (kips) 10-165 52 0,10:(165-10)/50:165,∞ 

 

 

Interior Girder 3 in flexure 

Variable Probable range Discretized states Final interval boundaries 

A3 19-49 32 0,19:1:49,∞ 

B3 0.3-1 32 0,0.3: (1-0.3)/30:1,∞ 

Time (girder 3) 0-50 51 0:1:50 

dcorr 3 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmfg 0.5-1.8 22 0,0.5:1.3/20:1.8, ∞ 

M girder3  dl   

(ft-kip) 

130-450 42 0,130:320/40:450,∞ 

Mtrk-i(ft-kip) 360-510 52 0,360:3:510,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

M girder3  ll  

(ft-kip) 

120-1200 52 0,120:1080/50:1200, ∞ 

R girder3  moment ( ft-kip) 700-3000 82 0,700:2300/80:3000,∞ 

L girder3  moment (ft-kip) 500-1500 52 0,500:20:1500,∞ 
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Interior Girder 4 in shear 

Variable Probable range Discretized states Final interval boundaries 

A4 19-49 32 0,19:1:49,∞ 

B4 0.3-1 32 0,0.3: (1-0.3)/30:1,∞ 

Time (girder 4) 0-50 51 0:1:50 

dcorr 4 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmsg    

V int girder dl (kips) 15-49 42 0,15:(49-15)/40:49,∞ 

V girder4  ll (kips) 1-106 42 0,1:(106-1)/40:106,∞ 

Vtrk-i(kips) 1-1.5 22 0,1:0.5/20:1.5,∞ 

Vtrk-i(kips) 0-3 21 0:3/20:3,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

R girder4  shear (kips) 0-600 81 0:600/80:600,∞ 

Lgirder4 shear (kips) 10-165 52 0,10:(165-10)/50:165,∞ 

 

Interior Girder 4 in flexure 

Variable Probable range Discretized states Final interval boundaries 

A4 19-49 32 0,19:1:49,∞ 

B4 0.3-1 32 0,0.3: (1-0.3)/30:1,∞ 

Time (girder 4) 0-50 51 0:1:50 

dcorr 4 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmfg 0.5-1.8 22 0,0.5:1.3/20:1.8, ∞ 

Mgirder4  dl   

(ft-kip) 

130-450 42 0,130:320/40:450,∞ 

Mtrk-i(ft-kip) 360-510 52 0,360:3:510,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

Mgirder4  ll  

(ft-kip) 

120-1200 52 0,120:1080/50:1200, ∞ 

R girder4  moment ( ft-kip) 700-3000 82 0,700:2300/80:3000,∞ 

Lgirder4  moment (ft-kip) 500-1500 52 0,500:20:1500,∞ 
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Interior Girder 5 in shear 

Variable Probable range Discretized states Final interval boundaries 

A5 19-49 32 0,19:1:49,∞ 

B5 0.3-1 32 0,0.3: (1-0.3)/30:1,∞ 

Time (girder 5) 0-50 51 0:1:50 

dcorr 5 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmsg    

Vgirder5  dl (kips) 15-49 42 0,15:(49-15)/40:49,∞ 

Vgirder5  ll (kips) 1-106 42 0,1:(106-1)/40:106,∞ 

Vtrk-i(kips) 1-1.5 22 0,1:0.5/20:1.5,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

R girder5  shear (kips) 0-600 81 0:600/80:600,∞ 

L girder5 shear (kips) 10-165 52 0,10:(165-10)/50:165,∞ 

 

Interior Girder 5 in flexure 

Variable Probable range Discretized states Final interval boundaries 

A3 19-49 32 0,19:1:49,∞ 

B3 0.3-1 32 0,0.3: (1-0.3)/30:1,∞ 

Time (girder 5) 0-50 51 0:1:50 

dcorr 3 (10-6m) 0-7366 50 0:7366/50:7366 

Fy(ksi) 15-57 42 0,15:(57-15)/40:57,∞ 

γmfg 0.5-1.8 22 0,0.5:1.3/20:1.8, ∞ 

Mgirder5  dl   

(ft-kip) 

