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I. INTRODUCTION

Visual sea-floor mapping is a rapidly growing applica-

tion for Autonomous Underwater Vehicles (AUVs). AUVs

are well-suited to the task as they remove humans from a

potentially dangerous environment, can reach depths human

divers cannot, and are capable of long-term operation in

adverse conditions. The output of sea-floor maps generated by

AUVs has a number of applications in scientific monitoring:

from classifying coral in high biological value sites [10] to

surveying sea sponges to evaluate marine environment health

[4].

In order to generate self consistent visual maps with ac-

curately geo-referenced imagery over large swathes, accurate

localization of the AUV is a strict requirement. While localiza-

tion is relatively easy for surface vehicles due to GPS access,

subsurface vehicles are either dependent on beacon based

infrastructure (analogous to GPS localization) or Simultaneous

Localization and Mapping (SLAM) using on-board sensors.

In many subsurface environments of interest, beacon based

infrastructure is unavailable or extremely sparse, meaning that

SLAM is the only viable option for accurate localization.

In many AUV based substrate monitoring applications, an

Information or Delayed state filtered SLAM solution [4, 1] is

the standard method to integrate a large number of sensors and

achieve an adequate pose solution. For visual mapping, using

a set of downward facing cameras and active light strobes,

imagery is taken at regular intervals and geo-referenced from

the SLAM solution to generate 2D mosaics and 3D recon-

structions of the sea floor [2].

Many land and airborne robots utilize Visual Odometry

(VO) to estimate vehicle pose from sequential monocular or

stereo frames [8, 9], in addition to some underwater scenarios

[7]. Visual odometry has been demonstrated to perform well

as a single estimator for estimating pose (used in combination

with loop closure detection to constrain error growth), but also

has the potential to be used in combination with other sensors

in a filtered framework. By tracking visual features on the sea-

floor it has distinct advantage as a passive pose estimator with

a rich information output, and is capable of rivaling much more

expensive inertial sensors in generating motion and orientation

updates.

In contrast to other vision-based sensing scenarios, the

imagery from the Sirius AUV [2] presents some difficulties

when performing ‘traditional’ VO. In order to conserve energy

used for strobing, imagery captured by Sirius is of very low

frequency and low overlap (∼ 30%), meaning that feature

observations are fleeting and difficult to triangulate accurately.

This adversely affects estimated pose using techniques suited

to high overlap imagery. Such limited visual information

manifests itself in rapid pose estimate degeneration using

standard 6-DOF VO techniques. However, it is possible to

take advantage of the constrained motion of the AUV (see

Sec. II) and include additional readings from a minimal set of

other sensors to constrain the VO and produce accurate pose

over large trajectories in this specific scenario. Applications of

this research may assist future development in two key ways:

deployment of future vehicles at lower cost and increased

operation time due to a reduced sensor suite, and capability

improvement to existing vehicles by adding additional sensor

information to the filtered solution.

Fig. 1. The Sirius AUV on deployment in Scott Reef, WA, Australia

For this workshop, this paper presents active research into

performing high accuracy sea-floor mapping using only stereo

vision with extremely low overlap imagery and magnetometer

input from the Sirius AUV. By taking advantage of the



constrained motion of the AUV and integrating magnetometer

data to correct yaw drift, accurate pose estimation is achieved

using a minimal set of sensors. A brief introduction to the

methodology, including a novel 2-point pose estimator and

modified bundle adjustment are presented, and preliminary

results on a 300m trajectory are shown. As a qualitative

assessment of the trajectory estimation, 3D reconstructions of

the observed scene are performed using the image data and

pose estimates.

II. THE SIRIUS AUV

The Sirius AUV (Fig. 1) is a modified version of the

SEABed AUV, a mid-size underwater robotic vehicle primarily

designed for large-scale sea-floor mapping for marine science

and reef health monitoring. The AUV is equipped with a large

set of oceanographic instruments including a magnetometer

and a high-resolution (1360× 1024) downward facing stereo

camera pair (∼ 7.5cm baseline) with strobes for imagery. The

vehicle typically captures imagery at 1Hz from a height of

2m above the sea-floor while maintaining a forward velocity

of approximately 0.5m/s. Key to the development of theory

presented here, this AUV design is passively stable in pitch

and roll, meaning its motion is effectively constrained to only

four degrees of freedom. Typically, roll and pitch of the vehicle

rarely exceeds 1◦, particularly in the still water environments

in which the AUV operates, actively avoiding impacts from

strong currents and wave motion nearer the surface.

