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Abstract

This thesis presents a new approach to compute and optimize feasible three
dimensional (3D) flight trajectories using aspects of Human Decision Making
(HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low alti-
tude environments in the presence of real time planning deadlines. The underlying
trajectory generation strategy involves the application of Manoeuvre Automaton
(MA) theory to create sets of candidate flight manoeuvres which implicitly incor-
porate platform dynamic constraints. Feasible trajectories are formed through
the concatenation of predefined flight manoeuvres in an optimized manner.

During typical UAS operations, multiple objectives may exist, therefore the
use of multi-objective optimization can potentially allow for convergence to a
solution which better reflects overall mission requirements and HDM preferences.
A GUI interface was developed to allow for knowledge capture from a human
expert during simulated mission scenarios. The expert decision data captured is
converted into value functions and corresponding criteria weightings using UTilité
Additive (UTA) theory. The inclusion of preferences elicited from HDM decision
data within an Automated Decision System (ADS) allows for the generation of
trajectories which more closely represent the candidate HDM’s decision strategies.

A novel Computationally Adaptive Trajectory Decision optimization System
(CATDS) has been developed and implemented in simulation to dynamically
manage, calculate and schedule system execution parameters to ensure that the
trajectory solution search can generate a feasible solution, if one exists, within a
given length of time. The inclusion of the CATDS potentially increases overall
mission efficiency and may allow for the implementation of the system on different
UAS platforms with varying onboard computational capabilities.

These approaches have been demonstrated in simulation using a fixed wing

UAS operating in low altitude environments with obstacles present.

Thesis supervisor: D. Campbell

Title: Associate Professor
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1

Introduction

The United States of America’s (US) Department of Defence (DoD) defines
[16} 17] an Unmanned Aircraft (UA) as “A powered, aerial vehicle that does not
carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly
autonomously or be piloted remotely, can be expendable or recoverable, and can
carry a lethal or non-lethal payload.”

The DoD, US Federal Aviation Authority (FAA) and the European Aviation
Safety Agency (EASA) have progressively adopted the term Unmanned Aerial
System (UAS) to signify that UA are part of a complete system consisting of
ground control systems, communication links and launch and retrieval systems
in addition to the UA [18]. The UA or platform is considered as the primary
component of the UAS [19]. Figure presents an example of a UA designed by
Aerosonde for civilian operations.

Shaefer [20] states that the promise of reduced manufacturing costs, reduced
risk to human life and reduced support costs make UA extremely attractive al-
ternatives to manned aircraft for ”dull” or potentially dangerous tasks [21]. This
statement is reflected by the employment of UAS in an increasingly diverse range
of applications. Numerous UAS market forecasts portray a burgeoning future for
the UAS, including predictions of a USD10.6 billion market by 2013 [22].

The UAS sector has had the most dynamic growth of the world aerospace
industry last decade (2001 - 2010) according to Teal Group, with worldwide UAS
expenditure estimated to double this decade to USD11.3 billion annually [23].



1.1 Integration of UAS into the NAS

Figure 1.1: Aerosonde UA

Finnegan [23] states that ”UAS have proved their value in Iraq and Afghanistan
and will be a high priority for militaries in the United States and worldwide.”

Whilst UAS have proven their capability within military fields, the benefits
in civilian applications are only just beginning to be understood [24]. Geograph-
ically sparse countries, such as Australia, have great potential for utilisation of
UAS in a wide range of civilian applications [25]. Such applications can include
asset management, search and rescue, remote sensing, monitoring wildlife and
atmospheric observation [20} 27].

To realise these civilian applications, seamless operation of UAS within the
National Airspace System (NAS) will be required. The NAS refers to the network
of a particular country’s airspace, air navigation facilities, equipment and services,
airports or landing areas [I8]. The following section further details the integration
of UAS into the NAS.

1.1 Integration of UAS into the NAS

Most literature [28; 29] indicate that an Equivalent Level Of Safety (ELOS) to

that of a human pilot will be one of the requirements for integration of UAS into



1.1 Integration of UAS into the NAS

the NAS. Operation of UAS in the NAS creates a new set of challenges that are

not applicable to many military applications. From a regulatory perspective [30],
UAS need to:

1. demonstrate an ELOS to that of a human piloted aircraft,
2. operate in compliance with existing aviation regulations and
3. appear transparent to other airspace users

The following sections elaborate on these requirements for the seamless inte-
gration and operation of UAS in the NAS.

1.1.1 Demonstrating ELOS

Taking the human pilot out of an aircraft removes much sensory and decision mak-
ing capability. The absence of an observing, reacting and decision-making pilot
onboard UA has resulted in higher loss rates when compared to manned aircraft
[31]. Factors such as weather changes, errors in terrain databases, encountering
previously unknown threats and the impacts of vehicle subsystem failures are
difficulties that human pilots routinely deal with, but are beyond the capability
of most current UAS [20].

To demonstrate an ELOS to that of piloted aircraft, UA must exhibit a high
level of autonomy without a human in the loop. Thus, a higher degree of on-
board autonomy is required to replicate some of the sensory and decision making
capabilities of a human pilot. Furthermore, in the presence of communications
failures, the inclusion of onboard autonomy can allow for the UA to safely con-

tinue operations or return to a predefined location.

1.1.2 Compliance with existing aviation regulations

Australia is a unique environment with an overall landmass comparable to that
of the United States, but with a fraction of the population. Understandably, en
route radar coverage is limited to the more populated coastal regions [32], leaving
Air Traffic Control (ATC) with less capability to effectively monitor and prevent

potential collisions in areas outside radar coverage (Figure |1.2)).
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Figure 1.2: Australian civilian NAS (June 2004) [I]

The expected introduction of Automatic Dependent Surveillance Broadcast
(ADS-B) [33;34] and other enabling technologies [35; [36] in Australia’s NAS will
increase the overall capability of Australia’s ATC. This is reflected in Australia’s
long term NAS strategy most importantly through the overall increase in Class
E airspace (Figure [1.3)).

At higher altitudes, suitably equipped aircraft generally fly in Instrument
Flight Rules (IFR) mode in class A and E airspace; where separation services
are provided by ATC. For a UAS operating at higher altitudes in the NAS, the
UA must follow all commands directed by ATC to maintain separation between
other aircraft in proximity.

Applications such as: traffic surveillance; response to emergency situations;
and search and rescue may require aircraft to fly at lower altitudes, where the
immediate environment present a hazard to the platform. For aircraft operations
outside or below radar coverage such as class G airspace, no separation services
are provided by the ATC [I]. Low altitude autonomous UAS operations in the
NAS are expected to be more challenging as onboard automation must meet
mission objectives whilst ensuring that the UA remains safe from the threat of

collision with terrain or other aircraft (if present).
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1
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Figure 1.3: Australian NAS long term strategy [I]

1.1.3 Appearing transparent to other airspace users

The Office of the Secretary of Defense details its vision for the integration of
military UA into the NAS. Transparency is deemed when no distinction is made
between appropriately equipped UAS and manned aircraft by ATC authorities
and airspace regulators [37].

Dalamagkidis [18] states that ”Dealing with mixed UA/manned aircraft op-
erations will present one of the greatest challenges to the air traffic system.” This
is a difficult problem which requires careful coordination between ATC, manned
aircraft pilots and UAS (either human in the loop or potentially onboard auto-
mated systems). Research regarding mixed operations has been undertaken by
Boeing Research and Technology in collaboration with the University of Sheffield
and the Australian Research Centre for Aerospace Automation (ARCAA) as part
of the Smart Skies project [38].

1.2 UAS Autonomy

Bruce [39] states that ” Autonomous means that a system has a choice to make

free of outside influence”. A UA without any onboard autonomy present (e.g.
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HIGH 10. The computer decides everything, acts autonomously, ignoring the human.
9. informs the human only if it, the computer, decides to

. informs the human only if asked, or

. executes automatically, then necessarily informs the human, and

. allows the human a restricted time to veto before automatic execution, or

. executes that suggestion if the human approves, or

. suggests on alternative

. narrows the selection down to a few, or

. The compute offers a complete set of decision/action alternatives, or

=N W ke Ot O N 00

LOW

. The computer offers no assistance: human must take all decisions and actions.

Table 1.1: Levels of automation of decision and action selection [15]

a Radio Piloted Vehicle) requires a human in the loop at all times to perform
all sensory and decision making tasks required during operations. Whilst a com-
pletely autonomous UAS has the freedom and capability to determine and execute
missions in the most optimal manner without human intervention.

There are various methods proposed to provide a measure of system autonomy
[15 B9; [40]. For example, Sheridan’s [I5] scale of autonomy (Table outlines
UAS autonomy requirements on a scale of 1 to 10. Sheridan’s scale of autonomy
states that autonomy levels up to 5 are suited to decision support where the
UAS must have operator approval before performing any operation. Conversely
autonomy levels above 8 are suited to onboard stability and control systems where
the UAS performs all aspects of the operation and then informs the operator; the
operator has no power to veto the decision.

Due to the potential risks of platform failure, UAS operations are continu-
ously monitored by Human Decision Makers (HDMs), where UAS require human
guidance to varying degrees and often through several operators [4I]. For ex-
ample military UA such as the predator (General Atomics) and shadow (AAI)
require two HDMs to perform navigational and payload control functions during
operations. This results in continuous operator workload and places an increased
reliance on the communications link connecting the ground station to the UAS
platform. One method to decrease operator workload is through increased levels

of autonomy onboard UAS.
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1.2.1 Increasing onboard autonomy levels

A higher degree of onboard autonomy allows for the replication some of the sen-
sory and decision making capabilities of a human pilot. Most literature indicates
that this capability can be realised through the implementation of an intelligent
control architecture [42]. Replicating the capabilities of a human pilot is not
a trivial task however. For example, during a routine manned flight in civilian
airspace, the pilot uses available data (e.g. terrain maps), sensor readings and
instructions from ATC to fly the aircraft safely to its destination. The pilot is ca-
pable of dealing with varying situations including and not limited to: turbulence,
onboard failures (e.g. actuator, sensor, engine), performing a forced landing and
avoiding potential collisions with terrain and other aircraft.

To encapsulate the qualities of a human pilot within UAS, the intelligent
control architecture must accurately model a pilot’s decision making process. An
example of aircraft pilots cognitive process [2] during routine flight is shown in
(Figure . The cognitive model is relatively complex but the reader should
note that human pilots have their own sensors (e.g. vision, touch) and actuators
(e.g. hands, feet). Pilots use their own perception (e.g. recognition of obstacles)
in conjunction with memory (prior experiences) to take appropriate actions in a

broad range of scenarios.
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Figure 1.4: Cognitive model of a pilot’s decision mMaking process [2]
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Chandler [3] decomposes a generic aerial mission into a hierarchy of layers,
each representing specific tasks undertaken by pilots or ATC. Figure[L.5|presents a
simplified version of Chandler’s global planning visualisation. These layers can be
automated to provide UAS platforms with the onboard capability to operate with
a higher level of autonomy. The following section discusses how the automation
of the flight planning and navigation components of Chandler’s global planning
visualisation may provide UAS with greater capability to operate with greater

autonomy in the NAS.

Goal Point Planning obstacles

30'—_7-”

Path Planning

Trajectory Planning

waypoints IERELS 8}

Figure 1.5: Global planning visualisation [3]
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1.2.2 Autonomous low altitude UAS operations in the
NAS

Automation of UAS flight planning and navigation can be broadly categorised
into the following two areas of research; path and trajectory planning. Path
planning is the generation of a path (represented as a set of waypoints from an
initial position to the goal) to achieve mission success in some optimised manner
[43].

The trajectory planner outputs the desired platform track, represented as
a continuous collision free flight trajectory. The track represents the traversal
through a waypoint set in an optimal manner whilst ensuring that the UAS
meets platform performance bounds and non-holinomic constraints (for fixed wing
UAS platforms). Trajectory planning algorithms are dependent on either a path
planning algorithm or a human in the loop to provide a set of mission level
waypoints for traversal (Figure [1.5]

Conducting UAS operations autonomously at lower altitudes in the NAS
may present several challenges not encountered during high altitude flight (Sec-
tion . Terrain and urban structures become hazards to the safety of the
UAS operations and must be taken into consideration during flight planning and
navigation. Assuming that optimised mission waypoints are available, the inclu-
sion of an automated trajectory planning solution onboard UAS platforms would
allow for safe autonomous flight through low altitude environments. Automat-
ing the trajectory planning process however, is non-trivial and some challenges

include:

e incorporation of complex platform dynamics and the guarantee that trajec-

tories generated are collision free,
e trajectory optimization to meet given mission requirements,

e real-time constraints on computation time imposed by obstacles in the flight
path.

These challenges are discussed in further detail in the following sections.



1.2 UAS Autonomy

1.2.2.1 Incorporating platform dynamics and collision free guarantees

Generally, there are two types of UA; rotary/helicopter UA that have the ability
to brake and hover, and fixed wing UA which exhibit non-holinomic constraints
during flight. Rotary UAS generally have shorter flight times while fixed wing
UAS often have greater endurance but must always maintain some minimum
(greater than stall) velocity. This research project focuses on fixed wing platforms
due to their increased velocity and endurance capabilities, and their ability to
operate at a greater range of altitudes than their rotary counterparts [26].

Inclusion of platform dynamics is required for a fixed wing UAS allows for
the generation of flyable and trackable flight trajectories [13]. Platform dynamics
refers to a mathematical model which allows for the inclusion of a platforms
aerodynamic constraints such as; minimum and maximum cruising velocity, climb
rate, minimum turn radius and attitude rates for fixed wing UA [44; [45].

In order to ensure UA safety during autonomous operations, the platform
must remain in a collision free state. The platform must have the capability to
enter a hold a manoeuvre during periods of operations when they are required
to remain in a stationary location. Scenarios requiring the execution of hold
manoeuvres are dependent on platform capability and mission requirements, and
may include; awaiting instructions from HDM, conducting surveillance opera-

tions, communications loss, or sensor malfunction.

1.2.2.2 Trajectory optimisation

During the course of flight operations; the pilot/UAS operator may consider mul-
tiple criteria in order to achieve mission success. Examples of mission criteria may
include: achieving mission goal/s; safety of the vehicle; the environment and the
public at all times; mission efficiency (minimising time, fuel and/or cost); and/or
limiting operations to within a specified altitude ceiling. Mission objectives and
their priorities may also dynamically change at any point during UAS operations
(usually at the discretion of the operator).

Decision making during autonomous trajectory planning requires the selec-

tion of the most optimal feasible collision free trajectory with respect to one or

10
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more criteria. Therefore, the use of Multi-Criteria Decision Aid (MCDA) method-
ologies during autonomous trajectory planning may allow for convergence to a
solution which better reflects overall mission requirements as determined by the
candidate HDM. MCDA is a field of research for the development of multi-criteria
decision tools to assist HDMs with formulating decisions whilst considering more
than one criteria [46].

Franke [4] states that with increasing levels autonomy onboard UA, opera-
tors move away from direct control of the platform towards a management by
exception control paradigm (Figure . Management by exception occurs when
the UAS performs planning and execution and informs the HDM of its current
and future actions. The operator has the option to veto or override the current
plans and revert to a lower control paradigm if required (similar to level six of
Sheridan’s scale of autonomy presented in Table . Operating at higher au-
tonomy levels requires the HDM to have a sense of trust with the automation,
where he/she feels that the automated systems onboard UAS are making correct

decisions.

Direct Control

Management by Consent Management by Exception

Requests

Commands
—

Status, plans

Status Overrides

Approvals

= Vehicle performs planning, sends plan

+ Vehicle performs planning and sends - :
to operator, begins execution

* Operator does all decision making
plan to operator for approval

and information processing

« Vehicle performs no action without
obtaining operator approval

+ Operator highly interruption-driven

+ Operator must react quickly to ensure
vehicle safety for time critical actions

* Moderate workload

» Requires operator to constantly
attend to vehicle
» High workload

+ Operator has ability to override vehicle
actions, plans

« Operator must maintain awareness of
situation

* Requires high degree of intelligence,
autonomy for vehicle

* Low workload

Figure 1.6: Proposed shift in control paradigms with increasing levels of system

autonomy [4]

It is important to note, that during the decision making process, the HDM will
apply his/her own values, priorities and preferences for a given decision problem
[47]. Different human operators may possess varying viewpoints on whether a
given solution is acceptable or to be vetoed. Supervising HDM maybe reluctant
to allow a UAS which they are supervising to continue operations autonomously if

they do not agree with the decisions being made by automated systems onboard.

11



1.3 Research statement

The analysis of expert decision data gathered from a set of human operators
may provide a deeper understanding of objectives considered and the preferences
they apply during the decision making process. Incorporating this information
into a multi-objective optimization process can potentially allow automated tra-
jectory planners to better encapsulate mission criteria considered by supervising

HDMs, and subsequently increase the acceptance of the autonomous solution.

1.2.2.3 Real-time computation constraints on planning

Conducting autonomous UAS operations at low altitude cluttered environments
may present several challenges not encountered during high altitude flight. Ter-
rain and urban structures become hazards to the safety of the UAS. Thus, the
proximity of obstacles to the UAS may place real-time constraints on the time
available to compute valid trajectory solutions.

Assuming that the trajectory planner is deterministic in nature, the time re-
quired to compute a solution is dependent on the onboard computational capabil-
ities of the platform and the efficiency of the algorithms applied. Additionally, the
time available to the planner to compute a solution is also dependent on platform
velocity. Finally, the onboard computational capabilities and flight performance
of individual UA can also vary.

For operations in environments where planning must be performed within a
limited time frame; the UAS onboard processing capabilities may not be sufficient
to generate a feasible optimised collision free trajectory plan before the imposed
deadline. Thus, a computationally adaptive trajectory planning solution may
allow for the computation of optimised solutions in the presence of real-time

deadlines onboard UA with different computational and performance capabilities.

1.3 Research statement

This research investigates the development of a trajectory planning solution to
provide UAS with the capability to operate with greater autonomy during low

altitude operations in the NAS. Enabling autonomous low altitude UAS opera-
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tions can allow for search and rescue, wildlife monitoring, fire fighting and aerial

law enforcement assistance missions to be undertaken [26} 27].

1.3.1 Research questions

Most literature states that certain aspects of aircraft operations can be automated
through the application of intelligent control architectures. Automated trajectory
planning has been identified as potentially providing the onboard capability for
autonomous UAS operations in low altitude partially known environments in the
NAS. Whilst it is outside the scope of this research to implement and validate
an intelligent control architecture, architectures or frameworks can be identified
which may allow for the incorporation of trajectory planning as a specific module

or layer within the overall architecture. This leads to the first research question:

1. Can trajectory planning be effectively automated for standalone au-

tonomous operations on a UAS platform?

The ability to represent trajectory planning as specific standalone module
allows for the development and validation of the trajectory planning aspect inde-
pendently, whilst still providing the flexibility for integration of other layers (e.g.
path planning or trajectory tracking) to form a functional architecture which can
be integrated onboard UA to enable autonomous functionality. However, some
of the challenges present during the automation of the trajectory planning pro-
cess include; inclusion of complex platform dynamics, meeting HDM preferences
and priorities and the presence of real-time constraints during planning. These

challenges are encapsulated in the second research question:

2. Under what conditions can a flight management concept be developed
to ensure that the supervisory HDM’s mission criteria are successfully met dur-
ing operations in low altitude environments with real time planning constraints

present?

The analysis and incorporation of expert decision data into the decision mak-
ing component of the trajectory planner, may result in better encapsulation of

HDM’s mission priorities and preferences during autonomous UAS operations. A
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computationally adaptive trajectory planning solution may allow for the compu-
tation of optimised solutions in the presence of real-time constraints. Real-time
constraints placed on a trajectory planner are dependent on; platform’s onboard
computational capabilities, efficiency of algorithms applied and platform dynamic
capabilities. Thus, both components of this research question do not overlap and
can be investigated in parallel as separate components and then integrated to-

gether to form the overall flight management concept.

