QUT

Queensland University of Technology
Brisbane Australia

This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Nourbakhsh, G., Chiu, H.Y., Mishra, Y., & Ghosh, A. (2012) Distribution
feeder loads classification and decomposition. In IEEE Power & Energy
Society General Meeting (PESGM 2012), 22-26 July 2012, Manchester
Grand Hyatt, San Diego, CA.

This file was downloaded from: http://eprints.qut.edu.au/53184/

© Copyright 2012 IEEE

This work has been submitted to the IEEE for possible publication. Copy-
right may be transferred without notice, after which this version may no
longer be accessible.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:



https://core.ac.uk/display/10912936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Nourbakhsh,_Ghavameddin.html
http://eprints.qut.edu.au/view/person/Mishra,_Yateendra.html
http://eprints.qut.edu.au/view/person/Ghosh,_Arindam.html
http://eprints.qut.edu.au/53184/

Distribution Feeder Loads Classification and
Decomposition

G. Nourbakhsh, H. Y Chiu, Y. Mishra, Member, IEEE A. Ghosh, Fellow Member, IEEE,

Abstract—Load in distribution networks is normally
measured at the 11kV supply points; little or no information is
known about the type of customers and their contributions to the
load. This paper proposes statistical methods to decompose an
unknown distribution feeder load to its customer load sector/sub-
sector profiles. The approach used in this paper should assist
electricity suppliers in economic load management, strategic
planning and future network reinforcements.

dex Terms— Load modeling, Load forecasting, Load
apagement

1. INTRODUCTION

nderstanding the usage and the load patterns of customers

has always been a major interest in the electricity retail

market. Since July 1% 2006, when full contestability took
place in Queensland, Australia, an electricity supplier’s ability
to identify the load details of its users became even more
critical. With accurate predictions and classifications of the
customer load types, the electricity suppliers can better
manage unpredicted situations, such as load forecasting and
transformer overloads. The network planners and operators
will also benefit from the customer load findings in areas such
as load diversification, reinforcement, upgrading and load
ratings of transformers.

While there are many benefits associated with
understanding the customer load types, very few publications
seem to be focused in this area. One possible explanation may
relate to the costs of acquiring data for analysis. This can be
due to the fact that, although customer load types can be
obtained by placing measuring devices on the 11KV feeders,
but this can be a very expensive exercise for utilities to get the
information.

Basu [1] provided some insights on the topic of classifying
loads into customer profiles. Basu conducted surveys and from
the data obtained separated the load feeder into components of
residential, commercial and industrial. Since the classification
process was not cited in his paper, therefore a comparison
between Basu’s method and the methods in this paper was not
possible. The next important difference is that Basu focused
on load prediction rather than on customer profiles and feeder
decomposition.

This paper uses a technique in classifying the feeders into

different customer load profiles and then uses this information
to decompose unknown feeder loads to find the customer load
type ingredients.

II. DATA COLLECTION

Three types of customer loads; residential, commercial and
industrial were considered in this paper. The final estimated
results can be affected by the initial information collected
from the known feeder load types. Accuracy can be obtained
by applying the following constrains on the half hourly feeder
loads under study. The constrains are given as follows:

v In the customer profile process the selected known
feeder loads need to be composed largely of just
one type of customer from one of the three sectors.

v' Within the data collection period the selected
known feeder loads should have sufficient data sets
to reduce the effect of possible errors; missing load
values and abnormalities in the measurements.

v' Within the data collection period the selected
known feeder loads should not have gone through
any major upgrades or changes.

v To improve the model’s ability to generalize,
known feeder loads were selected from a range of
different area locations.

While all constrains were taken into consideration, 34
feeder loads in total (11 from each sector and 1 unknown
feeder for section V; decomposition) selected for the study.

III. MODEL FORMULATION

The half-hourly load profile of a feeder describes how one
unit of ampere (directly relating to power) is drawn throughout
a week. The load profile of a given feeder is expressed as a
sequence of proportions:

Pra» =148, d=1,..]7,
where t denotes the half-hourly time interval and d denotes
the day of the week (Monday to Sunday). The element p, , of
a load profile gives the proportion of the weekly load that is

drawn during the t-th half-hourly interval of day d. We express
this property mathematically as in (1):

;Z Pa=1, p,20. ()

In order to reduce the number of parameters that need to be
estimated in a load profile, it is assumed that the load drawn
for each weekday follows the same pattern. This is expressed
mathematically as

Py ="""=PDs



for all t. The loads drawn on Saturday and Sunday are
permitted to differ from each other and from the load drawn
on the weekdays. These basic assumptions appear consistent
with graphical inspection of the load data (see Fig. 1 and Fig.
2). No further assumptions are made concerning the structure
or functional form of the load profile.
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Fig. 2 Residential feeder plot for 1 week