130-450 42 0,130:320/40:450,∞ 

Mtrk-i(ft-kip) 360-510 52 0,360:3:510,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

M girder5  ll (ft-kip) 120-1200 52 0,120:1080/50:1200, ∞ 

R girder5  moment ( ft-

kip) 

700-3000 82 0,700:2300/80:3000,∞ 

Lgirder5  moment (ft-kip) 500-1500 52 0,500:20:1500,∞ 
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Column footing in flexure 

Variable Probable range Discretized states Final interval boundaries 

λrebar 0.9-1.1 22 0,0.9:(1.1-0.9)/20:1.1,∞ 

γmfc 0.7-1.3 22 0,0.7:0.6/20:1.3, ∞ 

λdeff     0.9-1.1 22 0,0.9:0.01:1.1, ∞ 

f y (ksi) 26-86 32 0,26:(86-26)/30:86,∞ 

𝒇𝒄′   (ksi) 0.3-5.3 27 0,0.2:5/25:5.3, ∞ 

Vtrk-i(kips) 0-3 21 0:3/20:3,∞ 

DFi 0.5-2.1 22 0,0.5:(2.1-0.5)/20:2.1,∞ 

DFi-e 0.4-1.9 22 0,0.4:1.5/20:1.6,∞ 

Ibeam 0.6-1.8 22 0,0.6:(1.8-0.6)/20:1.8,∞ 

M column footing dl (ft-kip) 45-135 42 0,45:90/40:135, ∞ 

M column footing ll (ft-kip) 10-110 82 0,10:100/80:110, ∞ 

M column footing ll 1 (ft-kip) 10-100 42 0,10:90/40:100, ∞ 

M column footing ll 2 (ft-kip) 1.6-9 42 0,1.6:7.4/40:9, ∞ 

R column footing moment 0-500 102 0,100:620/100:720,∞ 

R column footing moment 2 30-500 42 0,2:1.2:50, ∞ 

R column footing moment 1 200-640 52 0,200:440/50:640, ∞ 

L column footing moment 70-230 102 0,70:160/100:230,∞ 

 

Appendix D: Estimation of corrosion, crack and spalling 
initiation time 

Based on the knowledge in Section 3.2.2, the initiation time of corrosion, crack and 

spalling for bridge elements made of reinforced concrete can be estimated. With identified 

parameters, the detailed simulation for the deterioration processes of bridge slab and pier 

are implemented based on MCS as follows: 

Slab  

Table D-1. Parameters of slab for corrosion initiation time [47, 154] 
 

 

 

 

 

variable Distribution Mean Standard deviation 

C0 (slab, %) Normal 1.08 0.072 

Dc (in2/sec, 10-9) Normal 5.42 0.387 

X (slab, in) Normal 2.25 0.337 

Ccr (%) Normal 0.4 0.05 
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Table D-2. Parameters of slab for the time from corrosion initiation to cracking [47, 97, 
154] 
 

 

 

 

 

 

 

 

 

 

 

Table D-3. Parameters of slab for the time from crack initiation to spalling [47, 154, 164] 
 

 

 

 

 

************************************************************************* 

%                                MATLAB codes for slab deterioration processes 

************************************************************************* 

% Calculate the corrosion initiation time Tcorr 

NPar=100000; % the sampling size 
C=zeros(NPar,1); 
t1=zeros(NPar,1); %sampled corrosion initiation time 
C0=normrnd(1.08,0.072,NPar,1); % the chloride concentration on the concrete surface, C0    
%  (slab,%) 
x=normrnd(2.25,0.337,NPar,1); % Distance to reinforcement X (slab, in) 