1.3.2 Research Objectives

Based on the research questions posed in the previous section, the research ob-

jectives are defined as:

1. Identification of architecture/s which allow for the inclusion of trajec-

tory planning as a standalone module.

2. Development of a methodology for the inclusion of HDM preferences

during trajectory planning.

3. Development of a flight management concept to enable autonomous
trajectory planning during low altitude operations in the presence of real time

constraints.

1.3.3 Research Outcomes

The research outcomes are derived from the research objectives outlined in the

previous section. The major outcomes of this research are:

1. A methodology for the capture and inclusion of human preference in-
formation, to meet HDM mission requirements during automated trajectory plan-

ning.

2. A computationally adaptive flight management concept to enable au-

tonomous trajectory planning, in the presence of real time constraints, onboard

14
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platforms with varying computational capabilities.

In order to verify the proposed methodologies and concepts, test scenarios
were developed for validation of this research through simulation. Case studies
were developed in simulation to demonstrate the applicability of this research
to generate trajectories which allow for safe autonomous UA missions in the
NAS, whilst meeting HDM mission requirements, in the presence of real-time

constraints.

3. Proposed methodologies and concepts were validated through simulated
test scenarios which represent potential low altitude missions in the NAS. This
demonstrates the application of this research to autonomous low altitude UAS

operations in the NAS.
Additionally, it is important to publish the findings of this research:

4. A number of peer reviewed papers resulting from this research were pub-
lished in the form of conference proceedings and journal articles which encourages

discussion and provides scope for the extension of this research.

1.3.4 Research Methodology

This section presents the methodology applied to meet the research objectives.
The methodology can be divided into three sections; review of existing litera-
ture, development of proposed methodologies and concepts, and verification and
validation of the proposed solutions.

A review of relevant literature is performed in the field of intelligent control
architectures and UA trajectory planning (Section . The outcomes of this re-
search results in the selection of a suitable standalone trajectory planning frame-
work (Section which allows for verification and validation of the proposed
flight management concepts detailed in the Research Objectives (Section .

Whilst Manoeuvre Automaton (MA) [48] and safe state [49] theories implic-
itly guarantee trajectory feasibility and platform safety respectively, the imple-
mented algorithms are validated through the generation of fixed wing trajectories

in simulated low altitude cluttered environments. The resulting safe automaton
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(Section is inspected to ensure that dynamic and kinematic constraints are
not exceeded (Section [3.3).

To develop a methodology for the capture and inclusion of human decision
information to meet HDM mission requirements, data captured from a candidate
human experts is first compared to a reference automated algorithm (LC-2) where
preferences remain fixed (Section . HDM preferences are elicited through
the application of UTilité Additive (UTA) theory [50] (Section [4.2.2).

It is expected that if automated decisions applying preferences elicited from
the candidate human expert data (UTA-4) consistently generates the same or
similar decisions to the HDM, then the residual error between HDM decisions and
UTA-4 will be less than that between HDM decisions and LC-2 (Section [4.2.3).
This is verified by computing the UTA-4 and LC-2 automated solutions and
comparing the output trajectories to the HDM trajectories selected for all decision
scenarios (see Appendix [A] for list of decision scenarios completed by each HDM).

These results are validated through the comparison of UTA-4 and LC-2 tra-
jectory solutions computed online in simulated low altitude decision scenarios, to
demonstrate that UTA-4 allows for the generation of trajectories which incorpo-
rate aspects of the candidate HDM’s decision style (Section [4.3.3).

To develop a computationally adaptive flight management concept, trajec-
tory planning was performed in low altitude simulated urban environments using
fixed length automatons. Due to variable trajectory segment lengths, real-time
planning was only feasible for small automaton sizes using systems with high
computational capabilities.

The Computationally Adaptive Trajectory Decision optimization System (CATDS)
flight management concept was proposed to dynamically select automaton size,
to ensure that, trajectory segments can be computed within the available window
of time (Section . It is expected that by selecting automaton sizes resulting
in the computation of each trajectory segment within a finite planning window,
the resulting final trajectory can be computed in real-time.

This concept is validated via online trajectory planning in low altitude urban
environments, to demonstrate that real-time planning and more efficient use of
the planning window is possible through the inclusion of the CATDS. Addition-

ally, simulations are conducted using two test systems with processor speeds, to

16



1.3 Research statement

demonstrate the algorithms ability to generate solutions, in real-time, onboard
platforms with varying computational capabilities (Section .

Finally, both concepts are integrated together to demonstrate the overall flight
management concept proposed in the second research question (Section .
The overall flight management concept is validated through planning in simulated

low altitude partially known urban environments (Section [5.3).

1.3.5 Research Contributions

This section highlights the contributions of this research in the field of autonomous
trajectory planning through the application of intelligent control and MCDA
methodologies to autonomous UAS systems.

There are two primary contributions of this research, the first contribution
is the inclusion of HDM preferences for the selection of flight manoeuvres which
better encapsulate HDM mission requirements through UTA theory [50]. This
concept can be divided into three components; data capture, preference elicitation
and preference selection during decision making.

The algorithm uses a Graphical User Interface (GUI) for data capture where
HDMs are tasked with the selection of desired flight manoeuvres, from a given
set of alternatives, for unique decision scenarios. The elicitation of human expert
decision data representing HDM flying styles into mathematical value functions is
performed using UTA theory. HDM preferences are applied during automated se-
lection of the desired flight manoeuvre segments using Multiple Attribute Value
Theory (MAVT) [51} 52]. This research allows for the quantification of HDM
or pilot decisions and provides a deeper understanding of the decisions consid-
ered by a candidate HDM during UAS operations. This demonstrates that the
unique decision styles of individual HDMs can be better represented during au-
tomated trajectory planning through the inclusion of HDM preferences, via the
UTA MCDA technique.

The second contribution is the CATDS flight management concept, which
extends on the real-time planning component of Frazzoli’s hybrid architecture

[53], to allow for real-time replanning in environments with variable planning
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deadlines by dynamically varying automaton size. This approach is divided into
offline and online components.

The offline component benchmarks the times required to generate and select
a safe feasible flight manoeuvres for a range of automaton sizes (alternative set
resolutions). The online component selects the appropriate automaton sizes to
ensure that a trajectory segment solution can be computed within the finite time
available. Additionally, a buffer is applied to provide supervisory HDMs with a
predefined period of time to veto decisions if operating in a management by ex-
ception control paradigm. This approach provides greater flexibility in providing
real-time trajectory planning capabilities on platforms with different computa-
tional capabilities whilst allowing for more efficient use of the available time to
plan.

Secondary contributions have resulted from extension of Shouwenaars’ safe
state theory [49] to guarantee platform safety during low altitude UAS flight in
the NAS. Manoeuvre Automaton (MA) theory was applied to fixed wing plat-
forms where attitude rate constraints were considered through the generation of
manoeuvre primitives. This allowed for the inclusion of attitude rate constraints
during the inclusion of implicit safety guarantees, through the application of safe

state research in partially known 3D environments.

1.4 Publications

Papers published based on the research presented in this thesis are listed in
chronological order below (see Appendix [E| for full copies of papers where the

author is listed as first author).

e Narayan, Pritesh P., Meyer, Patrick, and Campbell, Duncan (2011)
“Embedding Human Expert Cognition into Autonomous UAS Trajectory
Planning,” Submitted for Review. [EEE Transactions on Systems, Man
and Cybernetics Part B: Cybernetics

e Narayan, Pritesh P., Campbell, Duncan A., and Walker, Rodney A.

(2009) “Computationally adaptive multi-objective trajectory optimization
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for UAS with variable planning deadlines,” In IEFEE Aerospace Conference
2009, 7-14 March 2009, Big Sky, Montana.

Narayan, Pritesh P., Wu, Paul P., and Campbell, Duncan A. (2008)
“Unmanning UAVs Addressing Challenges in On-Board Planning and De-
cision Making,” In Legras, Francois (Ed.) First International Conference
on Humans Operating Unmanned Systems (HUMOUS), 3 - 4 September
2008, Telecom Bretagne, Brest, France.

Narayan, Pritesh P., Campbell, Duncan A., and Walker, Rodney A.
(2008) “Multi-Objective UAS Flight Management in Time Constrained Low
Altitude Local Environments,” In 46th AIAA Aerospace Sciences Meeting
and Fzxhibit, 7 - 10 January 2008, Reno, Nevada, USA.

Narayan, Pritesh P., Wu, Paul P.Y., Campbell, Duncan A., and Walker,
Rodney A. (2007) “An Intelligent Control Architecture for Unmanned Aerial
Systems (UAS) in the National Airspace System (NAS),” In 2nd Inter-
national Unmanned Air Vehicle Systems Conference, 20th to 21st March,
2007, Grand Hyatt, Melbourne, Australia.

Wu, Paul P.Y., Narayan, Pritesh P., Campbell, Duncan A., Lees, Michael,
and Walker, Rodney A. (2006) “A High Performance Fuzzy Logic Architec-
ture for UAV Decision Making,” In TASTED International Conference on

Computational Intelligence, Nov 20-22, San Francisco.

1.5 Format of thesis

This section details the thesis format and outlines each individual chapter.

In Chapter 2, titled ”Literature Review,” intelligent control is defined and

a literature review of intelligent control architectures is provided. Trajectory

planning is defined and trajectory planning layers within UAS architectures are

investigated. Literature regarding trajectory planning for mobile robots and UAS

is presented and the candidate method applied to this research project for the

generation of feasible UAS trajectories is presented.
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In Chapter 3, titled ”Generating flight trajectories for fixed wing UA using
Manoeuvre Automaton (MA) theory,” MA theory is defined [48]. Implementation
of MA theory in simulation is presented for flight trim conditions commonly
executed by fixed wing UA. Platform roll and pitch rate constraint inclusion
is demonstrated through manoeuvre primitives. Additionally, the generation of
feasible trajectories through concatenation is discussed and the application of
collision detection methods to form collision free feasible trajectories is presented.
Finally, a review of decision making algorithms to optimise trajectories based on
MA theory is presented and the need for MCDA is discussed.

In chapter 4, titled ”Embedding Human Expert Cognition into Automated
Trajectory Planning,” the inclusion of MCDM methodologies and HDM decision
data during trajectory planning to better reflect HDM mission priorities is inves-
tigated. An overview on the application of MCDM methodologies is presented
to demonstrate the inclusion of preferences which reflect HDM priorities. The
need to use HDM decision capture methods to formulate mathematical prefer-
ences is discussed and the candidate HDM decision capture strategy is presented.
Additionally, HDM data capture via a Graphical User Interface (GUI) and the
formulation of preferences through UTilité Additive (UTA) theory is demon-
strated. Finally, trajectories are generated in simulated low altitude 3D mission
environments, to demonstrate that the inclusion of UTA based preferences, can
allow for, better representation of the candidate HDM'’s decision strategies during
autonomous UAS operations.

In Chapter 5, titled ” Computationally Adaptive Real-Time Trajectory Plan-
ning,” the safe operation of UAS in low altitude environments in the presence of
real time planning requirements is investigated. The requirements for generating
MA based flight trajectories in real time is demonstrated by simulating 3D mis-
sions in urban terrain using fixed automaton sets on two simulated platforms with
different computational capabilities. A flight management system is proposed to
dynamically moderate system parameters, to allow for the computation of a tra-
jectory segment solution within a predefined window of time. The results for
the inclusion of the Computationally Adaptive Trajectory Decision optimisation

System (CATDS) is presented in simulated low altitude 3D urban environments.
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In Chapter 6, titled ”Conclusions,” a summary of findings and discussion of
this research project is given. Potential future research and the contributions of

the research presented in this thesis are also discussed.
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Literature Review

Operation of UAS in the NAS requires an equivalent level of safety to that of a
human pilot [30]. Achieving higher levels of onboard autonomy helps to address
this safety requirement. At the same time, it also reduces the susceptibility to
communications failure (less reliance on a remote pilot), lowers the operational
costs, and decreases operator or mission commander workload. However, taking
the human pilot out of an aircraft removes much sensory and decision making
capability. To demonstrate that a UAS still has an equivalent level of safety to a
human piloted aircraft, this capability must be automated.

UAS will need to possess greater “intelligence” than they do today, aspiring
to acquire the traits of the human pilot. The UAS will need to acquire the ca-
pacity to monitor the vehicle’s internal systems and the outside world, and to
detect any changes that affect the mission safety and mission outcome. With
this information, the UAS must then make rational decisions and take the nec-
essary actions to preserve safety and achieve mission objectives. Most literature
indicates that this capability can be realised through the implementation of an
intelligent control architecture [6].

Intelligent control is a multi disciplinary field that involves the use of tech-
niques from the fields of Artificial Intelligence (AI) and control within the context
of the operational requirements of the task (Figure . Intelligent control sys-
tems are generally structured in a hierarchical manner where high level (complex
and abstract) tasks are decomposed into a series of time critical low level tasks

data rich and precise). This obeys the so called “principle of increasing precision
Y g
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with decreasing intelligence” [5]. An overview of intelligent control architectures

is presented in the following section.

Artificial Operational
Intelligence Requirements

HeurisifiCs™3
Info Processing=>

Formal Languages=>
€Management
€Scheduling

Intelligent

€ Coordination
€Managemen

€ Optimisation
€Dynamics

Control

Figure 2.1: Definition of intelligent control discipline [5]

2.1 Intelligent control architectures

From the literature review, it was found that the vast majority of architectures
were hierarchical. This approach was often used to separate slower, deliberative
planning processes from faster, time-critical hardware control systems [6]. Addi-
tionally, it allows for abstraction of complexity from one layer to the next; this

is useful not only in reducing subsystem complexity, but also helps in software
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reusability [54]. The vast majority of architectures employed some variation of
Bonasso’s [0] three tiered (3T) hierarchy which has separate layers for delibera-
tion, sequencing of actions and control execution (Figure .

Deliberation

Partial Task Ordering

Sequencing

Instantiated Tasks

Reactive Skills

Sensor Readings Actuator Commands

World/
Environment

Figure 2.2: 3T intelligent control architecture [6]

Intelligent control architectures implemented onboard UAS are generally ex-
tensions of architectures found in robotics. The following section provides an

overview of intelligent control architectures implemented onboard UAS platforms.

2.1.1 Review of UAS intelligent control architectures

A UAS platform can be thought of as a mobile robot with the primary directive
being to move to a given spatial location within a certain period of time. However,
many robotics architectures cannot be directly implemented in UAS.

In comparison to ground based robots, UA operate in highly dynamic environ-
ments where atmospheric changes can occur almost instantaneously; therefore,
the agent’s response must meet real time constraints. This is further compounded
by the fact that aircraft typically travel at much greater velocities than ground
based robots. Additionally, aircraft dynamics can be highly non-linear and thus
require careful consideration during controller design and how this will interface
to other subsystems onboard the UA. Finally, failures onboard UA can be catas-

trophic and result in loss of the platform, property damage, and in the worst
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case, loss of human life as these aerial robots are exposed to the general public.
Therefore the architecture should be capable of robustly dealing with not only
changes in the UAS internal state, but also with changes in the environment.

It was found that in many UAS (and spacecraft based architectures) that
an important capability was a method for monitoring the agent’s internal state
(i.e. the health of the vehicle) and its impact on vehicle performance. This was
implemented as a form of Fault Detection and identification/Accommodation
(FDA) in Technologies for Reliable Autonomous Control (TRAC), remote agent,
Open Control Platform (OCP) and in Boskovic’s architectures [ 20; [55; 56].

Ideally, a human operator should only need to interact with the high level
deliberative layer. In this scenario, the operator performs high level tasks such
as specifying mission goals and the schedule associated with these goals. In
these instances, there is need for a communications subsystem that provides the
link between the remote agent and the ground station. Such communications
modules are incorporated into the Autonomous Science-craft Experiment (ASE),
Architecture for Procedure EXecution (APEX) and Remote agent architectures
[545 55} 57].

Various architectures have been proposed that are specifically targeted at
UAS [7; 205 54 565 B8]. Schaefer [20] for example, presents a multi-layered UAS
decision making architecture known as “Technologies for Reliable Autonomous
Control (TRAC)”. This is a variation of the 3T architecture pioneered by Bonasso
[6] that has been augmented with another layer known as the meta-executive
layer. The meta-executive layer is used to coordinate and synchronise interactions
between the deliberative (which is goal driven e.g. performing a set of tasks
based on accomplishing a particular goal) and execution (which is event driven
e.g. performing a set of tasks based on a schedule) layers.

Boskovic [7] presents an architecture (Figure which is optimised for UA
navigation; the upper layers are arranged in similar fashion to that of the AU-
tonomous Robot Architecture (AURA) [59]. The layers within this architecture
are defined with respect to specific UAS functionalities rather than generic form
used for other architectures such as TRAC. The highest layer in this hierarchal
four layered model is the Decision Making layer. This layer uses apriori informa-

tion in conjunction with information obtained from sensors to make appropriate
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Figure 2.3: Boskovic’s UAS decision making architecture [7] - image courtesy of
Paul Wu

decisions to achieve mission goals. The next level is the path planning layer
which generates an optimised set mission waypoints representing a path from the
current location to the goal. The trajectory generation layer generates a smooth
flight track which takes into account platform constraints and current achievable
dynamic performance.

The desired trajectory is then forwarded to the adaptable reconfigurable con-
troller, which is essentially a set of low level controllers coupled to some form of
FDA. The low level controllers are designed to ensure aircraft stability at all times
[60] whilst FDA algorithms are used to detect sensor or actuator malfunctions,
and accommodated by recalculating achievable performance dynamics to account
for any faults identified [61].
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2.2 Review of UAS trajectory planning methodologies

2.1.2 Summary of findings

Through an investigation of existing architectures in unmanned aircraft, space
based systems and robotics, it was found that various intelligent control archi-
tectures have been successfully implemented onboard a multitude platforms to
perform navigation and other tasks traditionally only a human operator was ca-
pable of performing [42].

As UAS are inherently an airborne mobile robots, intelligent control archi-
tectures have been successfully implemented as stand-alone navigational modules
denoting aspects of flight planning and execution [7;[62]. For example, automated
trajectory planning is treated as a standalone module which receives inputs from
the mission path planner (mission waypoints) and the achievable dynamics per-
formance module (platform aerodynamic and kinematic constraints).

The first question that this research project will attempt to answer is whether
trajectory planning can be effectively automated for standalone autonomous op-
erations on a UAS platforms. Boskovic’s architecture [7] has demonstrated that
the trajectory planning layer can be automated and operated as a standalone
module if it is being provided with a set of mission waypoints and has knowledge
of the achievable performance of the current platform. It is also expected that the
trajectory planner will require knowledge of the external environment in order to
generate feasible and collision free trajectories.

The following section provides a review of existing research conducted in the
field of UAS trajectory planning in cluttered environments. The main objective is
to investigate trajectory planning methodologies which allow for UAS to operate

with greater autonomy during low altitude operations in the NAS.

2.2 Review of UAS trajectory planning method-
ologies

A smooth nominal feasible and collision free trajectory is required for safe guid-
ance of the UA from its current position to the desired goal. It should be noted
that there is a vast number of trajectory algorithms have been published to date,
the majority of which have been applied to the field of robotics [43; [63]. This
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2.2 Review of UAS trajectory planning methodologies

section presents an assessment of the suitability of key trajectory algorithms to

autonomous low altitude UAS operations.

2.2.1 Spline based trajectory planning

A spline curve (piecewise by polynomials) is a smooth curve which is defined
by a set of control points in space. Polynomial or spline based techniques [64;
65] place control points in a particular order to generate the desired trajectory.
Spline curves commonly used in trajectory generation algorithms are cubic splines
(3rd order polynomial) [66] and Basis splines (B-splines) [67]. Basis splines are
commonly chosen since every spline function of a given degree, smoothness and
domain partition can be represented as a linear combination of B-splines of that
same degree and smoothness [65].