The load profile only describes the proportion of weekly
load drawn during each of the half-hour intervals. In order to
relate the load profile to the data we need to introduce a new
variable m,, which models the amount of current drawn during
week w and can be written as (2). The observed amount of
current drawn on the feeder at time ¢ on day d and week w is

modeled by (3).
m, 20, (2)

yt,d,w = mwpt,d + et,d,w’ (3)

where ¢4, denotes the stochastic variation in the current
drawn that is not explained by the weekly expected load and
load profile. This stochastic component is assumed to be white
noise with mean zero and constant, finite variance. We
consider this model to be as simple as possible while capturing
the important characteristics of the load feeder. The most
important assumption for this model is that the load profile
does not change during the data collection period. Therefore
any change in the load pattern must be explained by the
expected weekly load m,,. For example, if growth occurs in an
area supplied by a feeder then the additional load is assumed
to have a similar pattern to the original.

The parameters of this model, the load profile p,, and
weekly expected load m,, are estimated using least squares.
Due to the constraints (1) and (2), the standard Gauss-Newton
algorithm cannot be applied. Fortunately, the bi-linear form of
the model (3) leads to a particularly simple algorithm for
finding the least squares estimate.

Initialize m: For all w set
m, =T7x48xy,

where V is the sample mean of the feeder load data.

Repeat until convergence:
1. Update profile: Solve

. 2
min Z (yt,d,w - mwpt,d) s (4)
Pra t,d,w
subjected to the constraints (1).
2. Update weekly expected load: Solve

mmin Z(yt,d,w —MyPia )2’ (5)

v otdw

subjected to the constraints (2).

In the Update profile step of the algorithm, given an
estimate of the weekly expected load, the profile can be
estimated solving a linear least squares problem subject to a
linear equality constraint and non-negative constraints.
Algorithms for solving this problem can be found in [3, 4, 5].
In the data analyzed, the non-negativity constraint did not
need to be explicitly enforced and so the profile estimate could
be obtained by solving the standard linear least squares
problem.

In the Update weekly expected load step of the algorithm,
given an estimate of the profile the weekly expected load can
be estimated by solving a linear least squares problem subject
to non-negativity constraints. As the weekly expect load
parameters are orthogonal, the solution to this problem is

simply
0, m, <0,
m, =5 . R
Yo \m,, m,20,

where m is the solution to (5) without the constraints (2).
As was the case when updating the profile, the non-negativity
constraints never had to be explicitly enforced for the data
analyzed in this paper. The two steps of the algorithm are
iterated until convergence is reached. Convergence is assessed
by changes in residual squared error and by changes in the
parameter estimates.

Using this algorithm, the load profile and expected weekly
load were estimated. The predicted load values generated from
the model and the actual load values from the feeder load are
plotted in Fig. 3. The model appears to fit the feeder load data
quite well, except for some large anomalous peaks. The
anomalous peaks might be due to sudden changes in
temperature from one day to the next, the breakdown of the
feeder supplying to the neighboring area causing the feeder
under study abnormal overloaded, or a ceremonial/public
holiday. Peaks of this type are not modeled by (3). However,
provided that such events are rare, the effect of these peaks on
the estimated profile should be minimal.



The profile for this feeder is shown in Fig. 4. This process
was repeated for each of the 33 load feeders of homogeneous
sectors. The variation in the profiles of the 11 industrial load
feeders is shown in Fig. 5.
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Fig. 4 Weekday, Saturday and Sunday load plot for a single industrial feeder.
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Understanding the uncertainty in parameter estimation is an
important part of any statistical analysis. For the model
proposed in this paper, one could possibly construct
confidence intervals and error bands on the feeder profiles
using some form of bootstrap [7] or using the limiting
distribution of the estimates. However, this is not a primary
concern for the current paper since the feeder profiles are not
of direct interest and are only used as an intermediate step in
the decomposition of the feeders. Of greater importance to the

current work is the accuracy of the decomposition method

which will be investigated using cross-validation in section
VI

IV. SUB-SECTOR /CUSTOMER PROFILES

So far we have described how load profiles for given
feeders can be estimated from observed load data. We now
aim to determine load profiles for a given sector or sub-sector.
Each feeder load profile is affected to some extent by local
factors that are of little importance to the general sector to
which it belongs. To obtain sector profiles we average over the
feeder load profiles in each sector. This averaging reduces the
effect of variation in feeder load profiles on the sector profile.
It is easily verified that the sector profiles satisfy the
conditions (1) imposed on load profiles.