III. METHODOLOGICAL APPROACH

Here we present both the proposed visual odometry pipeline,

and separately address 3D mesh generation and texturing from

the final pose output.

The standard visual odometry pipeline follows three main

repeating steps for each captured stereo pair:

• Structure triangulation

• Camera pose update

• Bundle adjustment

Our modified visual odometry algorithm follows the same

basic pipeline, but with two major differences:

• A novel 2-point pose estimator that assumes a zero or

negligible roll and pitch in the solution

• The inclusion of an additional objective in the bundle

adjustment stage, assisting to minimise angular drift in

the final pose estimate.

The proposed pipeline is shown in Figure 2. We emphasize

here that the only input to the proposed pipeline is stereo

images and temporally registered magnetometer data, no ad-

ditional sensors are included.

A. Structure Triangulation

From the initial image pair at the start of the sequence, 3D

structure is initialized via stereo triangulation. It is assumed

that the homogeneous transform between the stereo camera

pair is known and fixed, constraining scale of the scene and

cameras to a known metric value. After any new pose update

previously unseen structure is triangulated from the stereo
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Fig. 2. The proposed Visual SLAM Pipeline

pair. Additionally, new observations of known 3D structure

are used to optimally re-triangulate the points via least squares

optimization.

B. Camera Pose Update

Following the optimal triangulation of observed structure,

the pose of the next camera pair (specifically the left camera,

from which the right hand camera is derived) is extracted via

SURF based feature matching to recover the 2D projections

of the 3D points. This is achieved by solving a linear sys-

tem of equations including the observed scene points X =
[

X Y Z 1
]T

and their projections x =
[

u v 1
]T

into the image to find the elements of the matrix encoding the

camera pose: M = [R|t] via the projection equation:

x = PX,P = KM

where P is termed the camera matrix and K is the camera

intrinsics matrix.

In the standard 6-DOF case, a minimum of 3 points

is required to extract the elements which define the pose:

x, y, z, γ, φ, θ. However, if it is assumed that the roll γ and

pitch φ movement in adjacent poses is negligible (i.e. zero) a

4-DOF pose estimate can be generated from the observation of

only two points. This concept is similar to the absolute camera

pose problem with known vertical direction given by an IMU

[3]. Here, the rotation matrix R is simplified to the following

case (we parameterize yaw, θ, in terms of variable q, where

cos θ = 1−q2

1+q2
and sin θ = 2q

1+q2
):

R =
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0
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[

tx ty tz
]T



Hence, the required solution for M, with some mathematical

manipulation, becomes:
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Analytically solving this linear system of equations given

two scene pointsX1,X2 and their projections x1,x2 gives two

closed form solutions for q, from which can be extracted four

potential values of theta: θ1,−θ1, θ2,−θ2. By checking the

residual of the projections two values are immediately rejected,

and the residual of a third point is used to find the correct θ.
It is then possible to substitute the value for q and recover the

other three degrees of freedom. This 2-point pose estimator

is placed in a MLESAC-based iterative estimator to achieve

robustness in the presence of outliers.

C. Bi-Objective Bundle Adjustment

Following a pose update, a sliding window of the most

recent camera positions P̂ and observed structure X̂ are

optimized via bundle adjustment by minimizing the residual

error in the projection of each estimated 3D point X̂j into each

camera P̂i: ǫij(c) = xij − x̂ij , where xij is the projection of

scene point Xj into camera Pi, and x̂ij is the projection of

the corresponding estimate. The convergence of the algorithm

is quantified by the reduction in the residual cost function over

the estimated camera poses and scene structure:

ε2c =
1

nm
Σn

i Σ
m
j ‖ ǫij(c) ‖

2

However, even with bundle adjustment to optimise the pose

and scene structure, drift is still present in the trajectory. This is

most obvious in yaw, where global camera orientation can drift

by up to 40◦ over 500m. A solution to this problem involves

the understanding that bundle adjustment is a special case of

nonlinear least-squares solving. Using this, it is possible to

introduce additional objectives and optimize not only based

on the image re-projection error but additional constraints

provided by other sensors [6].