Singh [68] presents a 2D local path planning algorithm using a combination
of classical spline based trajectory planning, differential flatness and Model Pre-
dictive Control (MPC) techniques. The nominal trajectory is initially generated
as a spline containing vehicle coordinates expressed as a polynomial series. If at
anytime the generated trajectory falls outside the feasible convex space, an ad-
ditional waypoint is placed in the middle of the feasible set and the spline based
trajectory is recomputed using an MPC based control formulation. A nominal
control sequence to track the trajectory is then produced using the assumption
that the UAS has differential flatness characteristics. The simulation takes into
account a two dimensional (2D) environment which is known apriori and the
trajectory is calculated offline using an MPC based trajectory generation system.
Offline processing is only feasible however, if the environment remains completely
static.

Rathbun [69] uses an evolutionary based path and trajectory planning algo-
rithm to converge to a feasible collision free trajectory in a 2D environment with
static and dynamic obstacles present. The evolutionary search algorithm initially
starts with a finite population of path functions. The population is then ran-
domly placed through a set of genetic mutation operations, with the resulting
path segments being evaluated with respect to fitness objectives. This process is

iteratively performed until an acceptable solution is obtained.

28



2.2 Review of UAS trajectory planning methodologies

Nikolos [64] presents an evolutionary based online local path planning sys-
tem designed for low altitude UAS navigation in three dimensional (3D) environ-
ments. The algorithm uses acquired information from onboard sensors to generate
a collision free trajectory through unknown environments. The online replanning
component of the algorithm has a reduced number of initial path functions in
comparison to the offline planner; this decreases the overall replanning time but
inversely affects the probability of the algorithm converging to an acceptable solu-
tion. The probability of converging to a solution increases as the number of initial
path functions increases; this inversely affects processing time. Furthermore, the
probabilistic nature of genetic algorithms, makes it difficult to accurately predict
the time required to converge to an acceptable solution; if a solution will be found
at all.

Koyuncu [70] applies a parameterized modal decomposition to convert the
spline trajectory initially formed into a set of concatenated aircraft flight ma-
noeuvres in a 3D known environment. The use of concatenated manoeuvres to
form a trajectory is referred to as geometric trajectory planning. The following
section provides a literature review of key geometric trajectory planning methods

applied to robotics and UAS applications.

2.2.2 Geometric trajectory planning

Geometric trajectory generation methods use a combination of straight line and
curved paths to create a smooth optimal pathway through a set of waypoints
for vehicles with non-holonomic constraints (e.g. cars or fixed wing UA). Dubins
[71] addressed the problem of constructing optimal planar paths (referred to as
Dubins paths) to move a ground based vehicle with non-holonomic constraints
from an initial location to the goal.

Dubins algorithm [71] creates a 2D trajectory composed of either curves of
maximum curvature (C) or straight lines (.5), where the optimal solution is shown
to be of a bang-bang form (a type of control implementation where the controller
begins operations only when a discrete threshold value is exceeded). The geo-
metric construction of the solution consists of at most three segments, either the

form C'C'C or C'SC where it is assumed that the vehicle can effectively transition
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2.2 Review of UAS trajectory planning methodologies

between path types instantaneously. The algorithm does not take obstacles into
account or cost functions other than minimum time [72].

Dubins research has been extended by numerous researchers to generate smooth
optimised trajectories for robotics [43;[73] and UAS applications [8; 10} 48; [74: [75].

Anderson [74] has extended Dubin’s algorithm [71] to perform geometric tra-
jectory generation for UAS in 2D environments. It is assumed that the path
planner has created a collision free path as the algorithm does not take into
obstacles into account.

Hwangbo [8] extends Dubins curves [71] to 3D configuration space. The algo-
rithm uses a depth first forward propagating Dynamic Programming (DP) algo-
rithm to select the most desirable manoeuvre from a set of possible manoeuvres
for each segment. Hwangbo takes advantage of planning in 3D by generating
Dubins paths which allow the aircraft to climb, descend and perform helical ma-
noeuvres (Figure . However, Dubins algorithms was initially developed for
wheeled robots in mind, therefore Dubin’s paths may not accurately represent

the aerodynamic motion of fixed wing UA.
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Figure 2.4: Extension of Dubins Paths 3D configuration space [§]
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Frazzoli [48; 53} [76}; [77] extends Dubins research to form smooth feasible tra-
jectories through the concatenation of motion primitives. Motion primitives rep-
resent aircraft manoeuvres which are generated off-line and stored into either
of two classes: manoeuvre and trim primitives. Trim primitives represent flight
manoeuvres where the platform is in a state of equilibrium (trim state where
attitude rates remain zero). Manoeuvre primitives represent flight manoeuvres
where the platform transitions to a state outside of equilibrium (attitude rates
are non-zero). The generation of feasible trajectories is possible using Manoeuvre
Automaton (MA) theory because Frazzoli has mathematically proven [48] that
any two manoeuvres can be concatenated together given that there is a trim
primitive of finite length to separate the two manoeuvre primitives.

To decrease the computational complexity and resulting time to plan, Fraz-
zoli et al. apply a hybrid architecture to the motion planning problem for rotary
aircraft [53; [77]. The hybrid architectures, involve integration of dynamic pro-
gramming optimisation [43] with other planning methodologies including Rapidly
Exploring Random Trees (RRT) [78] (Figure and MPC [49]

Target
Jarge

Initial state
X

Figure 2.5: Example of RRT expansion during trajectory planning [9

Schouwenaars [79;80] presents a 2D MPC based trajectory planning algorithm
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2.2 Review of UAS trajectory planning methodologies

with implicit safety guarantees. Firstly, a cost map is generated using Dijkstra’s
graph search algorithm [81]. Mixed Integer Linear Programming (MILP) toolsets
in conjunction with MPC control formulations are then used to generate collision
free trajectory segments for each time step. The trajectory is represented as a
set of discrete points within a planning horizon (MPC receding horizon strategy).
To guarantee platform safety for a fixed wing UA platform, only feasible states

where the platform can enter a safe state (i.e. loiter manoeuvre) are considered

valid (Figure [2.6).
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Figure 2.6: Schouwenaars MILP based trajectory planning algorithm with im-
plicit safety guarantees [10]

Kuwata [I0] presents a 2D MPC based trajectory planning algorithm which
ensures that a solution can be generated in real-time during planning. The cost
map and trajectory optimisation using MILP toolsets with MPC control for-
mulations is performed in a similar manner to Schouwenaars’ research [79; 80].
To ensure that planning can be performed in real-time, the trajectory executed
(execution horizon) is shorter than the trajectory generated (planning horizon)

(Figure. Once the UA reaches the execution horizon, replanning is performed.
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Figure 2.7: Kuwata’s MILP based trajectory planning algorithm [10]

2.2.3 Summary of findings

The trajectory planning methods presented can be divided into two areas with
respect to the type of environment abstraction applied to the planning problem:;
known and partially known environments. Known environments refer to trajec-
tory planning in environments where the location of all obstacles is known apriori.
Partially known environments refers to planning in environments where only a
limited knowledge of the surroundings is available.

Planning in known static environments alleviates the issue of planning with
real-time constraints as the onboard system can compute a solution offline or
compute the full trajectory at the beginning of operations. Practical implemen-
tations of onboard trajectory planning in known environments implies the use of
precomputed high resolution maps of the entire area of operations [82]. This may
not be feasible for some forms of UA (e.g. mini or micro variants) due to cost,
computational, or payload limitations. Additionally, maps are required to be rou-
tinely updated to reflect any changes to the operational environment. Singh [68],
Rathbun [69], Koyuncu [70] and Pettersson et al. [82] apply trajectory planning
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algorithms to known environments.

An alternative is to use active or passive onboard sensors to perform online
mapping; this is generally referred to as planning in partially known environ-
ments. The NAS can be considered as a partially known environment, where

onboard sensors are required for the sensing of terrain and/or other aircraft.

2.3 Automated UA operations in partially known

environments

Planning in partially known environments limits the onboard knowledge of the
operational environment, thus all trajectory planning must be computed online
during operations. In environments without complete abstraction, potential field
algorithms [83] offer an efficient way to guide a moving vehicle from current
location to the goal.

This approach was first developed by Khatib [83] for online collision avoidance
for an agent with onboard proximity sensors. An artificial repulsive potential field
is applied around obstacles, thereby repulsing the robot away from obstacles.
There are special cases where the robot may become stuck in a local minimum if
surrounded by obstacles. Techniques such as simulated annealing [84] have been
developed to increases the algorithms capability to avoid local minima.

The major issue with potential field algorithms and their suitability to UA
guidance in partially known environments is that they are susceptible to becoming
trapped in local minima. Scherer, Shim and Griffiths [IT};, 85 [86] implement
additional collision avoidance techniques in conjunction with laplacian algorithms
to overcome this issue. Laplacian is a type of potential field algorithm, where the
goal is represented as an attractive potential.

Scherer et al. [I1] have developed an algorithm which reactively avoids ob-
stacles in 3D space; the overall architecture is separated into planning, reactive
and control layers. LAser Detection And Ranging (LADAR) data is processed
and composed into an evidence grid; this is a type of configuration space where
the obstacle density of regions is represented in logarithmic form (Figure .
As the UAS heads in the direction of the goal, if an obstacle is detected on the
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current path, the 3D dodger is initiated to perform reactive collision avoidance.
The reactive avoidance module then commits to performing either horizontal or

vertical competing manoeuvres.
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Figure 2.8: Sherer’s architecture for reactive collision avoidance [11]

Shim et al. [85] from the BErkeley AeRobot team (BEAR) at the University
of California present a conflict-free navigation system for exploration of unknown
urban environments using a rotary UA. A 3D local map is generated online using
detected obstacle data from an onboard scanning LADAR sensor. An MPC solver
attempts to find the optimal control sequence by penalising the proximity of the
UAS to the nearest obstacles detected using LADAR over a finite time horizon.
Finally, the generated trajectory is executed by the onboard flight management
system (responsible for planning and control of the UAS) [87].

Griffiths et al. [86] from the Brigham Young University demonstrate an ob-
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stacle and terrain avoidance approach for Miniature Aerial Vehicles (MAVs). An
RRT algorithm is used to generate a nominal path through an known urban
environment modelled using a priori data. During flight, obstacle and terrain
avoidance is performed online using data from a static LADAR in conjunction
with optic flow sensing cameras. The static LADAR is used to detect if an obsta-
cle is in front of the UAS. Once an obstacle is detected, the UAS performs collision
avoidance through the execution of left or right coordinated turn manoeuvres.

Schouwenaars [80; [88] and Kuwata [10] perform planning in partially known
environments using a receding horizon strategy to represent a known region. The
receding horizon simulates an onboard active sensor which provides the UA with
environment abstraction within a finite region (Figure 2.7). Schouwenaars [79]
guarantees the safety of the platform by only considering future states which
allow the platform to execute collision free hold manoeuvres. Safe states can
be represented as hold or loiter manoeuvres for fixed wing UA (Figure and
hover modes for rotary platforms. A safe state can be initiated as long as the
UAS is the minimum distance required from the nearest obstacle to execute a
loiter manoeuvre without collision; this is usually the minimum turning radius
for fixed wing UAS.

Planning in 2D partially known environments with finite receding horizon
strategies can lead to scenarios where the UAS becomes trapped in local minima.
Anisi [R9] extends the safe state approach with the addition of a 3D safety ma-
noeuvre (essentially a vertically guided spiral manoeuvre). In situations where
there is no solution available, executing the safety manoeuvre allows the UAS
to gain altitude and recompute a new plan; this ensures the possibility of task
completion.

Kuwata [I0] and Frazzoli [9] take real-time replanning considerations into
account during trajectory planning. Kuwata uses a MILP optimisation method-
ology to generates trajectories using a dubin’s style algorithm [71] for 2D envi-
ronments with a finite planning horizon implementation. Kuwata ensures that
the trajectory planner can converge to a solution within a finite planning win-
dow by only partially traversing the planned trajectory segment before the next
trajectory segment is computed (Figure .
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Frazzoli [9] applies real-time replanning constraints during the computation
of feasible trajectories using a hybrid architecture where DP optimisation is in-
tegrated with RRT planning techniques for rotary UA in known environments
(Figure . During online planning, the UA starts traversing the known tra-
jectory whilst the RRT tree composed of feasible primitives are expanded and
concatenated together. A finite period of time (7 safe) was introduced to over-
come the tendency for randomised algorithms to drive the UA towards a dead end
as a result of finite computation times. The planner only selects future primitive
segments as feasible if it provides the planner with a minimum amount of time

(7 safe) to continue expanding future nodes and is collision free.

2.3.1 Summary of findings

It was found that different methodologies have been applied to trajectory plan-
ning and guidance of UA in partially known environments. Sebastian, Shim
and Griffiths [IT};, 85}, 86] used some implementation of potential fields to drive
the UAS towards the intended destination; alternatively, Griffiths [86] uses an
RRT algorithm. As the UAS progresses towards the goal, any detected obstacles
within proximity, force the UAS to execute collision avoidance algorithms to en-
sure platform safety. The use of reactive collision avoidance architectures with
limited manoeuvre options may not take complete advantage of the manoeuvra-
bility of the UAS platform. Furthermore, the limited manoeuvre set may not
completely encapsulate the range of decisions a HDM is capable of selecting from
during Radio Piloted Vehicle (RPV) flight.

Kuwata, Schouwenaars and Frazzoli [9; [10; 88] apply techniques which do
not require the inclusion of a reactive collision avoidance module. Kuwata and
Schouwenaars [10; [88] apply MILP algorithms to generate trajectories in partially
known environments where the known environment is represented as a receding
horizon. Frazzoli applies MA theory to discretise platform dynamics and uses a
hybrid architecture in conjunction with RRT to generate trajectories which are
modelled on rotary flight manoeuvres executed by human pilots. Frazzoli’s re-

search [48] allows for the generation of an automaton which contains manoeuvres
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typically executed by pilots. This may allow decision making algorithms to select
and execute manoeuvres which better represent HDM and mission requirements.

This concludes the review of trajectory planning methods for UA operating
in partially known environments. The following section details the selection of
the candidate trajectory planning solution which best allows for investigation of
the second research question (Section [1.3.1]).

2.4 Candidate trajectory planning solution

After reviewing intelligent control architectures and trajectory planning method-
ology literature, a candidate trajectory planning method was selected which was
best suited in allowing for the investigation of the second research question (Sec-
tion “Under what conditions can a flight management concept be developed
to ensure that the supervisory HDM’s mission criteria are successfully met dur-
ing operations in low altitude environments with real time planning constraints
present?”.

The incorporation of Manoeuvre Automaton (MA) theory [48] as the underly-
ing component of trajectory planner is expected to allow for autonomous trajec-
tory planning in low altitude environments in the presence of real-time planning
constraints. The basis for selection of MA theory as the candidate planning so-
lution is stated in greater detail with respect to the set of autonomous trajectory
planning challenges outlined in Section [I.2.2]

2.4.1 Incorporation of platform dynamics

The inclusion of vehicle dynamics during the trajectory planning process, allows
for the generation of flight trajectories which take platform constraints into ac-
count. Vehicle dynamics are used to calculate the performance envelope which
the aircraft must remain within to ensure that the platform does not operate
outside performance bounds. In the presence of a Stability Augmentation Sys-
tem (SAS) onboard, the UAS will continue to operate within platform stability
boundaries. However, executing trajectories which do not consider platform per-

formance bounds may lead to poor tracking [13].
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The actuator control power available on fixed wing platforms is finite; this
leads to a non instantaneous period where the vehicle does not remain in a state of
equilibrium while the platform transitions between different states of trim. While
the platform remains in a state outside equilibrium (trim conditions), attitude
rates will be non-zero.

Geometric trajectory planning methodologies applying Dubins curves [10; [74;
90] require the concatenation of aircraft trim flight manoeuvres to form a smooth
flight track. However, these flight manoeuvres are usually limited to cruise and
constant radius turns trim primitives which are only a small subset of the flight
manoeuvres that are capable of being executed by fixed wing aircraft. Further-
more, during the concatenation of Dubins curves, it is assumed that the vehicle
can transition between curve segments instantaneously.

During periods when the platform is not in a state of equilibrium, the trajec-
tory planner must account for UAS platform attitude rates as a component of
the overall aircraft performance envelope. Inclusion of attitude rate limitations
allows for the generation of trajectories which more accurately represent vehicle
dynamics, this potentially allows for greater trajectory tracking performance [91].
MA theory [48} 53] allows for the inclusion of attitude rates as a component of
overall performance bounds through manoeuvre primitives. Low altitude opera-
tions in the presence of terrain could benefit as improved tracking would allow
for operations in more cluttered environments as the UA is expected to track the

desired trajectory more closely.

2.4.2 Real-time constraints on computation time

Kuwata [10] and Frazzoli [9] have demonstrated that it is possible to take real-
time constraints into consideration during planning with geometric trajectory
planning techniques. Frazzoli [9] ensures that real-time planning considerations
are met by only considering future primitive segments, as feasible, which provide
the planner with a minimum amount of time to continue expanding future nodes
(7 safe) and are collision free. However, Frazzoli states [53] “The selection of the
trajectory primitives is currently done manually: it would be desirable to obtain

formal criteria defining the optimal choice of primitives, trading off the complexity
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of the resulting automaton with the achievable performance. A dynamic resizing
of the automaton is also conceivable: in critical situations, when a decision has
to be taken in a very short time, the automaton could be reduced to a few maneu-
vers, whereas in a more secure situation the set of possible maneuvers could be
expanded.”

During secure situations, the use of a higher set of manoeuvres would allow
for planning at higher resolutions, whilst in time constrained scenarios, the au-
tomaton could be reduced to ensure that a solution can still be computed within
real-time constraints. To the authors knowledge, this research has not been ex-

plicitly considered in literature previously.

2.4.3 'Trajectory optimisation to meet given mission re-

quirements

MA theory is a technique to discretise the system dynamics rather than state
space (as generally present in most graph search planning methods [43]). There-
fore, careful selection of automata (trim and manoeuvre primitives sets) can pro-
vide a discretised approximation of an aircrafts aerodynamic performance capa-
bilities.

During the course of manned operations, the pilot is responsible for steering
the aircraft to achieve mission success whilst taking into account multiple mis-
sion criteria. The use of automata which represent common flight manoeuvres
provides autonomous onboard trajectory planners with the capability to gener-
ate trajectory solutions which emulates the candidate Human Decision Maker’s
(HDM’s) flying styles.

However, the analysis of expert decision data is required in order to have
deeper understanding of objectives considered and the preferences they apply
during the decision making process. The inclusion of HDM or pilot decision data
may allow an automated UAS trajectory planner to better encapsulate human
expert decision styles and subsequently increase the acceptance of the autonomous
solution [4]. To the authors knowledge, this research has not been explicitly

considered in literature previously.
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2.5 Summary of Findings

Literature regarding intelligent control architectures and trajectory planning meth-
ods was presented in chapter 2. Key trajectory planning methods and their ap-

plicability to meeting autonomous low altitude operational challenges were dis-

cussed. An overview of the candidate trajectory generation method, MA theory,

was presented and its potential for the inclusion of UAS dynamic constraints for

accurate platform tracking was highlighted.

Research has previously been presented on the generation of common flight
manoeuvres for rotary UA [0; 49; [72; OT; 02 03; 94]. Fixed wing UAS have a
completely different set of dynamics in comparison to rotary platforms, thus a
different set of trim and transition manoeuvres must be generated through the
application of MA theory. The following chapter presents an overview of the

implementation of motion primitives for fixed wing platforms.
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Flight Trajectories for Fixed
Wing UA using Manoeuvre
Automaton (MA) Theory

The inclusion of vehicle dynamics during the trajectory planning process, allows
for the generation of flight trajectories which take platform constraints into ac-
count. Vehicle dynamics are used to calculate the performance envelope which
the aircraft must remain within to ensure that the platform does not operate
outside performance bounds. Manoeuvre Automaton (MA) theory allows for im-
plicit inclusion of platform dynamics within the automaton, thus any combination
manoeuvres from the automaton can be concatenated together to form a feasible
trajectory. The following section presents an overview of the implementation of

motion primitives for fixed wing platforms.