variable Distribution Part1 Part2 

D (slab, in) Normal 0.625 0.0187 

α Uniform 0.523 (Fe(OH)3) 0.622 (Fe(OH)2) 

icorr (mA/ft2) Normal 2.35 0.27 

d0(4.9mils) Deterministic 4.9 — 

f t (psi) Deterministic 472 — 

𝒇𝒄′  (ksi) Normal 2.76 0.497 

C(slab, in) Normal 2.25 0.337 

𝝆𝒓𝒖𝒔𝒕 (lb/ft3) Deterministic 225 — 

Ec (ksi) Deterministic 3900 — 

𝝋𝒄𝒓 Deterministic 2 — 

Vc Deterministic 0.18 — 

𝝆𝒔𝒕𝒆𝒆𝒍 (lb/ft3) Uniform 7750 8050 

variable Distribution Part1 Part2 

Wlim(mm) Uniform 0.3  1  

icorr (µA/cm2)   Normal 2.51 0.29 

𝒇𝒄′  (MPa) Normal 19 3.24 

C(slab,mm) Normal 57.15 8.56 
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Dc=normrnd(5.42,0.387,NPar,1); % the diffusion coefficient for chloride in concrete, Dc  
%  (in2/sec, 10-9) 
Cc=normrnd(0.4,0.05,NPar,1); %critical chloride concentration Ccr (%) 
C=1-Cc./C0; 
for i=1:100000 
 t1(i,1)=x(i,1)^2/(4*Dc(i,1))*((erfinv(C(i,1)))^-2)*(10^9)/31536000; 
end 
Tcorr=t1; %sampled corrosion initiation time 
T=0:1:50; % time horizon 
Ncorr=histc(Tcorr,T)';%counts the number of values of sampled corrosion initiation time that fall 
%between the elements in the edges vector 
Mcorr=cumsum(Ncorr); % calculate cumulative sum of elements of Ncorr 
Hist_corr= Ncorr / Mcorr (1,51);% calculate the histogram of corrosion initiation time 
 
% Calculate the crack initiation time Tcrack 
 
D2=normrnd(15.875,0.475,NPar,1); % the diameter of reinforcement steel, D (slab, in) 
C2=normrnd(2.25,0.337,NPar,1); % cover depth, C(slab, in) 
d0=4.9; % the thickness of the pore band around the steel/concrete interface 
Ec=3900000; % elastic modulus of the concrete, Ec (ksi) 
qcr=2;   % the creep coefficient of the concrete, 𝝋_𝒄𝒓 
i_corr2=normrnd(2.35,0.27,NPar,1); % the annual mean corrosion rate, icorr  (mA/ft2) 
afa=0.523+0.099*rand(NPar,1); % the molecular weight of steel weigh divided by the molecular 
% weight of corrosion products, α 
Den=7750+300*rand(NPar,1); % the density of steel, 𝜌𝑠𝑡𝑒𝑒𝑙 (lb/ft3)  
kp=0.098*(1./afa)*3.14.*D2.*i_corr2; % the rate of rust production 
a2=(D2/25.4+2*d0/1000)/2;  % inner radius of a thick-wall concrete cylinder, (in) 
b2=C2+(D2/25.4+2*d0/1000)/2; % is outer radius of a thick-wall concrete cylinder, (in) 
Eef=Ec/(1+qcr); % effective elastic modulus of the concrete 
W=3.6.*D2.*3.14.*(472.*C2.*((a2.*a2+b2.*b2)./(b2.*b2-
a2.*a2)+0.18)/Eef+d0/1000)*25.4./(1+3600.*afa./Den); % the critical amount of  
%  corrosion products 
t2=W.*W./(2.*kp); % the time from corrosion initiation to cracking  
Tcrack=t1+t2; % crack initiation time from the beginning 
Ncrack=histc(Tcrack,T)';% counts the number of values of  sampled crack initiation time that fall 
% between the elements in the edges vector 
Mcrack=cumsum(Ncrack); % calculate cumulative sum of elements of Ncrack 
Hist_crack= Ncrack / Mcrack (1,51); %calculate the histogram of crack initiation time 
 