One problem that may arise in the above procedure is that
the classification of the areas that the feeders serve into
industrial, residential and commercial is too coarse. In that
case, the average of the feeder load profiles is not
representative of the load profiles in the sector. This problem
can be remedied by performing some type of clustering of the
feeder load profiles within each sector to identify appropriate
sub-sectors. In this paper we use the K means clustering
algorithm where the distance between two feeder loads is
measured by the Euclidean metric. Various criteria have been
proposed to determine the most appropriate number of
clusters, for example [8]. However, the aim of this paper is to
determine percentages associated with each sector, the number
of clusters by the performance in prediction as assessed by
cross-validation are determined.

Fig. 6 illustrates three sub-sector load profiles obtained
from the commercial sector. This information along with the
sub-sector load profiles established from the industrial and
residential sectors forms the bases used to decompose an
unknown feeder load.
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Fig. 6 Sub-sectors within commercial

In this section we have introduced an assumption that is
crucial to our analysis: the load pattern of any feeder follows
the same basic behaviour of a sector or sub-sector. If a single
feeder load operates in completely different fashion to all
other feeders, then it will not be possible to form accurate
sector or sub-sector profiles. This situation may arise, for
example, if a load feeder supplies to an industrial company
that operates 24 hours 7 days a week whereas all other



observed industrial load feeds supply industries where
operation hours are from 7:30 to around 18:00, 5 days a week.

V. DECOMPOSING A LOAD FEEDER

In the previous section, load profiles were identified for
each of the observed subsectors. These load profiles were built
on the assumption that the area serviced by each feeder was
homogeneous, that is, only one sector was predominant in the
area serviced. However, feeders will often serve an area that
comprises a number of different subsectors. Therefore, a
method is needed which is able to determine which subsectors
are present in the area serviced by the feeder and how much
each subsector contributes to the load drawn.

Assume that, using the algorithm described in Section IV, a
characteristic load profile for each subsector is identified. The
load profiles of the subsectors is denoted by

1 N
B Pl

where S is the number of subsectors. It is assumed that the
load profile of the feeder load for the new area can be
represented by (6) subjected to the constraint (7)

DPia= a)lf)t}d te-t me:j’ZJa (6)
w, =20. (7)

The coefficients @), give the proportion of the load that

a)1+...a)m :1’

each subsector draws. In particular, if @), is zero, then the i-th
subsector does not make any contribution to the load drawn by
this feeder. The coefficients @, in equation (6) are estimated

by least squares subject to the constraints (7). Hence, they can
be estimated using the algorithm described in [3, 4, 5].

As an example, this method is applied to a feeder servicing
an area whose composition in terms of the subsectors is
unknown. The load profile of the feeder is first determined
using the method described in Section III. The load profile is
then decomposed into the subsector load profiles. The
estimated coefficients ® are given in Table 1.

Sub-Sectors/Profiles Correlation Values
Ind1 0.1433486
Coml 0.1489686
Com?2 0.02814233
Com3 0
Resl 0.6795404

Table 1. Contribution of subsector Profiles

From Table I, it can be seen that this feeder supplies mostly
to the residential sector. The estimated coefficient for then
subsector Com3 is zero. This implies that the Com3 subsector
is not present in the area supplied by the feeder.

Having determined the relative contributions of each
subsector load profile, it is possible to plot the contribution of
each subsector to the average weekly load. This is achieved by
multiplying the respective load profiles by the product of their
relative contribution ® and the average of the weekly
multiplier for the feeder load under study. Fig. 7 shows the
subsector contributions of the load feeder under study. It is
worth noting that the sum of load contributions closely follows
the real load values with an overall difference of less than 1%.
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Fig. 7 Contribution values of Sub-Sectors for an
unknown feeder

VI. CROSS VALIDATION AND TESTING

Cross validation is a technique by which an approximately
unbiased estimate of the predictive accuracy of an estimated
model is obtained. The method has a long history in statistics
[9] and widely accepted in the statistics and machine learning
communities. The technique involves splitting the data set into
two groups, a training set and a test set. The parameters of the
model are estimated using the data in the training set. The
resulting model is then used to predict the test set and the
accuracy of these predictions measured. This can be repeated
over different partitions of the data in training and test sets
with the results average to provide an approximately unbiased
estimate of accuracy. In this paper we shall use leave-out-one
cross validation. While leave-out-one cross validation
generally refers to removing a single observation from the data
set, in this analysis we will be removing one load feeder at a
time to form the training set. The test set is that load feeder
that was removed. This procedure is repeated for each of the
33 homogeneous load feeders that were observed.

Firstly, the case where the sector load profiles are formed
by taking averages of the feeder load profiles is considered.
Using the method of Section V, the load feeder is decomposed
into the three sectors. As each load feeder in the data set is
believed to be homogeneous, the estimated proportions ;
should be close to one for one of the sectors and close to zero
for the other two. For some load feeders this is not observed.
This may be due to variation in the load feeder which is not
reflected by the sector load profile averages. In any case, as
we are dealing with load feeders that are believed to be
homogeneous, a load feeder is classified according to the
largest  estimated  proportion . The  following
misclassifications are observed: 1 for Industrial, 4 for
Commercial and 0 for Residential. Cross Validation Results
for Industrial, commercial and residential loads are shown in
Fig.8, Fig. 9 and Fig.10 respectively.