3.1 Manoeuvre automaton theory

Manoeuvre Automaton (MA) theory, proposed by Frazzoli et al. [48; 53] can
be used in the generation of feasible flight trajectories through the sequential
concatenation of predefined motion primitives. MA employs two types of prim-
itives; trims and manoeuvres. Trim primitives represent the vehicle during a
state of equilibrium whilst manoeuvre primitives characterise the vehicle operat-

ing outside of equilibrium. Primitives are generated using a dynamic model of the
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vehicle, thus platform stability can be implicitly guaranteed through generation
of primitives which ensure that the vehicle remains within performance bounds.
For this research project, MA theory is used to describe a time-invariant non-

linear, dynamical system , described as a set of Ordinary Differential Equations
(ODE) as:

. d
= alt) = fla(t) u(?) (3.1)

where u is the control input (7, primitive) = (execution time, manoeuvre type)
and z is the state vector ([z,y, 2], [6,8,%], [(#), (8)]) = ([position], [attitude], [at-
titude rate]).

3.1.1 Trim primitives

Trim primitives represent the UAS platform operating in a state of equilibrium.
Using MA theory, trim primitives can be generated by placing the body fixed roll
(¢) and pitch () rates to zero and maintaining a Constant (C) velocity (V), roll
(¢) and pitch (#) angle for the duration (7,) of the primitive execution.

Trim primitives were generated using a six Degree Of Freedom (DOF) flight
dynamics model based on the Aerosonde UAS platform data set available in the
aerosim blockset. The aerosim blockset is executed using simulink, which is a com-
ponent of the MATrix LABoratory (MATLAB) programming environment. Six
predefined trim primitives have been implemented in simulation to characterise
fixed wing UA during a state of equilibrium including: cruise, coordinated turn,
climb, descent, helical climb and helical descent.

The initial platform state (z(t;) = x;) reaches a final state (xz(t;) = xy) due

to the execution of a given trim primitive (¢); this can be represented as:

Ty = T+ Tyl
(3.2)
ty = ti+1y
where {V, ¢,0} = {C,C,C} are constant and {¢,8} = {0,0}.
It is of importance to note, that for a platform to enter a state of equilibrium
(execution of a trim primitive), the initial platform attitude must equal the atti-

tude requirements of the trim primitive to be executed; {¢,0}; = {¢,0},. If the
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initial platform attitude does not equal the attitude required to execute the given
trim primitive, a manoeuvre primitive must be inserted to ensure that body fixed

attitude rate constraints are taken into account.

3.1.2 Manoeuvre primitives

During the execution of a manoeuvre primitive, the UAS does not have to remain
in a state of equilibrium. For a fixed wing platform, the body fixed attitude rate
constraints become {gzﬁ, 9} = {{bmam émm}. In this research, manoeuvre primitives
(p) are employed to connect two trim primitives, if required, in the formation of
feasible trajectories. This allows for the consideration of attitude rates as an
additional platform constraint during periods where the UAS is not in a state of
equilibrium. If {¢,0}; # {¢, 0},, the UAS platform dynamic model is propagated
until the platform reaches the desired state configuration, ensuring that platform
attitude rate considered are considered during trajectory generation.

While
{9257 e}k 7é {¢7 Q}q
Tp+1 = Tg+ x'pAT (33)

tk-+1 - tk- + At
where {gb, 9} = {émax,émax}-

3.2 Trim primitive formulation

The trim primitives implemented, represent common fixed wing aircraft manoeu-
vres in which the platform remains in a state of equilibrium. The trim primitives
implemented include: cruise (straight and level flight), coordinated turn, constant
climb, constant descend, helical climb and helical descent. This section outlines

the formulation and implementation of the trim primitive set.
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3.2 Trim primitive formulation

3.2.1 Straight and level flight (cruise)

Straight and Level (SL) flight (Figure is commonly performed by the UAS
platform where the aircraft maintains a Constant (C) velocity; heading and alti-
tude for a finite period of time. SL flight can be represented for a finite period
of time (¢) in the Body Fixed (BF) coordinate system where t € [t;, t/] as:

V S [mea Vmar]

[O0s1(t), dsi(t), ¥si(t)lpr = [C,0,C] (3.4)

[QSL(t)7 éSL(t)a ¢SL(t)]BF = [0,0,0]

Figure 3.1: SL trim primitive example

3.2.2 Coordinated turn

A Coordinated Turn (CT) (Figure is a fixed wing manoeuvre where the
platform performs a turn without side-slip through the activation of onboard
control surfaces. The aircraft maintains a constant bank angle (¢) throughout
the duration of the manoeuvre. This manoeuvre has been previously captured in
geometric trajectory planning techniques [10; [71]. CT flight can be represented

for finite duration where t = [t;, /] as:

[0s(t), dse(t)sr = [C,C]
(3.5)

[052.(t), psr(t), ¥sr(t)]sr = [0,0,C]
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3.2 Trim primitive formulation

The maximum bank angle (@4, ) is dependent on the wing loading factor (n)
which can be placed on the platform. The Federal Aviation Administration (FAA)
[95] lists the typical maximum value of n as 3.8G, this research project uses an
more conservative arbitrary value of n as 2.2G. Only CT trim primitives which do
not exceed ¢, are generated to ensure platform integrity. It is important to note
that as the UAS platform executes CL trim primitives which approach ¢,,q., the
risk of platform instability due to factors such as onboard controller performance
and external factors (e.g. wind) increase (3.6). CT flight constraints applied are
presented in Formula and include n and the minimum turn Radius (Ry)
of the platform [96].

n = sec(¢)

U2
Ripin = (m)

Z(m)

Figure 3.2: CT trim primitive example

3.2.3 Constant climb

Climbing manoeuvres are generally performed for the UAS platform to reach
a waypoint which is at a higher altitude then the current vehicle location or
during take-off. To perform a Constant Climb (CC) manoeuvre (Figure [3.3),
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3.2 Trim primitive formulation

the platform maintains a constant climb rate (V¢) for the duration of the trim
executed.

The maximum climb rate (V¢,,) allows for the calculation of the aircraft
pitch angle (0. (,q,)) Which gives the greatest altitude gain in the shortest hori-
zontal distance . The maximum climb rate (V¢pq,) is calculated using the
excess engine power available (EP,.;) [96]. E P4, is formulated by subtract-
ing the drag (D) experienced by the UA from maximum platform thrust (7,a.)
which is then multiplied by the current platform forward velocity (ug). Tinas 1S
dependant on the type of engine present on the UA.

For a single propellor model such as the aerosonde UA, the mathematical
approximation for T}, is a function of air density (p), propellor radius (R,,op),
propellor rotation speed (€2,,q,) and the coefficient of maximum thrust and power
(CT Jpnae). Formula (3.7) presents the constraints applied to model CC flight

trajectories.

Ootman) = sin " ()
Vemae = Vi/mw
EPma:L’ - (Tmax - D>u0 (37)
402
Ty = 2Faren' B CT e

Figure 3.3: CC trim primitive example

3.2.4 Controlled descent

Descent manoeuvres are generally performed by the UAS platform to reach a

waypoint which is at a lower altitude then the current vehicle location or during
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3.2 Trim primitive formulation

the landing phase of the mission. To perform a Controlled Descent(CD) manoeu-
vre (Figure , the platform maintains a constant descent rate for the duration
of the trim primitive execution. Typical descent rates for aircraft operating in
the NAS range between 500 to 1500 feet/min [97]. Based on this information, a
value of 5 m/s (1000 feet/min) was selected as the maximum platform descent
rate (Vdqes) for this research project.

Vdyae allows for the calculation of the UA descent angle (64,,,4,) Which pro-
vides the steepest angle of descent. During descent, the lift generated (L) is less
than the aircraft weight (/). For a constant V', this results in a reduction of the
platform angle of attack (a)) in comparison to SL flight.

Platform o during CD flight is calculated using the non-dimensional coeffi-
cients for subsonic flight including: maximum lift ((CL)maz), lift at & =0 ((Cp)o)
and derivative of lift with respect to a ((Cr)a) [96]. (CL)maesz is computed by
dividing L (for CD flight) by the dynamic pressure (@) experienced by the UA.
Formula presents the constraints applied during the CD flight mode.

Vd'maz )

Odmar = tan(=

L = Wcos(6y)

3.8
CLma;r ( )

L

Q
_ C’L maxr CL)O
a = ({Ogsoen)

B0~y
~ 784
792 |

780

Figure 3.4: CD trim primitive example
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3.2 Trim primitive formulation

3.2.5 Helical ascent

Helical Ascent (HA) occurs when the fixed wing platform performs a constant

climb manoeuvre with a fixed banked angle (|¢g4| > 0). HA manoeuvres allow

fixed wing platforms to reach waypoints at higher altitudes in a more efficient

manner than possible with just the execution of CC manoeuvres alone. Addi-

tionally, HA manoeuvres (Figure have been shown to be useful in the escape

of local minima in 3D partially known environments [89].

The minimum turn radius (R(min),,) equations incorporate maximum angle
of climb (fc(mqez)) to take into account climbing constraints. Formula set (3.9)

outlines the constraints applied during the formulation HA manoeuvres [96].

635 —|

630 —|

626 —

820 —|
It

815 —|

810 —|

805 —|

600 —|

— uQ
Uga = cos(0)

UHA

2
R(mm)HA = <gtan(abs((b))cos(@c(mm))>

(3.9)

Figure 3.5: HA trim primitive example

3.2.6 Helical descent

Helical Descent (HD) takes place when the fixed wing platform performs a descent
manoeuvre with a fixed banked angle (|¢ga| > 0). HD manoeuvres (Figure

allow fixed wing platforms to reach waypoints at lower altitudes in a more efficient
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3.2 Trim primitive formulation

manner than possible with just the execution of CD manoeuvres alone. HD
manoeuvres can also be used during the landing phase of flight.

Due to the introduction of a non-zero bank angle, the vehicle turn radius
will be different to that of a CD. In a similar manner to HA, the minimum HD
turn radius (Rgnin) ;)
to take into account descent constraints. Formula set outlines HD flight

constraints formulation applied [96].

equations incorporate maximum angle of descent (Hd(max))

ug
Unp = cos(04)

- (3.10)
R(mln)HD - <g tan(|¢|) é_Iog(ed('m.az)) )

V\N .
800 —| \=\“\

iy \'4
795 —| . ’ ) \\

790 —|

785 —| . .
780 —| §

770 —| )l‘*/’/ 4‘ '//
765 —| /+ o

="

750

71\

X {m)

Figure 3.6: HD trim primitive example

This concludes the implementation details of a predefined set of trim prim-
itives for fixed wing aircraft. The trim primitives implicitly guarantee vehicle
stability whilst the platform is in a state of equilibrium. Switching between trim
primitives may result in the vehicle moving outside the state of equilibrium.

Previous literature has represented switching between piecewise linear tra-

jectory components [10; [71}; [74] as instantaneous. Fixed wing UAS platforms
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3.3 Manoeuvre primitive implementation

have attitude rate bounds, therefore switching between trim primitives will not
be instantaneous if the difference between the current trim primitive attitude
and the next trim primitive attitude is non-zero. To ensure that the platform
remains within performance bounds, manoeuvre primitives are inserted between
the current and following trim primitives. The following section details the im-

plementation of manoeuvre primitives.

3.3 Manoeuvre primitive implementation

Manoeuvre primitives are a representation of aircraft flight while the platform
is operating outside the state of equilibrium. Due to finite control power, fixed
wing aircraft cannot instantaneously transition from its current attitude to a com-
manded attitude. The resulting attitude rate bounds are dependent on aircraft
performance and physical parameters. Thus, the inclusion of fixed wing aircraft
attitude rate constraints allows the generation of flight trajectories which model
fixed wing UA flight with better accuracy. Subsequently, the inclusion of attitude
rate constraints can potentially lead to the tracking of trajectories with greater
precision [91].

This section is separated into three sections to outline the attitude rate formu-
lations during pure rolling motion, pure pitching motion, and when both aircraft

rolling and pitching motions are coupled.

3.3.1 Roll rate constraints during pure rolling motion

Most geometric trajectory planning methods [43} [71] assume instantaneous at-
titude changes between manoeuvres. Figure (Figure demonstrates the con-
catenation of two CT trim primitives assuming that the attitude change between
trims is instantaneous.

Inclusion of roll rate constraints allows for the consideration of aileron actuator
control power effects during the execution of CT manoeuvres (Section[3.2.2)). The
fixed wing platform roll rate constraint can be modelled as a first order response

(3.11)) where the roll rate (¢) eventually reaches a steady state roll rate value (Ps;)

[98]. The parameter (7,) represents the time constant of the first order system
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3.3 Manoeuvre primitive implementation

Iustantancous attltudc uhange I

Figure 3.7: Concatenation of two CT trim primitives without inclusion of plat-

form attitude rate constraints
modelling the platform roll rate. Figure presents the roll rate constraint
modelled for the aerosonde UAS platform operating at a constant velocity of

30m/s.

(3.11)

0 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 02 0.25 03 0.35 0.4 0.45 0.5
time (s)

Figure 3.8: qb modelled as a first order response for aerosonde UAS platform

travelling at V' = 30m/s
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3.3 Manoeuvre primitive implementation

P, is a function of the platform roll control derivative coefficient (Cq,), roll
rate derivative coefficient (Cj,), platform forward speed (uo), platform wingspan
(b) and aileron deflection (J,). An arbitrary value of 5 is used for é,. The time
constant (7,) is inversely proportional to the aerodynamic rolling moment (L,).
L, is calculated using Cy,, b, ug, @, wing surface area (S) and the rolling moment
of inertia (I,). The steady state roll rate formulations are available in [98§]:

Pss = —001—212%%
1
T = —=
P Ly (3.12)
where
Cip(52)QSb
Ly, = If

During transition between trim primitives, (b reaches and maintains steady
state roll rate (Pss) until the platform reaches the desired ¢ value of the sec-
ond trim primitive (Figure . Figure m provides a visual representation of
the trajectory generated with the inclusion of roll rate constraints during the

concatenation of two coordinate turn manoeuvres.

15 15

Roll Angle
S

Roll Angle
S

I I ! . . . | R . . . . . |
0 0.5 1 15 2 25 3 35 4 0 1 2 3 4 5 6
Time (s) Time (s)

Figure 3.9: ¢ during concatenation of CT trim primitives without and with

inclusion of transition manoeuvre respectively
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3.3 Manoeuvre primitive implementation

810

E 800 100

790

0 o
Figure 3.10: Concatenation of two CT trim primitives with inclusion of attitude

rate constraints

3.3.2 Pitch rate constraints during pure pitching motion

Pure pitching motion is present during the execution of CC and CD trim prim-
itives. Inclusion of pitch rate constraints allows for the consideration of elevator
actuator control power effects during the execution of CC and CD manoeuvres
(Section [3.2.2)). The parameter (7,) represents the time constant of the first order
system modelling platform pitch rate (Figure [3.13)).

b= Qs [1 = e(:qt)} (3.13)

The steady state pitch rate (Q)ss) was derived using longitudinal pure pitching
motion equations [98]. Qs is found by taking the limit of ¢ approaching infinity
where e %qt) is essentially zero. The formulation applies the assumption that no
external disturbances such as wind are present (o = 6), and assumes that « is
small (o & 0) to further simplification. Formula presents the (), derivation
where M, and M, represent aerodynamic moment pitch stability derivatives. Ms.

represents the moment exerted by the platform elevator and Ad, is the elevator
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3.3 Manoeuvre primitive implementation

deflection angle.
Ad— (M, + My)Ad — MyAa = Ms Ad,
Ag—2M,Aq = Ms.Ad,
47 = ’ (3.14)

. Ms. A6,
lim = Sl
500 st 2M,

()ss can be calculated after converting M, and Mjs. to non-dimensional co-
efficient form. The steady state pitch rate equation using non-dimensional co-
efficients is presented , where C),s. refers to the pitch control derivative
coefficient, C,,, refers to the pitch rate derivative coefficient and ¢ represents the
mean aerodynamic chord length of the wing. An arbitrary value of 5 is used for
.-

Cm e
st - __C’méq 2_75056
1
oo T T (3.15)
where

M, _ Cmq(zO)QSc

The limited maximum pitching angle (6,,,.) generated by the aerosonde UA
at 30m/s during a steady state climb manoeuvre results in a shorter manoeuvre
primitive required to transition between SL and CC flight modes. Figure [3.11
presents the platform 6 during the transition between SL and CC trim flight
modes, without and with the inclusion of pitch rate constraints respectively.
Please note that the x axis of Figure has been limited to between 1.8 and

2.2 seconds in order to highlight the manoeuvre primitive execution.

3.3.3 Roll and pitch rate constraints during helical ma-

noeuvres

During transition to a helical manoeuvre, 0 and ¢ constraints may both be
present. Adjusted steady state roll Pss4 and pitch rates Qg4 are used to ensure

that the UA reaches the correct state (0yy1, ¢rr1) without exceeding attitude
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3.3 Manoeuvre primitive implementation

01f

Pitch Angle ©)
o
8

0.06 |-
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1.8 1.85 1.9 1.95 2 205 21 215
Time (s)

Pitch Angle ®)

0.08-

0.06
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18 1.85 1.9 1.95 2 2,05 21 215 2.2
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Figure 3.11: 6 during concatenation of SL to CC trim primitive without and with

inclusion of attitude rates respectively where V' = 30m/s

rate constraints (3.16). t,,4, represents the maximum time required to transition

between two primitives. This is calculated by comparing the time required to
the rotate the UA from the current state to the desired state in the roll (¢4) and

pitch (tp) axes.

tmcw

stA

PssA

Ag

PSS max

A

QSSmaz

V(tg,to) (316)

A0

tmax

Ag

tmaz

The concatenation of SL and HA flight modes is presented to illustrate the

how the steady state attitude rates are adjusted to ensure that the UAS platform

correctly reaches the desired state without exceeding the maximum attitude rate

constraints (Figure [3.12). In this example scenario, Af is constrained in compar-
ison to A¢. This results in t,,,, = t, and a reduction in Q44 (Figure [3.13)).

This section presented an overview of the constraints applied to generate flight
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3.3 Manoeuvre primitive implementation

Figure 3.12: Concatenation of SL to HC trim primitive with inclusion of attitude

rate constraints where V' = 30m/s

Roll Angle Roll Angle
Pitch Angle Pitch Angle

0.8 08

Radians

06F 0.6

02F 02

/ I 1 L . I |
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 45 5
Time (s) Time (s)

Figure 3.13: ¢ and 6 during concatenation of SL to HC trim primitive without

and with inclusion of attitude rate constraints respectively

manoeuvres for fixed wing aircraft using MA theory [48]. Trajectory segments
are generated by concatenating individual trim primitive segments together to
form a smooth feasible trajectory. It was shown that the inclusion of manoeu-

vre primitives ensured that the trajectory generated met platform performance
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3.4 Trajectory tracking of feasible trajectories

bounds and dynamic constraints; including attitude rate constraints. This allows
for the generation of trajectories which incorporate the actual flight dynamics of
fixed wing platforms with greater accuracy. This can allow for the tracking of
trajectories with greater precision [91]. Whilst outside the scope of this research,

a brief overview of trajectory tracking for UA is presented in the following section.

3.4 Trajectory tracking of feasible trajectories

The trajectory planning layer (Figure is essentially a feed-forward controller
and does not explicitly take external disturbances (e.g wind) into account. A
trajectory tracking layer or guidance component is necessary for accurate tracking
of the trajectory solution in the presence of dynamic external disturbances.
Numerous trajectory tracking algorithms have been presented in literature for
accurate tracking of UA trajectories [12} [13; 99; 100]. Beard et. al [12] present
a guidance and control software architecture which illustrates the inclusion of a
trajectory tracking layer which minimises the tracking error between the desired

trajectory solution and current platform state (Figure |3.14)).