% Calculate the spalling initiation time Tspalling 

C3=normrnd(57.15,8.56,NPar,1); % concrete cover of slab (mm) 
i_corr3=normrnd(2.51,0.29,NPar,1); % corrosion rate icorr (µA/cm2)   
fc=normrnd(19,3.24,NPar,1); % concrete compressive strength (MPa) 
Wlim=0.3+0.7*rand(NPar,1); % limit crack width, (mm) 
wc=27./(fc+13.5); % water-cement ratio estimated from Bolomey’s formula 
t3=0.0167.*i_corr3.^(-1.1).*(42.9*(wc./C3).^(-0.54)+((Wlim-
0.3)/0.0062).^1.5); % the time from crack initiation to spalling 
Tspalling=t1+t2+t3; %spalling initiation time from beginning 
Nspalling=histc(Tspalling,T)'; %counts the number of values of sampled spalling initiation  
%  time that fall between the elements in the edges vector 
Mspalling=cumsum(Nspalling); % calculate cumulative sum of elements of Nspalling 
Hist_spalling = Nspalling/ Mspalling(1,51); %calculate the histogram of spalling initiation 
% time 
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Pier 

Table D-4. Parameters of pier for corrosion initiation time [47, 154] 
 

 

 

 

 

Table D-5. Parameters of pier for the time from corrosion initiation to cracking [47, 97, 
154] 

 

 

 

 

 

 

 

 

 

 

 

Table D-6. Parameters of pier for the time from crack initiation to spalling [47, 154, 164] 

 
 

 

 

 

 

variable Distribution Mean Standard deviation 

C0 (pier, %) Normal 0.72 0.048 

Dc (in2/sec, 10-9) Normal 5.42 0.387 

X (pier, in) Normal 2.0 0.3 

Ccr (%) Normal 0.4 0.05 

variable Distribution Part1 Part2 

D (pier,in) Normal 0.5 0.015 

α Uniform 0.523 (Fe(OH)3) 0.622 (Fe(OH)2) 

icorr (mA/ft2) Normal 2.35 0.27 

d0(4.9mils) Deterministic 4.9 — 

f t (psi) Deterministic 472 — 

𝒇𝒄′  (ksi) Normal 2.76 0.497 

C(pier, in) Normal 2 0.3 

𝝆𝒓𝒖𝒔𝒕 (lb/ft3) Deterministic 225 — 

Ec (ksi) Deterministic 3900 — 

𝝋𝒄𝒓 Deterministic 2 — 

Vc Deterministic 0.18 — 

𝝆𝒔𝒕𝒆𝒆𝒍 (lb/ft3) Uniform 7750 8050 

variable Distribution Part1 Part2 

Wlim(mm) Uniform 0.3  1  

icorr (µA/cm2)   Normal 2.51 0.29 

𝒇𝒄′  (MPa) Normal 19 3.24 

C(pier,mm) Normal 50.8 7.62 



218 

218 Appendices  

************************************************************************* 

%                                MATLAB codes for pier deterioration processes 

************************************************************************* 

% Calculate the corrosion initiation time Tcorr 

NPar=100000; % the sampling size 
C=zeros(NPar,1); 
t1=zeros(NPar,1); %sampled corrosion initiation time 
C0=normrnd(0.72,0.048,NPar,1); % the chloride concentration on the concrete surface, C0    
%  (pier,%) 
x=normrnd(2,0.3,NPar,1); % Distance to reinforcement X (pier, in) 
Dc=normrnd(5.42,0.387,NPar,1); % the diffusion coefficient for chloride in concrete, Dc  
%  (in2/sec, 10-9) 
Cc=normrnd(0.4,0.05,NPar,1); %critical chloride concentration Ccr (%) 
C=1-Cc./C0; 
for i=1:100000 
 t1(i,1)=x(i,1)^2/(4*Dc(i,1))*((erfinv(C(i,1)))^-2)*(10^9)/31536000; 
end 
Tcorr=t1; %sampled corrosion initiation time 
T=0:1:50; % time horizon 
Ncorr=histc(Tcorr,T)';%counts the number of values of sampled corrosion initiation time that fall 
%between the elements in the edges vector 
Mcorr=cumsum(Ncorr); % calculate cumulative sum of elements of Ncorr 
Hist_corr= Ncorr / Mcorr (1,51);% calculate the histogram of corrosion initiation time 
 