As the commercial sector appeared to be most problematic,
the possibility of subsectors within the commercial sector is
considered. Two and three possible subsectors were
considered and their accuracy assessed by cross-validation. A
load feeder is now classified according to the sector with the
largest estimated proportion, summing over its subsectors.
When the procedure is applied with two subsectors for the



commercial sector, the number of misclassifications was
increased: 3 for Industrial, 6 for Commercial and 0 for
Residential. However, applying the procedure with three
subsectors for the commercial sector, the fewer
misclassifications are observed: 3 for Industrial, 0 for
Commercial and 0 for Residential.
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The results from the classifications with three subsectors for
the commercial sector are summarized in the plots below. In
these plots a circle represents the weight assigned to the
Industrial sector, a triangle the weight assigned to the
Commercial sector and a cross the weight assigned to the

Residential sector. Ideally, all weights would be concentrated
near one or zero as appropriate.

Further investigation into this issue discovered that the

reason for the commercial misclassifications may be caused
by the similar load pattern of the commercial and residential
sectors. To cater for the shopping needs of the residential
customers many commercial shops and businesses have
altered their opening hours to suit those of the residential
sector. One example is the grocery chain Woolworth that has
changed their opening hours to include Saturday and Sunday
for the convenience of the customers.
The other misclassifications where an industrial feeder was
mistaken as a commercial feeder and a commercial feeder as
an industrial feeder can be explained after the feeder loads
were compared with its respective sector feeder loads. After
comparison it was found that those feeder loads demonstrated
completely different load patterns to the other feeder loads in
its respective sector. Since the feeder loads were unique and
different from all the other feeder loads in its sector, therefore
the model can not accurately identify the type of sector the
feeder load belonged to. With this discovery it is possible to
classify these feeder loads as unique sector feeders for future
study references.

Other measures of accuracy besides the 0 — 1 loss could be
considered. Of particular interest are measures that are more
sensitive to the error in the estimated proportion. This aspect
was not investigated since we only have the classification of
the load feeders when they are homogeneous.

VII. CONCLUSIONS AND RECOMMENDATIONS

This paper examined an approach that would allow
electricity suppliers to distinguish the type of (sub)-
sector/customer load profiles contributing to the 11KV loads
without installing measuring devices that can be very
expensive.

Although this simple model has some imperfections when
classifying subsector/customer load profiles, the methodology
has considerable potential. One area requiring further
investigation is the incorporation seasonal, weather and
temperature variations into the load profiles. Another area of
investigation is the accuracy assessment of the estimated
proportions in the decomposition (6). This will require a
combination of additional data and expert knowledge against
which the estimates can be verified.

With  up-to-date and adequate information on
subsector/customer load profiles and using the method
described in this paper, it is possible to find the types of load
and their percentages contributed to an unknown feeder.

This application can provide multiple benefits for
electricity suppliers in areas such as; economic load
management such as load diversification relating to electricity
block purchasing, load forecasting, retailing and strategic
network planning.

VIII. REFERENCES

[1] S.N. Basu, “Short Term Localized Load Prediction”, IEEE Transactions
on Power Systems, Vol. 7, No. 1, pp. 389-397, 1992.

[2] G.A.F. Seber and C. J. Wild, (1988) Nonlinear Regression, New York:
Wiley.



R. Bro and S. De Jong ‘A fast non-negatively-constrained least squares
algorithm’ Journal of Chemometrics, 11, pp. 393-401, 1997

C.L. Lawson and B.J. Hanson, (1974), Solving Least Squares
Problems, New York: Prentice-Hall

S. N. Wood, “Monotonic smoothing splines fitted by cross validation”,
SIAM Journal on Scientific Computing, Vol. 15(5), pp.1126-1133,
1994
T. Hastie, R. Tibshirani and J. Friedman, (2001) Elements of Statistical
Learning: data mining, inference, and prediction, New York: Springer.
D.N. Politis, ‘The impact of bootstrap methods on time series analysis,’
Statistical Science, 18, pp. 219-230, 2003
R. Tibshirani, G. Walther and T. Hastie, “Estimating the Number of
Clusters in a Data Set via the Gap Statistic”, Journal of the Royal
Statistical Society, Series B (Statistical Methodology), Vol. 63, pp. 411-
423,2001

S. Arlot and A. Celisse ‘A survey of cross-validation procedures for
model selection’, Statistics Surveys, pp. 40-79, 2010