Lt of waypoints r Path Planner (PP) — st
Position
| Trajectory Smoother sy [—
Desired ) Y Ml
Position & Heading I_ Tracking
User — “\n_. Error
Interface = Trajectory Tracker (TT)  —
he, o€, V¢ . SLS,Q;O
— Autopilot — Frror
de. O, Of | Sensors
AR UAV —

Figure 3.14: Inclusion of trajectory tracking layer within UAS guidance and
control software architecture developed by Beard et. al [12]

Park [100] states that two approaches for trajectory tracking exist; implemen-

tation of the outer guidance loop and inner control loops separately or through the
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3.4 Trajectory tracking of feasible trajectories

use of an integrated approach where both loops are designed simultaneously. De-
signing both guidance and control loops synchronously can be achieved through
the use of different modern control techniques including receding horizon MPC,
differential flatness or neural network based adaptive controllers. Topsakal [13]
applies the receding horizon MPC control technique to reduce tracking errors for

primitives generated using MA theory in the presence of external disturbances

(Figure |3.15)).

Tf

Mominal Trajectory ﬂ,’,ﬂ

.
»
b ff‘?‘ F

Closedioop Predicted
Trajectory

Actual Trajectory

Tr-t

Figure 3.15: Comparison of nominal, predicted (using MPC) and actual UA
trajectory by Topsakal [13]

During the concatenation of motion primitives being traversed in the presence
of external disturbances, can result in an error between the actual final state of
the current primitive (a(py)) and initial desired state of the next primitive (d(px))
(assuming a hybrid architecture is applied where primitives are selected sequen-
tially using single stage DP optimisation). Topsakal has shown that receding
horizon MPC can be applied to provide a more accurate prediction (p(py)) of
d(pg). Kuwata [14] demonstrated using a MILP based UA trajectory planning
algorithm that tracking error can be decreased by updating the UA position (due
to the effect of external disturbances) after each iteration (Figure [3.16]).

The inclusion of a trajectory tracking layer as a component of the onboard
intelligent control architecture is necessary to minimise platform trajectory track-

ing error during actual autonomous UAS operations in the NAS. Additionally,
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Y [m]
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Figure 3.16: Comparison of Kuwata’s MILP based UA trajectory planning algo-
rithm without and with predicted position adjustment due to external disturbances
[14]

the implementation of an MPC control methodology which iteratively adjusts
d(px) = p(pr) in a sequential manner, could potentially allow for improved track-
ing of MA based trajectories in the presence of external disturbances. However,
this research is focused on the development of a automated trajectory planning
solution to provide UAS with the capability to operate with greater autonomy
during low altitude operations in the NAS. Thus, the inclusion of a trajectory
tracking layer is not investigated in detail as it expected that the trajectory track-
ing component can be implemented as a separate module.

In order to operate safely in low altitude environments, in proximity to terrain
and obstacles, autonomous UAS require the onboard capability to ensure that
trajectories generated are not only feasible, but also collision free. The following
section presents the inclusion of safe states [79] to guarantee platform safety

during autonomous operations in low altitude partially known environments.
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3.5 Ensuring platform safety during trajectory planning

3.5 Ensuring platform safety during trajectory

planning

Safe UAS operations in cluttered environments requires the generation of collision
free trajectories. This can be achieved by discretising the continuous flight track
generated, and testing sampled points for collisions. However, the inclusion of
trajectory collision detection alone does not provide the capability to undertake
autonomous operations in a safe manner.

During autonomous operations where a management by exception control
paradigm [4] is applied, in order to maintain full authority, the HDM should
be able to veto UAS decisions and safely enter a holding pattern at any time.
Schouwenaars [79] has applied a safe state formulation which allows a platform
with non-holonomic constraints to enter a loiter state if the vehicle becomes
trapped in local minima, thus preserving platform safety.

Schouwenaars [79] applies the safe state formulation (Figure to two di-
mensional (2D) partially known environments. It was found that planning can be
conducted in three dimensions (3D) [85]; 89] to reduce the possibility of becoming
trapped in local minima as the UA has the additional option of traversing over
obstacles at a higher altitude. Furthermore, the generation of hold manoeuvres
using MA theory allows for the inclusion of attitude rate constraints to provide
greater trajectory trackeability. The following section provides the results of gen-
erating hold manoeuvres for fixed wing UA using MA theory, and the extension

of the safe state formulation to 3D partially known environments.

3.5.1 Safe states in 3D partially known environments

Left and right coordinated turn trim primitives are performed in an alternate
manner at sampled points along each trim primitive. Attitude rate constraints
are implicitly considered through the inclusion of a transition manoeuvre between
the current primitive and the loiter manoeuvre executed (Figure [3.17).

Using a finite receding horizon strategy, a safe state is deemed to be a state

which is collision free and capable of safely executing a minimum turn loiter
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3.5 Ensuring platform safety during trajectory planning

manoeuvre, where the loiter manoeuvre does not traverse outside the finite hori-
zon. This research project applies a spherical region of radius Rsppere, centered
at the current platform position, to represent the known part of the operational

environment.

Hold
Manoeuvre h/lanoeuvre
Primitive / Finite Horizon

7 e Goal State /

~ Trim Primitive
4+~ States

Obstacle

Figure 3.17: Execution of fixed wing UA hold manoeuvres where attitude rate

constraints are included via MA theory

A fixed resolution automaton is generated using platform dynamics from the
current state location (sg). and right hold manoeuvres are then generated
from automaton state locations as initial states (Figure [3.18). The use of al-
ternating hold manoeuvres was applied to reduce overall computation time and
algorithm memory footprint.

All fixed wing hold manoeuvres traversing outside the finite horizon cannot be
considered safe unless full environment knowledge is available. Thus, only states
of hold manoeuvres which can be executed within Rgphere are considered valid
(Spatia) (Figure . The algorithm calculates the maximum euclidean distance
between the furthest sampled point (zyme:) of each hold manoeuvre executed,

and the centre point (Csppere) of known environment abstraction. All states where

62



3.5 Ensuring platform safety during trajectory planning
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Figure 3.18: Generation of hold manoeuvres for automaton

the corresponding hold manoeuvres maximum euclidean distance from Cyppere is
greater than Rgppere are culled (3.17)).

Trel = TH =~ TCypere

Yrel = YH — YOsphere

TYeue = \/($r61)2 + (Yrer)” (3.17)
TYmar = MaX (TYeuc)

Svalid =  TYmaz < Rsphere

The valid states (Syqiq) and corresponding hold manoeuvres resulting in col-
lisions with obstacles and terrain (including the ground) are then culled (Fig-
ure |3.20) to ensure that the trajectory is safe and collision free. The remaining
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Figure 3.19: Valid states where the corresponding hold manoeuvres are executed

within the finite horizon

states form the safe feasible collision free automaton (ss,f.). This is achieved by

testing to see if the altitude of each hold manoeuvre sample point zy is above

the terrain or obstacle at the corresponding lateral position ((3.18)).

Threshold = max (Zobstacleazterrain)

Ssafe = zy > Threshold (3.18)

Without inclusion of states which result in loiter manoeuvres outside of the
finite horizon, it was found that the minimum finite horizon radius Rgppere iS
limited by the UAs manoeuvrability. To ensure platform safety and to provide
the HDM with the authority to veto and safely execute a hold manoeuvre at
anytime, Rgppere is required to be greater than the minimum platform turn radius
Ropin-

The following section presents the concatenation of primitives to form a smooth
trajectory in an optimised manner. An overview of previous optimisation meth-

ods applied to trajectories generated using MA theory are presented.
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Figure 3.20: Safe states within finite horizon

3.6 Generating optimised trajectories through

concatenation

MA theory [48], like geometric trajectory generation methods [71] requires the
sequential selection of individual segments to form a smooth continuous trajec-
tory. The final trajectory is formed through sequential concatenation of a set of
selected trim primitives (and corresponding manoeuvre primitives, if required)
where each trim primitive selected for execution can be considered as a stage.
Without an optimisation strategy in place, there is no guarantee that trajecto-
ries generated will meet HDM and mission criteria, thus an optimisation strategy
is required in order to generate trajectories which best meet one or more mission
objectives. Dynamic Programming (DP) [I0I] has been previously employed in
related research [49; 53} 92} 102] for the optimisation of feasible trajectories gen-

erated through the application of MA theory. DP is a sequential optimisation
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3.6 Generating optimised trajectories through concatenation

method which finds the least cost solution (optimal) from a set of alternatives over
one or more stages. The following section presents an overview of the application

of DP to MA based trajectory planning.

3.6.1 Dynamic programming applied to M A based trajec-

tory planning

DP is a sequential optimisation process which finds the least cost solution (op-
timal) from a set of alternative solutions. The application of DP to the motion
planning problem differs from the use of DP to graph search methods [43]. DP
theory states that an optimal solution can be found if the exact cost of each stage
is known and included in the optimisation process [43]. In comparison to the
application of DP to trajectory planning with respect to a generic graph search
implementation, the current UAS platform position can be treated as the cur-
rent node. Each possible state the platform can reach through the execution of
currently stored trim primitives must be treated as neighbouring nodes.

Expanding each neighbouring node would cause the algorithm to grow expo-
nentially in computational complexity for each additional stage considered in the
overall optimisation process.

MA theory is a method of discretising platform dynamics rather than planning
space; an accurate representation of platform motion requires a higher automaton
resolution resulting in larger number of neighbouring nodes. Therefore, the use of
DP in autonomous motion planning can become very computationally expensive
as the number of stages in the optimisation process increases.

To decrease the computational complexity and resulting time to plan, Frazzoli
[53][48] applies a hybrid architecture to the motion planning problem for rotary
aircraft. The hybrid architectures, involve integration of DP (optimised over
single stage) with RRT [53] and with MPC [49].

Frazzoli [53] applies DP to the motion planning problem for rotary aircraft
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3.6 Generating optimised trajectories through concatenation

over a single stage in the following manner (Eqn [3.19)).

J*(Q7 h) = min(q—/7q/) [FT((L h7 Tl) + FM(qla hl) + J*(q”, ]’LH)}
where

7 is the delay before the commanded transition to ¢ € Q.

h' represents the position and heading at the start of the manoeuvre.

¢ and A" represent the new state at the inception of the new trim trajectory.
I'r and I'y; indicate the cost associated with the trim and manoeuvre portions
of the commanded transition.

The optimal control (T/, q/)* is the minimiser of the overall cost function.
The optimisation requires the solution of a mixed-integer program, with

one continuous variable (7'), and one discrete variable (¢').
(3.19)

The DP formulation requires selection of the optimal manoeuvre and corre-
sponding jump time from a predefined set of manoeuvres. Section de-
scribes how each discrete jump time (for a given manoeuvre) can be represented
as a unique alternative as it will result in a different final state if executed. The
optimal manoeuvre and corresponding jump time will have the least cost, where
the cost is an aggregated value representing the desirability of a given alternative
with respect to a given criteria set (Section [1.1.1.3). Frazzoli et. al [53] have
applied two specific criteria during manoeuvre and jump time selection: minimis-
ing euclidean distance of current (s) and goal (g) states (criterion crit(,_)); and
minimising platform yaw (psis) and goal yaw (psiy) angles (criterion crit(ay|))

during optimal manoeuvre selection.

3.6.2 Application of DP to this research project

This research uses the DP search algorithm, but limits the search to single stage
optimisation. This converts the DP algorithm to a greedy search implementation,
which essentially chooses the most optimal trim primitive, trim execution time
and manoeuvre execution time required to execute the optimal trim primitive over
a single stage. The UA position after execution of the optimal trim primitive is

taken as the next node for expansion, and continues until the goal is reached.
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Executing a DP search algorithm iteratively over a single stage without ex-
plicit consideration for future stages ensures that the computational complexity
and resulting time to plan remains comparatively lower than generating a solution
over multiple stages. However, not considering all stages during the optimisation
process means that global trajectory solution optimality and completeness can-
not be guaranteed. Global path solution optimality and completeness can be
guaranteed through the application of an intelligent control architecture with a
mission/path planning layer which uses a deterministic search algorithm to gen-
erate an optimal set of waypoints from the current state to the goal location
[43].

During DP optimisation over a single stage, scenarios may exist where the
platform becomes trapped in local minima (e.g. in the presence of pop-up ob-
stacles). UAS motion planning in 3D space allows for the execution of certain
motion primitives (e.g. helical ascent) to escape local minima and continue op-
erations [89]. In addition, during operations in dynamic and partially known
environments, a greedy motion planning implementation can suffice as it may
not be possible to find a globally optimal trajectory solution (e.g. due to limited

environment representation).

3.7 Summary of findings

This chapter presented the generation of feasible collision free trajectories for
fixed wing platforms using MA theory. Planning in 3D environments was possi-
ble through the formulation of common aircraft flight modes and attitude rate
constraints were included through manoeuvres primitives.

The inclusion of safe states [79] in 3D partially known environments allow for
HDM authority to veto and safely loiter at any time. Furthermore, it provides
the platform with the capability to continue autonomous operations in partially
known environments in the presence of communications link failure as the plat-
form can safely enter a loiter state if the planner cannot compute a valid plan in
the time available.

The computational complexities of applying the DP optimisation to MA based

trajectory generators is discussed. It was shown that previous research applied
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hybrid architectures [49; 53; 02 [102] where DP is limited to optimisation over a
single stage to compute feasible trajectories in a computationally efficient manner.

During DP optimisation, Frazzoli [53] applies two specific criteria during ma-
noeuvre and jump time selection: minimising euclidean distance of current (s)
and goal (g) states (crit(y_))); and minimising platform yaw (psi,) and goal yaw
(psigy) angles (crit(jay))) during optimal manoeuvre selection.

During UAS operations where a HDM is responsible for the planning and nav-
igation aspects, the HDM applies their unique decision making style and prefer-
ences to form decisions for a given mission scenario. The criteria applied by Fraz-
zoli may not accurately represent mission requirements as the candidate HDM
may have their own perceptions on which criteria’s are relevant to the current
mission scenario and the preference given to each relevant criteria. Furthermore,
if (crit(jg—s))) and (crit(ay))) do not completely encapsulate HDM decision strate-
gies, then this may suggest the presence of additional relevant criteria. The
following chapter investigates application of potential decision making method-
ologies to generate feasible trajectories based on MA theory which may represent

HDM and mission requirements more accurately.
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4

Embedding Human Expert
Cognition into Trajectory

Planning

Many problems can be solved through the application of decision analysis and
decision aid techniques. The decision aid process generally provides a HDM with
the most appropriate solution from a given set of alternatives. Each alternative
will have one or more characteristics (criteria) which represent different dimen-
sions in which an HDM can view the desirability of a given alternative by.

During the course of flight operations, the pilot/UAS operator may have to
consider multiple criteria in order to achieve mission success. Examples of mission
criteria generally include: achieving the mission goal/s; safety of the vehicle, the
environment and the public at all times; mission efficiency (minimising time,
fuel and /or cost); and/or limiting operations to below a specified altitude ceiling.
Mission objectives and their priorities can dynamically change at any point during
UAS operations (usually at the discretion of the operator).

Decision making during autonomous trajectory planning requires the selec-
tion of the most optimal feasible collision free trajectory with respect to one or
more criteria. Gigerenzer et al. [103] have shown that HDMs do consider mul-
tiple criteria during real-life decision making processes. Therefore, the use of
Multi-Criteria Decision Aid (MCDA) methodologies during autonomous trajec-

tory planning may allow for convergence to a solution which better reflects overall
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mission requirements.

MCDA is a category of decision aid methods in which decisions are formu-
lated through the comparison of alternatives with respect to multiple criteria.
Many MCDA techniques [46] have been published to date which can be used to
determine the most suitable alternative, or to sort or rank a set of alternatives.
MCDA techniques can roughly be divided into two categories: on the one hand
Multiple Attribute Value Theory (MAVT) [51; 52], which aims at aggregating
the multiple points of view into a unique synthesis criterion, and, on the other
hand outranking methods [104] which aim at comparing the decision alternatives
pairwisely and accept incomparability.

MCDA allows for the encapsulation of the HDM’s decision style through the
inclusion of preference information and a relevant set of criteria. Preference infor-
mation can take various forms, among which for example the relative importance
of each criterion to the HDM. The capture of these human preferences is called
preference elicitation and depends on the HDM’s individual decision experiences
and training that he/she may have received. The following section presents a
generic overview of the MCDA process and its use in the context of automated

flight operations.

4.1 MCDA process

The MCDA process requires the implementation of algorithms which attempt to
mimic aspects of the HDM’s decision making style and take into account his/her
preferences. Classically, an MCDA process can be divided into the following four
steps [105]:

1. Determining the relevant criteria and alternatives;
2. Fvaluating the alternatives on all the criteria;
3. FEliciting the HDM’s preferences related to the current decision problem;

4. Combining the evaluations and the preferential information to solve the

decision problem and produce a decision recommendation.
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4.1 MCDA process

In the following sections, each of these steps is detailed in context of this

research.

4.1.1 Determining relevant criteria and alternatives

The automated decision process selects the most desirable solution from a given
set of alternatives. For the most optimal solution to be determined, the decision
algorithms must rank the alternatives from the most desirable to the least desir-
able. The most optimal solution is the alternative which best meets a criteria or
a set of criteria, where these criteria represent attributes which are relevant to
mission objectives. During the decision process, the problem requires translation
to a theoretical planning space. The following section provides an overview of

planning space and its implementation for this research project.

4.1.1.1 Planning space

The planning space is an approximation of the real world environment where the
path planning or motion planning problem can be solved. The difference between
path planning and motion planning is that path planning is commonly referred to
as discrete planning space (or configuration space) whilst motion planning utilises
continuous planning space.

UAS path planning applications are generally represented in two dimensional
(2D) or three dimensional (3D) configuration space (x,y, z) where possible plat-
form states are represented as discrete nodes. A search can be conducted on this
configuration space using graph search techniques [43] to generate a list of nodes
which represent most optimal solution.

For the inclusion of platform dynamic constraints (in particular fixed wing
variants), there is a need to represent the planning space in six DOF (z, vy, 2,0, ¢, ).
Increasing planning space dimensionality can greatly increases the number of
nodes which represent the planning space. Planning in higher dimensionality
may result in a time to plan which is not feasible, thus may not be suitable for
real-time onboard re/planning.

Frazzoli [53] has formulated a hybrid architecture which allows for the gener-

ation of feasible trajectories using MA theory without resorting to planning with
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4.1 MCDA process

higher dimensionality. The path planning and trajectory generation aspects are
treated as separate components. The path planning component finds an opti-
mised set of waypoints through 2D /3D configuration space using a graph search
algorithm from the current location to the final goal location. The trajectory
planning component applies DP optimisation methods to MA theory to select
the most suitable trajectory solution from a set of decision alternatives. The op-
timal set of trajectory manoeuvres are concatenated to form a feasible trajectory.

The following section details the formulation of the decision alternatives.

4.1.1.2 Alternatives

The decision making process can be defined as the selection of the most appro-
priate solution from a set of alternatives (A). The motion planning problem is
defined as the selection of the most optimal manoeuvre and corresponding jump
time which will allow the platform to reach the desired goal state.

This research project applies the DP search algorithm, but limits the search
to single stage optimisation. This requires selection of the optimal manoeu-
vre and corresponding jump time from a predefined set of manoeuvres for each
stage. Each trim primitive can be executed for any given length of time (¢, =
[tmins tmaz]). Each discrete jump time, for a given manoeuvre, can be represented
as a unique decision alternative, as it will result in a different final state if executed
(Figure [1.1)). Let A be the set of such alternatives.

For this research problem, the decision alternatives generated are sets of trim
primitives (p) which can be safely executed by the platform (Figure [3.20). The
automaton represents a set of sampled states (7) which the UAS can reach from
its current state. Thus, the total number of alternatives for (m) trim primitives

is:

Al =" puin (4.1)
n=1

HDM’s select the alternative which appears most desirable by viewing how
well each alternative meets their set of examining criteria. During RPV opera-
tions, the UAS operator may consider multiple criteria including: platform safety;

successful completion of the mission; minimising fuel, time, and/or distance; or

73



4.1 MCDA process
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Figure 4.1: Discrete jump times for a coordinated turn trim primitive

minimising deviation from the current path. Gigerenzer [I03] has shown that
HDMs do consider multiple criteria, however it was found that they generally
consider only a limited number of criteria during the decision making process.
Thus, the application of MCDA to the automated trajectory planning may gen-
erate solutions which better encapsulate aspects of the candidate HDMs decision
making process. The following section presents an overview on the application of

criteria to a set of alternatives in order to form decisions.