% Calculate the crack initiation time Tcrack 
 
D2=normrnd(12.7,0.381,NPar,1); % the diameter of reinforcement steel, D (pier, in) 
C2=normrnd(2,0.3,NPar,1); % cover depth, C(pier, in) 
d0=4.9; % the thickness of the pore band around the steel/concrete interface 
Ec=3900000; % elastic modulus of the concrete, Ec (ksi) 
qcr=2;   % the creep coefficient of the concrete, 𝝋_𝒄𝒓 
i_corr2=normrnd(2.35,0.27,NPar,1); % the annual mean corrosion rate, icorr (mA/ft2) 
afa=0.523+0.099*rand(NPar,1); % the molecular weight of steel weigh divided by the molecular 
% weight of corrosion products, α 
Den=7750+300*rand(NPar,1); % the density of steel, 𝜌𝑠𝑡𝑒𝑒𝑙 (lb/ft3)  
kp=0.098*(1./afa)*3.14.*D2.*i_corr2; % the rate of rust production 
a2=(D2/25.4+2*d0/1000)/2;  % inner radius of a thick-wall concrete cylinder, (in) 
b2=C2+(D2/25.4+2*d0/1000)/2; % is outer radius of a thick-wall concrete cylinder, (in) 
Eef=Ec/(1+qcr); % effective elastic modulus of the concrete 
W=3.6.*D2.*3.14.*(472.*C2.*((a2.*a2+b2.*b2)./(b2.*b2-
a2.*a2)+0.18)/Eef+d0/1000)*25.4./(1+3600.*afa./Den); % the critical amount of  
%  corrosion products 
t2=W.*W./(2.*kp); % the time from corrosion initiation to cracking  
Tcrack=t1+t2; % crack initiation time from the beginning 
Ncrack=histc(Tcrack,T)';% counts the number of values of  sampled crack initiation time that fall 
% between the elements in the edges vector 
Mcrack=cumsum(Ncrack); % calculate cumulative sum of elements of Ncrack 
Hist_crack= Ncrack / Mcrack (1,51); %calculate the histogram of crack initiation time 
 
% Calculate the spalling initiation time Tspalling 

C3=normrnd(50.8,7.62,NPar,1); % concrete cover of pier (mm) 
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i_corr3=normrnd(2.51,0.29,NPar,1); % corrosion rate icorr (µA/cm2)   
fc=normrnd(19,3.24,NPar,1); % concrete compressive strength (MPa) 
Wlim=0.3+0.7*rand(NPar,1); % limit crack width, (mm) 
wc=27./(fc+13.5); % water-cement ratio estimated from Bolomey’s formula 
t3=0.0167.*i_corr3.^(-1.1).*(42.9*(wc./C3).^(-0.54)+((Wlim-
0.3)/0.0062).^1.5); % the time from crack initiation to spalling 
Tspalling=t1+t2+t3; %spalling initiation time from beginning 
Nspalling=histc(Tspalling,T)'; %counts the number of values of sampled spalling initiation  
%  time that fall between the elements in the edges vector 
Mspalling=cumsum(Nspalling); % calculate cumulative sum of elements of Nspalling 
Hist_spalling = Nspalling/ Mspalling(1,51); %calculate the histogram of spalling initiation 
% time 
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