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Abstract—Load in distribution networks is normally 

measured at the 11kV supply points; little or no information is 
known about the type of customers and their contributions to the 
load. This paper proposes statistical methods to decompose an 
unknown distribution feeder load to its customer load sector/sub-
sector profiles.  The approach used in this paper should assist 
electricity suppliers in economic load management, strategic 
planning and future network reinforcements.  
 

Index Terms— Load modeling, Load forecasting, Load 
management   

I.  INTRODUCTION 
nderstanding the usage and the load patterns of customers 
has always been a major interest in the electricity retail 
market. Since July 1st 2006, when full contestability took 

place in Queensland, Australia, an electricity supplier’s ability 
to identify the load details of its users became even more 
critical. With accurate predictions and classifications of the 
customer load types, the electricity suppliers can better 
manage unpredicted situations, such as load forecasting and 
transformer overloads. The network planners and operators 
will also benefit from the customer load findings in areas such 
as load diversification, reinforcement, upgrading and load 
ratings of transformers. 

While there are many benefits associated with 
understanding the customer load types, very few publications 
seem to be focused in this area. One possible explanation may 
relate to the costs of acquiring data for analysis.  This can be 
due to the fact that, although customer load types can be 
obtained by placing measuring devices on the 11KV feeders, 
but this can be a very expensive exercise for utilities to get the 
information.   

Basu [1] provided some insights on the topic of classifying 
loads into customer profiles. Basu conducted surveys and from 
the data obtained separated the load feeder into components of 
residential, commercial and industrial. Since the classification 
process was not cited in his paper, therefore a comparison 
between Basu’s method and the methods in this paper was not 
possible. The next important difference is that Basu focused 
on load prediction rather than on customer profiles and feeder 
decomposition.  
This paper uses a technique in classifying the feeders into 
                                                           

 

different customer load profiles and then uses this information 
to decompose unknown feeder loads to find the customer load 
type ingredients. 

II.  DATA   COLLECTION 
Three types of customer loads; residential, commercial and 

industrial were considered in this paper. The final estimated 
results can be affected by the initial information collected 
from the known feeder load types.  Accuracy can be obtained 
by applying the following constrains on the half hourly feeder 
loads under study. The constrains are given as follows: 

 In the customer profile process the selected known 
feeder loads need to be composed largely of just 
one type of customer from one of the three sectors.  

 Within the data collection period the selected 
known feeder loads should have sufficient data sets 
to reduce the effect of possible errors; missing load 
values and abnormalities in the measurements. 

 Within the data collection period the selected 
known feeder loads should not have gone through 
any major upgrades or changes. 

 To improve the model’s ability to generalize, 
known feeder loads were selected from a range of 
different area locations. 

While all constrains were taken into consideration, 34 
feeder loads in total (11 from each sector and 1 unknown 
feeder for section V; decomposition) selected for the study.  

III.  MODEL   FORMULATION 
The half-hourly load profile of a feeder describes how one 

unit of ampere (directly relating to power) is drawn throughout 
a week. The load profile of a given feeder is expressed as a 
sequence of proportions: 

,7,,1,48,,1,, KK == dtp dt  
 where t denotes the half-hourly time interval and d denotes 

the day of the week (Monday to Sunday). The element dtp , of 
a load profile gives the proportion of the weekly load that is 
drawn during the t-th half-hourly interval of day d. We express 
this property mathematically as in (1): 

)1(.0,1 ,, ≥=∑∑ dt
d t

dt pp  

In order to reduce the number of parameters that need to be 
estimated in a load profile, it is assumed that the load drawn 
for each weekday follows the same pattern. This is expressed 
mathematically as 

5,1, tt pp ==L  
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