4.1.1.3 Criteria

The criteria represent different dimensions with which an alternative can be
viewed by. In literature, it was found that Frazzoli et. al [53] applied two such
criteria: minimising euclidean distance of current (s) and goal (g) states (criterion
crit(g—s))); and minimising platform yaw (¢;) and goal yaw (1)) angles (criterion
crit(jay))) during optimal manoeuvre selection.

If crit(g—s)) and critay)) do not completely encapsulate the HDM’s decision
strategies, then the inclusion of additional criteria allows the onboard trajectory

planner to take into account certain aspects of the mission which cannot be
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considered using only the current two criteria. For example, executing very sharp
turns (high bank angles) can lead to platform instability [106].

Platform safety can be implicitly considered through the inclusion of crit(¢)
which focuses on the minimisation of high platform roll angles (¢5). It is impor-
tant to note that through the implementation of MA theory, platform safety can
be increased without penalising platform manoeuvrability.

The second additional criterion (crit(y. s |)) considers the minimisation of
the altitude of the goal (g,) and current state (s,). For decision scenarios where
the goal is not at the same altitude as the platform, this criterion captures how

focused a HDM is on reaching the required altitude.

4.1.2 Evaluating alternatives on all criteria

In order to perform decisions on the set of alternatives (e.g. generating the most
optimal decision or ranking/sorting), an evaluation scale needs to be attached to
each criteria. Each alternative is then evaluated by placing a cost to go (from
current state to the alternate state) on all attached criteria.

Whilst Frazzoli has not explicitly defined the criteria applied in literature,
crit(j4—s|) can be expressed in 3D planning space as the euclidean distance between
the goal location (g) and the current location (s). A lower cost (c(4—s|)) is placed
on alternatives which drive the UAS platform closer to the goal .

crit(ay) allows for greater control of the heading of the platform. For this
research (1)y) represents the direction to next goal. The cost (c(ay))) can be
calculated by taking the absolute difference between the desired (14) and absolute
platform headings (1,). Alternatives with a resulting 1, closer to ¥, will have a

lower cost placed on them (4.3]).

C(lg—sli) = |9 — 8| € [min[g — s|,mazx|g — 5] (4.2)

c(lavli) = [Ya — Ya| € [0, 7] (4.3)

The evaluation of crit(¢) has been performed by placing a greater cost (c(g,)
on trim primitives which are executed with higher roll angles (4.4]). Finally, a

greater cost ¢y, —s,|) is placed on trim primitives which do decrease the relative
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vertical distance between the platform state (s.) and goal state (g.) for crit

[E3).

|gz—52|)

(lgli) = @ € [~ Pmaz, Pmac] (4.4)

C(lgs—s.|i) = |9z — 8:| € [min |g. — .|, max|g, — s.|] (4.5)

Each candidate HDM may have their own perception of the relative impor-
tance of each criteria and thus the desirability of the alternatives presented. If an
automated onboard trajectory planner applies multiple criteria without account-
ing for the relative importance placed on each criteria by the candidate HDM, the
trajectory solution maybe quite different from what the UAS operator expects.
The following section provides an overview of methods present in literature which

formulate preferences through the analysis of HDM decision data.

4.1.3 Eliciting preferences from candidate HDM decision
data

Roughly speaking, this elicitation can be performed either by questioning the
HDM directly on the values of the various preferential parameters, or by ex-
tracting this information via a disaggregation technique from an order on some
alternatives which the HDM is able to express.

To capture such expert knowledge in a direct way, one can use the MAC-
BETH technique (Measuring Attractiveness by a Categorical Based Evaluation
Technique) [107]. MACBETH’s goal is to build a cardinal scale measuring the
attractiveness of options through a learning process involving an interactive soft-
ware. The HDM is asked to perform qualitative pairwise comparisons regarding
his preferences between various evaluation levels and express himself on a scale
reaching from very weak to extreme.

A well-known disaggregation approach is UTA (UTilité Additive) [50]. Here
the HDM is tasked first with ranking a few well-known alternatives. Linear Pro-
gramming (LP) techniques are then used to perform an ordinal linear regression

in order to determine a preference model which is consistent with the HDM’s
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overall preferences. Both MACBETH and UTA approaches generate value func-
tions and weighting vectors which correspond to the HDM'’s preferences. These
can then be used in MAVT based decision algorithms.

UTA has been selected as the candidate method for the conversion of HDM
decision strategies to preference parameters as it allows for more intuitive capture
if the alternatives are presented to the HDM visually through a Graphical User
Interface (GUI) (Figure [4.2)). This research uses the UTA algorithm written for
the MATLAB compiler by Bous [108].

The following section provides an overview of the formulation of preferences
through the application of UTA theory.

4.1.3.1 Overview of UTA theory

UTA theory [50] uses the preference aggregation-disaggregation principle to infer
global HDM preference models (utility functions and corresponding weighting
vectors) from given preferential structures (HDM decisions). Let A = {z,y, z2,...}
be the set of alternatives and J = {g¢1,...,9,} be the set of n criteria. Each
criterion can be seen as a real-valued function on the set A. Let g(x) be the
vector of evaluations of alternative x of A on the criteria of J. Each criterion can

be represented as a non-decreasing real valued function defined on A [46], as

9i: A= g, g;] CR/x — g(x) €R (4.6)

where [g;+, gf] is the criterion evaluation scale, g+ and g are the worst and
best level of the i-th criterion respectively, g;(z) is the evaluation or performance
of action = on the i-th criterion and g(z) is the vector of performances of action z
on the n criteria. From the definitions given, the following preferential scenarios

can be deduced:

(4.7)

gi(z) > gi(y) & x = y (x is preferred to y)
gi(z) = gi(y) & x ~ y (x is indifferent to y)

UTA [50] structures a set of actions using weak-order preferences, where pair-
wise comparisons of alternatives are performed and one alternative is given a

preference or indifference over the other. The additive value functions (based on
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multiple criteria) are adjusted so that the resulting structure would be as consis-
tent as possible as the initial structure. In the aggregation context, the criteria
model is known whilst the global preferences are unknown. Conversely, disag-
gregation refers to the inference of preference models from a given set of global

preferences. The given set of global preferences may be [46]:

1. a set of past decision alternatives (Ag: past actions)
2. a subset of decision actions, if A is large (Agr C A)

3. a set of fictitious actions, consisting of performances on the criteria, which
can be judge the HDM to perform global comparisons (Ag: fictitious ac-

tions)

As the number of A increases, the number of pairwise comparisons (and sub-
sequently, memory and processing time) required increases exponentially. Thus,
a smaller subset of A was pseudorandomly selected from the full set for faster con-
vergence whilst retaining a high resolution set for the HDM to interact with during
the knowledge capture process. To overcome the possibility that the downsam-
pled subset does not accurately represent the full set of A, multiple pseudorandom
subsets are generated (see Appendix |B|for further details).

This concludes the overview of formulating preferences using UTA theory.
The following section outlines the inclusion of preferences formulated using UTA

within automated decision making algorithms to rank the alternative set.

4.1.4 Determining a ranking of the alternatives

In order to determine which alternative is the most attractive for the HDM, a
ranking of all the alternatives is computed. This allows the HDM direct access
not only to the “best” solution, but to the remaining solutions and corresponding
rankings. Many MCDA techniques [46] have been published to date which can
be used to sort and rank a set of alternatives. For example, outranking and
Analytic Hierarchy Process (AHP) approaches use pairwise comparisons to sort
the alternatives in order of preference. Unlike some outranking methods, for
example ELimination and Choice Expressing REality (ELECTRE) which form
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a hierarchy of preferences by classifying alternatives as; preferred, indifferent,
incomparable; AHP uses numerical measures attached to multiple criteria to form
a ranking order with relative degree of preference presented.

Alternatively, MAVT can be applied to the multi-criteria decision problem,
where multi-attribute preference functions can be decomposed into multiplicative
or additive forms. Value functions are used to represent HDM preferences for each
criteria. In order to represent the HDM’s priorities, weightings are applied to scale
value functions. Computational decision aids such as UTA and MACBETH can
be applied for preference elicitation from expert decision knowledge to form value
functions and corresponding weightings.

The aggregation technique used here is based on MAVT and requires the
value functions and the weights obtained by the UTA technique. Consequently,
the aggregation formula is applied on the set of feasible alternatives. Thus,
each of the alternatives gets an overall value (u), which allows to rank them from
the most to the least attractive one. The criteria aggregation model in UTA is

assumed to be an additive value function of the following form:

u(g(z)) = szuz(gz(x)) Ve e A (4.8)
i=1
where u; (i = 1,...,n) are real-valued functions called marginal value functions

which are normalised between 0 and 1, w; is the weight of criterion ¢, and w is the
overall value function. A higher value of u; is associated with a better alternative
on criterion 1.

In UTA, the ranking given by the HDM on a subset of alternatives is trans-
formed into a set of linear constraints on u, which are added to the UTA disag-
gregation LP (see [50] for further details). The objective of this LP is to minimise
the gap between the initial ranking given by the HDM and the one produced by
the aggregation model. The output of the UTA LP is a set of value functions and
associated weights which represent the HDM’s preferences, based on the input

ranking that he/she provided.
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4.1.5 Summary of findings

This section presented a brief overview of MCDA and outlines the MCDA process
to generate feasible trajectories which applied aspects of the candidate HDM'’s
decision styles. Alternatives were defined as unique feasible sampled states which
could be reached by the UAS platform. Criteria represented different dimensions
with which a HDM could view the desirability of each alternative by.

The UTA disaggregation technique was selected to formulate preference infor-
mation to represent HDM preferences and priorities for each criteria. An additive,
MAVT decision strategy was then applied to incorporate HDM preferences dur-
ing the aggregation of value functions representing mission criteria. The following
section details the application of the proposed MCDA process to the current re-
search problem to generate trajectory solutions which more accurately represent

HDM and mission objectives.

4.2 MCDA and mission priorities

This section applies the MCDA process to the current research problem to formu-
late preferences which represent HDM’s mission priorities. The following section

details an overview of the HDM data capture process.

4.2.1 Expert knowledge capture and decision modeling

strategies

One way of viewing the trajectory planning problem using single stage optimi-
sation is that the candidate HDM is presented with unique decision scenarios,
where they must select the most appropriate trajectory segment in an iterative
manner until the mission is completed. During trajectory selection, the HDM’s
preferences may vary depending on the decision scenario presented to them, for
example, the HDM may have a different set of preferences in mind when the UA
is closer to the goal as opposed to decision scenarios where the UA position is
farther from the goal.

A decision scenario can be defined as the relative difference between the goal

and UA positions ((z, — x,), (Y, — ¥p), (24 — 2)) and the relative orientation of
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the UA with respect to the desired direction at the goal ((¢y —,)). In addition,
the automaton generated will be unique to the platform roll angle (¢,) due to
the inclusion attitude rate constraints; this results in a unique set of A for the
HDM to consider. Thus, each unique decision scenario can be represented as
(g — ), (Yg — Up)s (2g — 2p), ((Yg — Wp)), ¢p). Figure shows an example
scenario presented to the candidate HDM.

The capture of HDM decision data for each unique decision scenario only
provides a discrete snapshot of the candidate HDM'’s decision preferences for that
particular scenario. In order to perfectly model a HDM’s decision style would
require data capture over an extremely large (approaching infinity) set of unique
decision scenarios; this is not feasible. Thus, a sampled set of unique scenarios
(which represent a discrete approximated subset of unique decision scenarios) are
presented to the HDM via the GUI during data capture.

In order to elicit human expert decision preferences, a GUI was developed to
generate a set of simulated decision scenarios, and to capture the corresponding
candidate HDM’s decision patterns (Figure . The HDM uses the GUI to
intuitively select what they consider to be the most suitable decision from a set
of alternatives (discrete sample points along each trim primitive) for each unique
decision scenario. The trim primitives include straight and level flight, climb,
descend, coordinated turn, helical turn and helical descent manoeuvres.

120 unique decision scenarios are completed by each HDM to form a bank of
HDM decisions (Figure {4.4). The HDM decisions are then used to form prefer-
ences, for inclusion into a MAVT based Automated Decision System (ADS), that
generates trajectories which incorporate aspects of HDM decision strategies. The
following section provides an overview of the formulation of preferences through
the application of UTA theory to the current research problem (see Appendix
for further details).

4.2.2 Preference formulation using UTA

UTA is applied to all decision sets completed by the HDM to form a selectable
bank of preference data (Figure . The following sections present three exper-

iments on three different problem formulations. A least cost formulation (LC-2)
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Figure 4.2: Graphical User Interface (GUI) developed for HDM data capture
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Figure 4.4: Decision sets completed by HDM

represents the inclusion of crit(y_s)) and crit(ay) with equal preference weighting
as the reference solution. UTA-2 represents the inclusion of critj;_)) and crit(ay))
where UTA is applied to generate value functions and weighting values using the
candidate HDM’s decision data. UTA-4 describes the inclusion of all four criteria
presented in Section where value functions and weighting values are again

generated from candidate HDM decision data using UTA.

4.2.2.1 LC-2

An ADS applying the LC-2 decision algorithm generates trajectories where crit(,_))
and crit(ay)) are given equal preference. The cost functions c(y—s) and c(ay))
can be equivalently represented as value functions ji(y—s|) and jiay) respectively
. Value functions are an alternate way of representing cost functions
where the most desirable alternative/s receive a value of 1 and the least desirable

alternative/s receive a value of 0.

C(lg—s|)
P 4.9
H(lg—s]) (max(0(|gs|,1..n)) ( )
CA
iy = 1 (%) (4.10)

LC-2 may not accurately represent mission requirements as the candidate

HDM may have their own perceptions on which criteria’s are relevant to the
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Figure 4.5: Normalised aggregated decision values for all criteria (LC-2)

current mission scenario and the preference given to each relevant criteria.

4.2.2.2 UTA-2

UTA theory is applied to the HDM decision sets to generate value functions
and weighting values for crit(,_s) and crit(jay)) which provide a mathematical
representation of the HDM’s decision style for each given scenario. Figure 4.6
shows the value functions generated using UTA theory for the sample decision
scenario when crit(y_s) and crit(ay)) are applied (Figure 4.3). Note that the
weighting value is embedded within each value function (the maximum value of
the value function corresponds to the weight coefficient of Formula .

The aggregate decision values generated by the ADS, with the application
of UTA-2 (Figure for the set of A shows that the desirable alternatives are
concentrated into a singular region. In comparison, the aggregate decision values
generated by LC-2 (Figure , UTA-2 shows a region focused near the goal
state where alternatives have the highest utility decision values. This is due to
the value functions generated using UTA placing a higher preference for crit,_)
during optimisation (Figure .
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4.2 MCDA and mission priorities

4.2.2.3 UTA-4

In order to investigate if the inclusion of additional criteria can allow UTA to
represent HDM decisions with further accuracy, UTA-4 applies two additional
criteria (crit(g)y and crit(y.—s,|)) during preference formulation using UTA theory.
Figure |4.8| shows the value functions generated using UTA theory for the sample
decision scenario (Figure when the two previous and two additional criteria
are applied.

The aggregate decision values generated by the ADS (UTA-4 with HDM 2
dataset) show several regions which are near optimal (Figure . It can be seen
on Figure that crit(ay)) has the greatest effect, thus all alternatives which
have a low c(jay|) appear as near optimal solutions.

The following section compares UTA-4 and UTA-2 against LC-2 (reference
least cost solution) to investigate the HDM decision modelling accuracy of UTA

theory using HDM datasets captured.

4.2.3 Accuracy of UTA

The average results for all decision sets were compared to the trajectories selected
by the HDM to determine how accurately the decisions were modelled by calcu-
lating the difference between the human and the ADS solutions for; roll angles
(Ag), euclidean position between goal and current state (A|,_g) and platform yaw
angles (A,s). Figure m presents a graphical representation comparison UTA-
4 and LC-2 decisions generated by the ADS for the example decision scenario
(Figure [4.3).

The application of UTA-2 generated decisions which had a lower average Ay,
Ajg_s and A, in comparison to the automated generation of decisions using
LC-2 (Figure . This implies that crit(y_,) and crit(ay)) are relevant and
considered by the HDM during the decision making process. Furthermore, the
inclusion of additional criteria (UTA-4) generated decisions which were even closer
to the HDM decisions captured than with just the inclusion of two criteria (UTA-
2) (Figure [£.11]).

Further analysis of each individual HDM’s offline decision set shows how the

UAS platform is expected to perform during autonomous operations with the in-
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(UTA-4) for sample decision scenario (Figure

clusion of HDM preferences (see Appendix for comparison box plots all HDMs).
HDM 2 generally executed flight manoeuvres where ¢ € [20°,40°] (Figure |4.12]).
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Figure 4.11: Average error comparison between human and automated trajectory

decisions for all decision sets

The ADS with the inclusion of HDM preferences (UTA-4) executed primitives
within a similar range to HDM 2. The LC-2 formulation does not explicitly take
¢ limitations into account, subsequently the ADS using an LC-2 optimisation had
greater variance in the roll angle range of the primitives executed (Figure .
It is expected that UTA-4 using HDM 2’s decision data will not periodically ex-
ecute manoeuvres with higher roll angle values unlike the ADS using an LC-2
optimisation. This is desired as the execution of flight manoeuvres with higher
wing loading values has a greater possibility of leading to platform instability
[106].

HDM 3 selected flight manoeuvres where a greater preference was placed
on minimising the altitude of the platform s, with respect to the goal altitude
g. (Figure . LC-2 only considers altitude minimisation as a component of
crit(|g—s|), therefore during offline simulation, it was found that LC-2 optimisation
had a greater variance in comparison to the HDM and UTA-4 trajectory solutions.
It is expected that UTA-4 with the inclusion of HDM 3’s decision data is more
likely generate trajectories with lower |g, — s.| values in comparison to the ADS
using an LC-2 optimisation (Figure . This reflects on the candidate HDM’s
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Figure 4.12: Box plots comparing UAS platform ¢ for offline trajectories selected
by HDM 2, ADS LC-2 and ADS UTA-4 solutions

preference on maintaining a similar altitude to the goal which can be beneficial
for certain missions e.g. airborne surveillance and video capture.

It was found that the ADS with the inclusion of human expert data to model
preferences, generated decisions which were closer to the HDM decisions captured
using the GUI implementation (Figure [4.11)). Thus, the inclusion of preferences
formulated using captured HDM decision data allows for the automated gener-
ation of trajectory decisions which are similar to the decisions generated by the
candidate HDM for each given decision scenario. The following section demon-
strates the inclusion of HDM preferences derived using UTA to generate feasible
trajectories which mimic aspects of the candidate HDMs decision process in sim-

ulated 3D low altitude environments.
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Figure 4.13: Box plots comparing UAS platform |g, — s.| for offline trajectories
selected by HDM 3, ADS LC-2 and ADS UTA-4 solutions

4.3 Results

This section presents the automated generation of feasible trajectories through
the concatenation of primitives using MA theory (Section [3.1)). The automated
process encapsulate aspects of the HDM decision process through the inclusion

of preferences formulated using UTA theory from HDM expert data captured.

4.3.1 Simulation setup

A simulated 3D terrain environment (figure was setup in MATLAB to
simulate mission scenarios where the UAS assignment includes safe and efficient
navigation through a set of globally optimal waypoints. The simulation has been
performed on a computer with an Intel Core 2 quad core processor operating
at 2.8GHz to simulate how the inclusion of human expert data to the motion
planning problem can lead to the generation of UAS flight trajectories which

encapsulate aspects of the HDM decision process.
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4.3 Results

The ADS is tasked with generating an optimised, feasible and collision free
trajectory through all mission level waypoints until the goal is reached (Fig-
ure . The waypoints can either be selected by the user, or provided by a
mission planner. The advantage of using a mission planner is that global opti-
mality is guaranteed as the planner will generate a set of waypoints which are
globally optimal with respect to a predefined set of criteria. The mission planning
solution by Wu [I09] is used for the low altitude trajectory planning results in

simulated environments with terrain present.