By introducing a rotational cost term, εr, it is possible

to optimize camera pose using both re-projection error and

readings from an IMU or magnetometer by way of a rotational

residual: ǫi(r) = ri − r̂i, where ri is the orientation estimate

provided by the additional sensor and r̂i is the corresponding

estimate from visual odometry:

ε2r =
1

n
Σn

i ‖ ǫi(r) ‖
2

Here, we parameterize the orientation in the form of a Ro-

driguez vector: r =
[

γ φ θ
]T

and assume the difference

ǫi(r) is small. In the case of our constrained motion estimate,

and because of the parameterization of the rotation, it is

possible to introduce a cost dependent only on one dimension,

yaw, and use a magnetometer to provide the additional data.

Since a magnetometer provides a global orientation it is

possible to correct the orientation of the vehicle globally to

maintain straight trajectories over large distances. The error

in both the re-projection and orientation can be considered

independent and Gaussian, hence weighted by a covariance,

and the costs can be added to give a bi-objective cost:

E (x, r) =
1

(σx)2mn
Σn

i Σ
m
j ‖ ǫij(c) ‖

2 +
1

(σr)2ni

Σn
i ‖ ǫi(r) ‖

2

= ε2c + λ2ε2k

where λ = σx

σr

, indicating the ratio of the two covariances.

Implementing this bi-objective bundle adjustment using mag-

netometer data to constrain the yaw motion will reduce angular

drift and give a better pose estimate.

D. 3D Meshing and Texturing

Following a refined estimate of camera poses over the

entire trajectory based on the 2-point pose estimator and bi-

objective bundle adjustment, textured surface reconstructions

are generated from the imagery for further analysis. For

each stereo pair, dense feature matching with a number of

consistency checks and smoothing operations [5] is performed

on the imagery to gain dense depth maps.

Following a consistent depth map from each pair, a dense set

of 3D oriented points is generated and a Poisson mesh fitted

to the points. Each stereo mesh is arranged into a common

reference frame denoted by the stereo poses, and a second

Poisson surface fitted to 10 pairs in a windowed fashion. This

process preserves local mesh quality to a high degree while

smoothing any poorly reconstructed sections. Texture is added

by projecting each vertex in the mesh back into the estimated

camera poses and extracting the color of the associated image

pixel. These surfaces can be stitched together and visualized

in 3D to assist further research such as estimating individual

coral growth and reef complexity.

IV. PRELIMINARY RESULTS

Initial results from both the modified visual odometry

algorithm and surface reconstruction are presented. The VO

pipeline was run on a dataset gathered by Sirius during a trip

to Scott Reef, North of Western Australia during a Field Trip

in 2011. Over 900 poses, the algorithm was evaluated using

both the 4-DOF pose estimator with only standard bundle

adjustment, and again with the 4-DOF pose estimator with

a bi-objective bundle adjustment that includes yaw data from

the on-board magnetometer. These are compared to the output

of an Information filter using a number of alternative sensors

as a ‘ground truth’. The results are graphed in Figure. 3.

It is immediately observable that over the 300m trajectory,

the unconstrained solution (blue) drifts over time while the

additional constraint from the yaw sensor prevents large scale

drift from the correct heading over time. In Figures 4 and 5

examples of the 3D meshing and texturing pipeline based on

a subsection of the poses in Figure 3 are presented.
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Fig. 3. A plot of 4-DOF VO with standard bundle adjustment (blue) and 4-DOF VO with bi-objective BA (green) over a 300 metre trajectory compared to
an Information Filter based SLAM solution as ground truth (red)

Fig. 4. A high resolution mesh generated by the reconstruction pipeline from 100 camera poses. (see Sec. IV)

Fig. 5. A close up view of a sample of the reconstructed mesh indicating
the quality of reconstruction (see Sec. IV)

V. CONCLUSION

A technique for performing accurate visual pose estimation

using only low-overlap stereo images and yaw data has been

presented. Quantitative results are shown from the constrained

visual odometry technique over a 300m trajectory and recon-

structions generated from this pose estimate show qualitative

accuracy. This research will potentially enable future sub-sea

mapping of high interest locations with increased accuracy

on existing AUVs and enable methods of producing sea-floor

maps with lower cost AUV hardware. Future work will involve

demonstrating the technique on a full mission of the Sirius

AUV, utilizing loop closure via openFABMAP and graph

relaxation to constrain VO drift over the entire mission, and

the development large scale environment reconstructions from

the data.
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