10000

4000
X Axis - Distance (m)

Y Auxis - Distance (m) 0

Figure 4.14: Simulated mission environment (terrain simulation 1)

The ADS generates a set of alternatives for each stage by selecting the number
of primitives (m) and the samples per primitive (¢) (Section [4.1.1)). A large set of
alternatives provides a greater number of final states which the platform can reach
and a higher resolution of the region within the platforms performance bounds.
Consequently, a large set of alternatives requires a greater computational effort
and subsequently a longer time to plan. Table lists the primitive types, (m)
and (7) applied during automaton generation for the online simulations presented

in this section.
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Primitive Type | Primitive No. (m) | Primitive Samples (1)
Straight and Level || 1 100
Coordinated Turn || 12 100
Constant Climb 1 100
Helical Climb 12 100
Constant Descend || 1 100
Helical Descend 12 100

Table 4.1: Primitive type, number and samples per primitive applied during

online simulations

4.3.2 Preference selection during online planning

During online trajectory planning, the automated decision algorithm compares
the current online decision scenario to the set of decision scenarios presented to
the candidate HDM offline (Figure [£.4). A least squares formulation (£.11]) is
applied to map the preference data for the offline decision scenario which most
closely matches the current online decision scenario.

The least squares formulations compares the following differences between the
current online scenario and offline scenario set (Figure ; distance to goal in x,
y and z dimensions (Az, Ay, Az) and platform roll angle (A¢). The least squares
formulation for n offline scenarios becomes:

For i € [1..n]

LSQR), = min <\/ (Az)® + (Ay)® + (A2).* + (Ad))f) (4.11)

where Ax, Ay, Az, A¢ € [0..1]

The ADS applies the preferences from the offline HDM decision with the lowest
Least SQuares linear Regression (LSQ Ry) value to the weighted sum formulation
to generate an optimised solution. The following section presents the re-
sults of the online simulations where the automated trajectory mimics aspects of
HDM decision styles through the inclusion of preferences formulated using HDM
decision data via UTA.
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4.3.3 Simulation results

High altitude operations in civilian airspace are generally conducted in IFR under
the guidance of air traffic control. Whilst automated trajectory planning can
still provide benefits for UAS platforms operating at high altitudes, low altitude
operations can be considered as more challenging, as terrain must be treated as
a hazard during planning and operations.

Without the inclusion of collision avoidance methods, a safe output trajectory
cannot be guaranteed, even with the use of optimal collision free waypoints.
For the inclusion of collision avoidance during 3D trajectory planning using MA
theory, the terrain map data is used to cull trim primitives which are below a
specified terrain height, at the given grid location (Figure . This ensures
that an optimised collision free trim primitive can be selected for each stage from
the remaining collision free set of primitives.

The automated LC-2 solution is used as a reference and compared the solu-
tion generated by the ADS with the inclusion of the candidate HDM’s decision
patterns through UTA theory. The comparative trajectory applies the candidate
HDM’s decision style through the inclusion of HDM preferences formulated using
UTA-4.

4.3.3.1 Terrain simulation 1

HDM 3’s dataset was applied to UTA-4 and compared to the reference solution
generated by LC-2 (Figure [£.16). Analysis of HDM 3’s offline dataset showed
that the HDM placed a greater preference on minimising crit |y, —s,|) (Figure .
Subsequently, during online trajectory planning in simulated environments, UTA-
4 generated collision free trajectories which had lower |g,—s,| on average than LC-
2 (Figure . See Appendixfor additional plots comparing UA trajectories

generated for [LC-2 and UTA-4 solutions for terrain simulation 1.

4.3.3.2 Terrain simulation 2

HDM 2’s dataset was applied to UTA-4 and compared to the reference solution
generated by LC-2 (Figure [4.18). HDM 2 preferred to minimise platform ¢ vari-
ance during the offline simulation set (Figure 4.12)). LC-2 has a higher preference
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Figure 4.16: Comparing trajectories from [L.C-2 solution and UTA-4 with HDM

3 dataset (terrain simulation 1)

for crit(jay|) which leads to the selection of manoeuvres which exhibit a low c(jay))
(4.3). This can result in the selection of primitives on the edge of the platforms

95



4.4 Discussion

30
g 20+
g 10
9 0 | —
o |_1
@
E -10
S
4 -20
-30
| | | | | | |
0 2 4 6 8 10 12 14 16
Stage

A Altitude at Goal (m)
(=)

| | | | | | | |
0 2 4 6 8 10 12 14 16
Stage

Figure 4.17: Comparing UAS platform AAltitude at goal for L.C-2 solution and
UTA-4 with HDM 3 dataset (terrain simulation 1)

wing loading performance bounds as LC-2 does not explicitly consider crit(jag|)
during optimisation. This can be viewed in Figure [4.19] where LC-2 exhibits
higher maximum ¢ values than UTA-4. See Appendix for additional plots
comparing UA trajectories generated for LC-2 and UTA-4 solutions for terrain

simulation 2.

4.4 Discussion

This chapter presented a new approach for the inclusion of human expert cog-
nition into autonomous trajectory planning, for UAS operating in low altitude
environments with terrain present. Expert decision data was gathered using a
GUI, allowing for the quantification of the human decision making process. Pref-
erences elicited from human decision data were applied using UTA to generate
feasible 3D collision free trajectories which better represented candidate HDM
priorities and mission objectives.

It has been demonstrated that mission requirements and HDM decision styles
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LC-2 solution and UTA-4 with HDM 2 Dataset (terrain simulation 2)
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can be better represented in automated trajectory planning systems through the
inclusion of HDM decision data through the UTA MCDA technique. Using au-
tomated decision algorithms which apply human expert decision strategies may
result in increased confidence in UAS operations over populated regions and po-
tentially bring civilian UAS closer to being operated autonomously in the NAS.
During low altitude operations however, the environment may present several
challenges not encountered in high altitude flight. Due to the potentially limited
distances between objects, UAS may only have a limited decision window to gen-
erate and perform the appropriate manoeuvres for successful obstacle avoidance
during online planning. Thus, real-time planning constraints may be imposed on
the multi-objective trajectory planning process due to the existence of obstacles
in the immediate path. The following chapter investigates the consideration of
real-time planning constraints during low altitude operations in partially known

low altitude environments.
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Computationally Adaptive
Real-Time Trajectory Planning

Conducting autonomous UAS operations in low altitude cluttered environments
may present several challenges not encountered during high altitude flight. Ter-
rain and urban structures become hazards to the safety of the UAS Thus, low
altitude UAS operations in proximity of obstacles may place real-time constraints
on the automated trajectory planner onboard.

The computational complexities of applying the DP optimisation strategy to
MA based trajectory planning is discussed in Section [2.3] Hybrid architectures
[49; (53} 925 [102] where DP is limited to optimisation over a single stage have been
applied to decrease overall computation times. Furthermore, Kuwata [10] and
Frazzoli [9] have demonstrated that it’s possible to take real-time constraints into
account during trajectory generation using geometric planning techniques.

Whilst Frazzoli [9] was able to generate trajectories in real-time using MA
theory through the inclusion of a minimum trim execution time (7), he stated
that future work is still required for more efficient use of the available decision
window. Frazzoli states “The selection of the trajectory primitives is currently
done manually: it would be desirable to obtain formal criteria defining the op-
timal choice of primitives, trading off the complexity of the resulting automaton
with the achievable performance. A dynamic resizing of the automaton is also

conceivable: in critical situations, when a decision has to be taken in a very short
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5.1 Presence of real-time deadlines during MA trajectory planning

time, the automaton could be reduced to a few manoeuvres, whereas in a more
secure situation the set of possible manoeuvres could be expanded.”

Dynamically adjusting automaton size during planning could allow for more
efficient use of finite planning window and onboard computational resources. For
example, using dynamically adjustable automations can allow for real-time re-
planning on two platforms with different computational capabilities. Albeit the
platform with greater computational capability is expected to be able to compute
a solution using a larger set of manoeuvres.

It is important to note that the onboard computational capabilities and flight
performance of individual UA can vary. For a given platform with a predefined
computational capability and V' (assuming the trajectory planner is determinis-
tic), it is expected that the computation times for each trajectory segment or stage
is dependent on the automaton resolution (A). The following section investigates
the relationship between A, platform computational capability and trajectory
computation times to demonstrate the presence of real-time constraints during

online trajectory planning in low altitude partially known environments.

5.1 Presence of real-time deadlines during MA

trajectory planning

In the presence of real time deadlines, there is a finite length of time available
(Finite Planning Window) for the UAS to complete the trajectory solution search
before a predefined safety manoeuvre must be executed to ensure collision free
flight (Figure . Convergence to a solution, if one exists, within this Finite
Planning Window (FPW) is dependent on current system execution parameters
such as automaton resolution and computational power available.

Whilst the computational capabilities of the system are dependent on the
Central Processing Unit (CPU) power and the efficiency of the algorithm, if
the algorithm developed is deterministic in nature, it is expected to generate a
solution in the same or similar period of time for a predefined A resolution. The

following section provides an overview of how the simulated 3D low altitude urban
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Figure 5.1: FPW during single stage MA based trajectory planning in cluttered

environment

environment is setup to perform an investigation on the real-time constraints

present during MA based trajectory planning.

5.1.1 Simulation setup

Simulated 3D environments were setup in MATLAB to represent low altitude
urban terrain (Figure . The UAS platform is tasked with generating an
optimised feasible collision free trajectory through a set of predefined waypoints,
where each waypoint is represented by a spherical capture region and desired
direction at goal (Figure [5.3).

The main system execution parameter is the automaton size or total number
of alternatives (A) generated using MA theory. A is dependent on the platform
o, 0, and p resolution selected. ¢ and 6 resolution indicates the sampling distance
(in degrees) between trim manoeuvres (Table [5.1)). Figure presents a visual
comparison between smaller (1350A) and larger (41800A4) fixed wing automatons
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Figure 5.3: Waypoint capture represented as spherical regions

generated using the parameters listed in Table

The simulations are conducted in partially known environments where the
known environment abstraction is represented as a finite horizon scheme. Dur-
ing, planning in partially known environments, the planner has limited knowledge
of the planning environment. This places a limit on the length of the primitives

which can executed, as platform safety cannot be guaranteed if the selected ma-
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5.1 Presence of real-time deadlines during MA trajectory planning

A ¢ res. 0 res. | p res.
(degrees) | (degrees)
1350 15.74 7.48 50
1950 10.49 7.48 50
5700 6.996 7.48 100
9100 10.49 2.493 100
13300 | 6.996 2.493 100
41800 | 6.996 1.49 200

Table 5.1: A applied during simulation

5
©000000”

20000009 o
o 0 o o

m)
I
o
S

, s 55 79200 100
@® o5 N y Re)
o (e O oS 00° &
400-b 7% % % (%m@g)ﬁgoooo > £ 50 2
o i pass S &
% Co, Lo g IR 300 . %
3

N
S
3

o,

T
o
(w) aoueiSIq

S
o
o o
o o 06 ,0©
90060000° 000600007

o
3

Altitude (m)
8
S
Altitude (m)

—-100 100

-200 -100 0 100 200 300
Distance (m)

T T T T T T T
-300 -200 -100 0 100 200 300
Distance (m)

Figure 5.4: Comparison between smaller (1350A4) and larger(41800A) fixed wing

automatons

noeuvre state is outside the environment abstraction available. It is expected
that a shorter finite horizon window would require a platform with greater com-
putational capabilities to compute a feasible solution in real-time.

During online planning, the FPW and finite horizon must be updated to reflect
on the current platform state after the computation of every stage. The following
section presents an overview of the FPW and finite horizon formulation applied

to this research.

5.1.2 FPW during online planning in partially known en-

vironments

During single stage optimisation, the FPW has been defined as the maximum

time available to the trajectory planner to compute the next known trajectory
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5.1 Presence of real-time deadlines during MA trajectory planning

segment to avoid entering a hold pattern (Figure . A cruise manoeuvre is
executed at the start of the simulation with a predefined FPW length to provide
the planner with an initial FPW to compute the first trajectory segment.

This research project applies a spherical region of radius Rgppere centered at
the current platform position to represent the known part of the operational en-
vironment. The planner does not have access to environment abstraction outside
of the sphere, therefore all trajectories which do not allow for the execution of
a safe state manoeuvre within the known region are not considered during the
decision making component (Figure . The initial FPW must be set to ensure
that the platform can compute a feasible trajectory segment solution within the
spherical region within the available decision window ({5.1)).

Rypn
FPWipitiar < —25

(5.1)

Vinitial
After the computation of the initial trajectory segment, the FPW is updated
to reflect the time available to the planner to generate the next segment. However,
during the computation of the next trajectory segment the finite horizon remains
static. In order to have the most up to date environment abstraction, the known
region is centred (Cypnere) at the start of the trajectory segment (204 {z,y, z})
currently being traversed. Therefore the FPW and Cgphere for the next

trajectory segment (py. 1) are defined as:

FPWi = tm), T L)y, (5.2)

Clsphereys, = (00 {z,y, 2}), (5.3)

where ¢, and tg), are the durations of the manoeuvre and trim primitives

selected for the current stage k respectively.

5.1.3 Presence of real-time constraints during simulation

This section presents the planning time required to compute a feasible trajectory
through a predefined set of waypoints (Figure for a given set of system

execution parameters. The simulations have been performed on System 1 (Core
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5.1 Presence of real-time deadlines during MA trajectory planning

A Segment Compute | Min. | Time to | Flight

Time [mean (¢)] | FPW | Plan Time
(s) (s) (s) (s)

0.567 (0.011 1.160 3.97 20.35

)
0.811 (0.010) 0.868 6.48 29.62
5700 2.203 (0.018) 1.030 15.42 20.19
9100 3.492 (0.016) 1.010 20.95 19.70
13300 5.214 (0.032) 1.030 36.5 20.19
41800 16.08 (0.076) 1.089 112.5 20.34

Table 5.2: Computation results for system 1 where Rsppere = 250m

A Segment Compute | Min. | Time to | Flight
Time [mean (c)] | FPW | Plan Time

(5 CENCENC

1.174 (0.024 1.160 8.22 20.35
1950 1.652 (0.026 0.868 13.2 29.62
5700 4.491 (0.024 1.030 31.4 20.19

13300 10.41 (0.071 1.030 72.8 20.19
41800 32.05 (0.109 1.089 224.32 20.34

)
(0.026)
(0.024)
9100 7.157 (0.068) 1.010 | 429 | 19.70
(0.071)
(0.109)

Table 5.3: Computation results for system 2 where Rppere = 250m

2 duo at 3GHz) and System 2 (Core 2 duo simulated at 1.5GHz) to highlight
the planners performance on platforms with different computational capabilities.
The initial FPW was set to five seconds to provide the planner with a predefined
period of time to find a valid solution for the next trajectory segment (if one
existed).

In order to test the trajectory planners performance to compute a feasible
trajectory in partially known environments, the simulations have been performed
on system 1 and 2 respectively using an Rgppere of 250 metres. Table and
present the planning time required to compute a feasible trajectory through a
partially known environment on systems 1 and 2 respectively.

For the trajectory planner to successfully compute a feasible safe solution
in real-time, the segment compute time must be less than the minimum FPW

during the simulation (shortest trajectory segment length). For example, the

105



5.1 Presence of real-time deadlines during MA trajectory planning

5700 A simulation can compute most trajectory segments within the available
FPW, however it cannot compute a full solution in real time as the computation

time required to generate segments two, three and six is greater than the FPW

available (Figure [5.5)).
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Figure 5.5: Simulated 3D trajectory generated using 5700A parameters

5.1.4 Summary of findings

The ability to generate an MA based trajectory solution in real-time was found
to be dependent on the computational power available, the A resolution applied
and p length for each segment.

For a fixed resolution of A, the MA algorithm computed the same trajectory
solution on both computing platforms System 1 and System 2; this was expected
as the algorithm is deterministic. It was also found that planning at higher A
resolutions increased the time to compute for each segment (Figure . There-
fore, due to the increased computational capabilities, System 1 (Table |5.2|) was
able to compute the solutions in real-time for a higher A resolution than possible
with System 2 (Table [5.3)).

The p length for each segment is dependent on the selection of the most

optimal trim primitive for each segment. The optimal trim primitive selected
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Figure 5.6: Comparison of segment computation time and FPW for 5700A sim-

ulation on system 1

may vary with the number of feasible A available and the optimisation method
applied during manoeuvre selection. Furthermore, the p length of the current
segment affects the FPW available for future stages. This makes it difficult to
predict if the simulation using fixed parameters will compute a solution in real
time as the p length is not expected to remain constant during planning.

Using fixed parameters, the only way to currently ensure that the MA based
trajectory planner will compute a solution in real-time is perform planning using
a low A resolution, even on platforms with higher computational capabilities.
The use of a low A resolution however, potentially decreases the optimality and
completeness of the segment solution. Additionally, the use of low A can poten-
tially reduce the manoeuvrability of the aircraft or decrease planning precision
as a lower number of primitives are available for selection.

The use of a higher resolution A set may provide a decision making component
with a larger set of potentially more optimal A to select from, thus increasing
planning precision and completeness. However, it must be noted that onboard

computational capabilities can vary between UAS platforms due to the numer-
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ous types of hardware available. Furthermore, smaller UAS platforms may be
restricted in computational capability due to more stringent payload size, weight
and power restrictions.

The author proposes a new approach where the automaton size is dynamically
adjusted during planning for more efficient use of finite planning window and
onboard computational resources. The Computationally Adaptive Trajectory
Decision optimisation System (CATDS) is expected to increase planning precision
and completeness in safe scenarios, whilst still ensuring that future trajectory
segments can still be computed in real-time in time constrained situations. The
following section details the development of the new approach which allows for
the computation and optimisation of feasible 3D flight trajectories within real

time planning deadlines.

5.2 Development of CATDS optimisation sys-

tem

In the presence of real time deadlines, there is a finite length of time available,
for the UAS to complete the trajectory solution search before a predefined safety
manoeuvre (Section must be executed to ensure safe autonomous operations.
Convergence to a solution, if one exists, within this FPW is dependent on the A
resolution and computational power available onboard.

Scenarios may exist where a feasible solution cannot be generated within the
FPW if the A resolution is too high. Consequently, segment completeness and
planning precision may be diminished if the A resolution is too low. This sec-
tion presents a new approach which allows for the computation and optimisation
of feasible 3D flight trajectories within real time planning deadlines, for UAS
operating in partially known environments with obstacles present.

A novel Computationally Adaptive Trajectory Decision optimisation System
(CATDS) has been developed and implemented in simulation to dynamically
manage, calculate and schedule system execution parameters to ensure that the
trajectory solution search can generate a feasible solution, if one exists, within

a given FPW. The inclusion of the CATDS potentially increases overall mission
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efficiency and may allow for the implementation of the system on different UAS
platforms with varying onboard computational capabilities. This approach has
been demonstrated in simulation using a fixed wing UAS operating in low altitude
partially known environments with obstacles present.

The CATDS optimisation system is composed of offline and online compo-
nents. The offline component benchmarks the computational performance of the
system using sets of predefined execution parameters. The computational perfor-
mance of the system can be estimated as the algorithm is deterministic in nature.
It must be noted that the offline component requires re-execution if the computa-
tion capabilities of the system are updated. The online component dynamically
selects the optimum A resolution with respect to the available computational
power and FPW for the each trajectory segment. The following sections detail

the development of the offline and online components of the CATDS.

5.2.1 CATDS offline component

The offline component of the CATDS calculates the average time to generate a
primitive set (for a given ¢, # and p resolution), determine the A subset to ensure
platform safety (Section and apply MCDA techniques to select an optimised
A for a single stage. This information provides the online component with a
matrix of expected times (t(bemhmark)) to compute an optimised trim primitive
for a range of A resolutions.

For this research, multiple p sets of varying A resolutions were executed offline
to determine the computational performance of the platform. Table gives an
overview of the p sets applied during the offline phase.

The benchmark times to compute an offline solution for each unique p set
and p resolution combination (Table is presented in Figure . The time
to compute an offline solution for a single stage was found to increase relatively
linearly with the A resolution applied (Figure .

The benchmarking data is compiled offline, stored and then applied during
the online component to ensure that the following stage can be computed within
a specified FPW. The following section presents an overview of the online com-
ponent of the CATDS system.

109
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A ¢ res. 0 res. P p res.
(degrees) | (degrees)

[600 900 1200 1500] 31.48 7.48 15 | [40 60 80 100]
[1080 1620 2160 2700] 31.48 2.49 27 | [40 60 80 100]
[1400 2100 2800 3500] 31.48 1.49 35 | [40 60 80 100]
[1560 2340 3120 3900] 15.74 7.48 39 | [40 60 80 100]
[2200 3300 4400 5500] 15.74 2.49 55 | [40 60 80 100]
[2280 3420 4560 5700] 15.74 1.49 57 | [40 60 80 100]
[2520 3780 5040 6300] 10.49 7.48 63 | [40 60 80 100]
[3640 5460 7280 9100] 10.49 2.49 91 | [40 60 80 100]
[3960 5940 7920 9900] 10.49 1.49 99 | [40 60 80 100]

[5320 7980 10640 13300] 6.996 7.48 133 | [40 60 80 100]
[5720 8580 11440 14300] 6.996 2.49 143 | [40 60 80 100]
[8360 12540 16720 20900] 6.996 1.49 209 | [40 60 80 100]

Table 5.4: A resolutions which form matrix of expected times

a
o

a
=]

209
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Avg. Offline Computation Time (s)
(4]

55

15 Trim Primitive Number
Trim Primitive Resolution

Figure 5.7: Time to compute offline solution with respect to p number and p

resolution for system 1

5.2.2 CATDS online component

The online component of the CATDS takes into account the decision scenario
and onboard computational capabilities of the UAS platform, to select the most
appropriate execution parameters which ensure that the MA based trajectory
planner can compute an optimised solution in real-time. In time constrained
scenarios (shorter FPW) the CATDS decreases the automaton, enabling the faster

solution computation. In scenarios where a longer FPW window is available, the
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Figure 5.8: Time to compute offline solution with respect to A resolution for

system 1

CATDS expands the p set to allow for the computation of a suitable trajectory
solution for the current stage at a higher resolution.

In order to ensure that the MA based trajectory planner can compute a solu-
tion in real-time, several constraints are imposed by the CATDS. The minimum
execution time for the following trajectory segment (pgi1) must be long enough
to ensure that the trajectory planner has sufficient time to compute the next

trajectory segment. Thus, the minimum trajectory execution time ¢ cannot

Pmin
be less than the minimum time from the matrix of expected times computed by

the offline benchmarking component (¢enchmark)) (5-4))-

tpmm = min (t(benchmark)) (54)

Without any additional constraints present, the CATDS essentially selects the
highest A resolution which allows for the computation of the following trajectory
segment within the available FPW ((5.5)).

tp = max (t(benchmark) < FPW) (55)
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System A Res. Min. Segment | Min. | Time to | Flight
[Min Max] | Compute Time | FPW | Plan Time
(5) ® | ® | ©

[2280 10640] 1 1.066 18.672 | 21.183
2 [1400 5040] 1.218 1.268 15.842 | 20.231

Table 5.5: Computation results for real-time MA based planning with CATDS
enabled

To validate the performance of the CATDS, online trajectory planning was
conducted with the CATDS enabled in simulated 3D low altitude urban terrain
(Figure where Rgphere = 250m . The results are presented in Table for
systems 1 and 2.

The CATDS dynamically adjusts the segment A resolution (Figure |5.9) to
ensure that each trajectory segment is computed within the available FPW (Ta-
ble . Thus, enabling the CATDS allows for more efficient use of the available
FPW during online planning (Figure[5.10]). For systems with lower computational
capabilities (e.g. system 2), the CATDS selects lower automaton A resolutions

to ensure real-time planning constraints are still met.
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Figure 5.9: Segment A resolution with CATDS enabled where Rgppere = 250m

on System 1 and 2 respectively

Franke [4] states that with increasing levels autonomy onboard UAS opera-
tors move away from direct control of the platform towards a management by

exception control paradigm. Management by exception occurs when the UAS
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s I Compute Time
. FPW

Time (s)

Trajectory Segment

Figure 5.10: Comparison of trajectory compute time and FPW with CATDS
enabled where Ryppere = 250 on System 1

performs planning and execution and informs the HDM of its current and future
actions. The operator has the option to veto or override the current plans and
revert to a lower control paradigm if required.

In order to apply a management by exception control paradigm to this research
project requires that the HDM has sufficient time (F'PW,,;,) to veto the current
decision. Without consideration for future stages, HDM may have insufficient
time to veto the current trajectory segment being traversed if ¢, . is less than
FPW,.;». The following section presents the inclusion of the F PW,,,;, constraint
during real-time MA based trajectory planning.

5.2.3 Applying a minimum FPW

The inclusion of the FPW,,;, constraint within the CATDS can be achieved
by either applying a minimum p length constraint or starting the computation
for the following stage before the UAS has traversed the current trajectory seg-
ment. Applying a minimum p length constraint reduces the number of feasible

alternatives available to the planner and may force the selection of sub-optimal
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FPWin A Res. Min. Segment | Min. | Time to | Flight

(s) [Min Max] | Compute Time | FPW | Plan Time
B © | o | e

1 (600 5320] 0.53 1 14.22 19.75

2 [600 3420] 0.53 2 8.5 19.91

Table 5.6: Computation results with CATDS enabled and F'PW,,;, present for
System 1

trajectory segments. Thus, a F'PW,,;, was applied by to this research project by
starting the computation for next segment py 1 before current trajectory segment
had been completely traversed.

The CATDS uses a buffer (tgyrrrr) to ensure that enough time is available
during computation of the current segment to generate the following stage with
an FPW of FPW,,in . This results in more conservative use of the available
FPW during planning to ensure that the F'PW,,;, constraint can be met. It must
be noted, the trajectory planner must also account for the change in the location

of the finite horizon centre (5.7]).

tpurrer = FPWy, —1

Pmin
5.6
tp = max (f(penchmark) < (FPW — tpurrer)) (56)
tsphere = FPWpin — tkarl
5.7
C(Sphﬂ”@)k-u = (p {LL’, Y, z, tsphere})k ( )

This research applies a F'PW,,;, to represent the time available to a decision
maker to veto the current trajectory segment being traversed before the next
segment is computed and executed. Table [5.6| presents the computation results
with the CATDS enabled and the inclusion of the F'PW,,;, constraint of 1 and 2
seconds.

The inclusion of an FPW,,;, constraint whilst the CATDS system was en-

abled ensured that the trajectory planner took ¢ into account to provide the

Pk+1
supervisory HDM with sufficient time to veto if they did not agree with the cur-

rent trajectory segment selected. This was achieved by starting the computation
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5.2 Development of CATDS optimisation system

of the following stage in advance if ¢, ., was found to be less than FPW;,. It
was also found that the inclusion of a longer F'PW,,;, of 2 seconds (Figure
required a longer tgyrregr, resulting in a more conservative approach to the al-
location of segment computation time by the CATDS (Figure .

Finite Plannning Window (FPW) (s)

1 2 3 4 5 6 7
Trajectory Segment

Figure 5.11: Segment FPW with CATDS enabled and F'PW,,;, = 2s on system
1

I Compute Time
[ Idle Time
[ Compute Time
I de Time

Time (s)

2 3 4 5
Trajectory Segment

Figure 5.12: Segment computation and idle times with CATDS enabled and
FPWin = 28 on system 1
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5.2.4 Summary of findings

This section presented a new approach for the real-time generation of trajectories
for fixed wing UAS, operating in partially known low altitude environments. A
novel CATDS was applied to demonstrate the generation of trajectories in real-
time by taking into account onboard computational capabilities. The CATDS
dynamically adjusted automaton resolution to ensure that a feasible solution
could be found within the available FPW. Additionally, the inclusion of a mini-
mum FPW within the CATDS provided a supervisory HDM a minimum period
of time to veto onboard decisions and potentially allow the UA to operate at a
higher level of autonomy using a management by exception paradigm [4].

With the inclusion of the CATDS system, it is now possible to apply HDM
decision preferences to autonomous UA trajectories during operations in low alti-
tude environments where real-time constraints are present. The inclusion of HDM
preferences formulated in Section {] is expected to generate feasible trajectories
which represent aspects of HDM decision styles during real-time planning. Fur-
thermore enabling the CATDS allows for more efficient use of the decision window
whilst providing the HDM with sufficient time to veto decisions if required.

The following section compares the autonomous trajectories generated using
UTA-4 and LC-2 decision algorithms to highlight how the inclusion of HDM
decision data within UTA-4 allows for the generation of trajectories which better

represent HDM and mission preferences during real-time trajectory planning.

5.3 Inclusion of HDM preferences during real-
time planning

Mission waypoints representing the desired path from the current position to
goal were input into the simulated 3D environment (Figure . The UA is
tasked with formulating an optimised feasible collision free trajectory through
the predefined waypoint set in real-time.

The following sections apply and compare LC-2 and UTA-4 decision algo-

rithms to demonstrate how HDM decision priorities can be applied to autonomous
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Figure 5.13: Waypoints representing desired path to goal

Decision A Res. Min. Segment | Min. | Time to | Flight

Algorithm [Min Max] | Compute Time | FPW | Plan Time
(s) (s) (s) (s)

LC-2 [600 20900] 0.281 1 52.048 69.07

UTA-4 (HDM 2) | [600 20900] 0.265 1 57.562 111.3

UTA-4 (HDM 3) | [600 20900] 0.265 1 60.984 108.4

Table 5.7: Computation results with CATDS enabled and FPW,,;,, = 1s on

System 1

trajectory planning in the presence of real-time constraints through the applica-

tion of UTA theory.

5.3.1 Results

Real-time planning simulations were performed by enabling the CATDS and ap-
plying a F'PW,,, of 1s and Rgppere 0f 250m on system 1. Table presents the

results for LC-2 and UTA-4 decision algorithms.
LC-2 generated a safe and feasible trajectory where the UA performed a helical
spiral ascent [89] to avoid become trapped in local minima (Figure [5.14). For

resulting trajectory segments where ¢, ., < 1 second, the onboard planner began
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5.3 Inclusion of HDM preferences during real-time planning

computations before the current trajectory had been completely traversed, thus
allowing for F'PW,,;, = 1 second to be maintained (Figure |5.15]).
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Figure 5.14: Trajectory generated by LC-2 solution with CATDS enabled
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Figure 5.15: Segment computation and idle times with CATDS enabled and

FPW,n = 1s on system 1 for LC-2 solution

LC-2 does not take into account HDM decision preferences, and therefore

may not be representative of HDM and mission priorities. The following sections
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5.3 Inclusion of HDM preferences during real-time planning

further analyse the resulting trajectories generated by applying HDM decision
preferences through UTA theory via UTA-4 decision algorithm in comparison to

the LC-2 trajectory generated (Figure |5.14)).

5.3.1.1 Inclusion of HDM 2 Data via UTA-4

Section demonstrated that UTA-4 represented HDM priorities during prim-
itive selection with greater accuracy than LC-2. HDM 2 was found to place a
higher preference on criteriong), (Figure . Whilst the platform cannot exe-
cute manoeuvres outside of its predefined ¢ bounds, consideration of criterion )
can potentially reduce platform instability due to the execution of sharp turns
during flight [106]. Figure presents the 3D trajectory generated in real-time
using HDM 2 decision data via UTA-4 by enabling the CATDS.

The inclusion of HDM 2 decision data within UTA-4 generated trajectories
exhibited lower average ¢ than LC-2, even in low altitude urban environments
(Figure [5.17). This demonstrates the inclusion of HDM 2’s decision data allows
the ADS to place a higher preference on the selection of primitives which better

meet the candidate HDMs decision style.
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Figure 5.16: Trajectory generated by UTA-4 solution with CATDS enabled using
HDM 2 dataset
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Figure 5.17: Comparing UAS Platform Mean and Maximum ¢ (per stage) for
LC-2 solution and UTA-4 with HDM 2 Dataset

5.3.1.2 Inclusion of HDM 3 Data via UTA-4

It was found that HDM 3 placed a higher preference on criterion(y, .|y (Fig-
ure during the selection of primitives. This was also demonstrated through
simulated online trajectory planning in long range low altitude environments
(Section (4.3.3.1]).

The inclusion of HDM 3 decision data within UTA-4 generated trajectories
where the relative altitude difference between the UA and desired waypoint alti-
tude once the waypoint had been reached, was lower than LC-2 (Figure . A
HDM’s preference for maintaining a similar altitude to the goal can be beneficial
for certain missions such as surveillance or airborne sensing and capture. Fig-
ure .18 presents the 3D trajectory generated in real-time using HDM 3 decision
data via UTA-4 by enabling the CATDS.

5.4 Discussion

This chapter presented a new approach for the real-time generation of trajecto-

ries for fixed wing UAS, operating autonomously in partially known low altitude
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Figure 5.18: Trajectory generated by UTA-4 solution with CATDS enabled using
HDM 3 dataset
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Figure 5.19: Comparing UAS Platform relative A altitude at goal for [.C-2
solution and UTA-4 with HDM 3 Dataset

environments. A novel Computationally Adaptive Trajectory Decision optimi-
sation System (CATDS) was applied for the generation of flight trajectories in
the presence of real-time planning deadlines. The CATDS dynamically adjusted
automaton resolution to ensure that a feasible solution could be found within
the available FPW. This allowed for more efficient use of the available decision
window and onboard computational resources.

The capability for a UA to operate autonomously in a safe manner was demon-
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strated through the application of safe states to 3D partially known environments,
where UA enters a hold manoeuvre if the HDM vetoes the current trajectory seg-
ments generated. This allows the supervisory HDM to operate at a higher level
of autonomy using a management by exception paradigm [4]. Furthermore, the
inclusion of a minimum FPW within the CATDS provides the HDM with a min-
imum period of time to veto UA ADS decisions during planning.

Enabling the CATDS allows for the inclusion of HDM decision preferences
during autonomous UAS trajectory planning in low altitude partially known en-
vironments in the presence of real time constraints. HDM preferences formulated
in Section [] were applied via UTA-4 to generate trajectories which took candi-
date HDM priorities into account whilst meeting real-time planning constraints.
This was demonstrated by comparing trajectories generated by UTA-4 and LC-2
in simulated partially known urban terrain.

The following chapter presents the conclusions of this research project.
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Conclusions

This thesis presented the conceptualisation and implementation of new algorithms
for embedding human expert cognition and real-time trajectory planning on au-

tonomous UAS.

6.1 Thesis summary

In chapter 1, the problem of integrating UAS within the NAS was formulated,
where a need for greater onboard autonomy to meet the ELOS requirement was
established. Highly autonomous low altitude UAS operations in the presence
of terrain and obstacles was highlighted as being a difficult challenge, but would
provide UAS with the capability to perform a greater range of low altitude civilian
missions in a safe manner. The challenges present during autonomous low altitude
operations included; incorporation of complex platform dynamics, guarantee of
platform safety, optimisation with respect to mission or HDM requirements and
real-time planning constraints were also discussed.

Literature regarding intelligent control architectures and trajectory planning
methods was presented in chapter 2, and discussed with respect to meeting au-
tonomous low altitude operational challenges listed in the previous chapter. An
overview of the candidate trajectory generation method, MA theory, was pre-
sented and its potential for the inclusion of UAS dynamic constraints for accurate

platform tracking whilst taking into account real-time constraints was highlighted.
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6.1 Thesis summary

In chapter 3, MA theory was applied to generate feasible flight trajectories
for fixed wing UA. Fixed wing trim states such as coordinated turns and helical
flight modes were simulated and included to form an automaton of common fixed
wing trim primitives. Fixed wing platform roll and pitch rate constraints were
modelled and applied through the inclusion of manoeuvre primitives which linked
trim primitives to form feasible flight trajectories. The application of safe state
manoeuvres (finite receding horizon model) with consideration for platform atti-
tude rates is extended to 3D partially known environments to guarantee platform
safety during UAS operations. A review of decision making algorithms to opti-
mise the collision free feasible trajectories based on MA theory is also presented.

The application of MCDA methodologies to better model HDM mission prior-
ities was investigated in chapter 4. An overview of the MCDA process is presented
in context of low altitude trajectory planning in partially known environments.
Human expert decision data was captured via a GUI, allowing for the quantifica-
tion of the candidate HDM’s decision making process. Preferences were elicited
from HDM decision data using UTA theory and applied to a multi-criteria ag-
gregation technique to generate trajectory segments which encapsulated aspects
of the candidate HDM’s decision strategies. Trajectories computed using dif-
ferent HDM decision data were compared with a least cost solution with equal
preferences for all criteria. This demonstrated that the unique decision styles of
individual HDMs can be better represented during automated trajectory planning
through the inclusion of HDM decision data via the UTA MCDA technique.

In chapter 5, the safe operation of UAS in low altitude environments with
real-time planning constraints was investigated. Trajectory computation times
using fixed automaton resolutions on two simulated platforms with different com-
putational constraints was presented to show that real-time constraints can vary
with computational capabilities and planning resolution. A flight management
system (CATDS) was proposed and implemented to dynamically moderate au-
tomaton resolution to compute trajectory segments within real-time deadlines on
platforms with different computational capabilities. The flight management sys-
tem is an extension of the real-time planning research undertaken by Frazzoli [53].
CATDS was able to successfully compute solutions within real-time deadlines for

different scenarios including; systems with different computational capability and
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different sensor capabilities (represented as finite horizon lengths). The inclusion
of CATDS enabled more efficient use of the available decision window and on-
board computational resources. Furthermore, the inclusion of a minimum FPW
within the CATDS provided a minimum period of time to veto UA ADS decisions.
This provides the capability for a HDM to potentially revert to a supervisory role
where the UAS operates at a higher level of autonomy (in a management by
exception paradigm). Finally, enabling the CATDS allowed for the inclusion of
HDM decision preferences during autonomous UAS trajectory planning in low
altitude partially known environments in the presence of real time constraints.

Figure[6.]]illustrates the trajectory planning research presented in this thesis.

6.2 Contributions

The aim of this research was to investigate the research questions identified in
Section [1.3.1} This thesis has highlighted contributions made in the research field
of autonomous trajectory planning through the application of intelligent control
and MCDA methodologies to autonomous UAS systems.

By answering the first question, Can trajectory planning be effectively auto-
mated for standalone autonomous operations on a UAS platform?, the research

resulted in the:

1. Identification and categorisation of three potential areas of research which
can potentially embed greater onboard capability within a trajectory plan-
ner as enablers for autonomous trajectory planning in the NAS. These po-
tential challenges include; incorporation of complex platform dynamics for
the generation of trackable trajectories, improving HDM trust for UAS oper-
ating at higher levels of autonomy and inclusion of finite planning deadlines
for the generation of trajectories in low altitude partially known environ-

ments in real-time.

By answering the second question, Under what conditions can a flight man-
agement concept be developed to ensure that the supervisory HDM’s mission
criteria are successfully met during operations in low altitude environments with

real time planning constraints present?, the research resulted in the:
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Figure 6.1: Illustration of trajectory planning research presented in this thesis

1. Extension of previous research to improve platform safety during low alti-
tude UAS flight in the NAS. MA theory was applied to fixed wing platforms
where attitude rate constraints were considered through the generation of

manoeuvre primitives. This allowed for the inclusion of attitude rate con-
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straints during the inclusion of implicit safety guarantees, through the ap-

plication of safe state research in partially known 3D environments.

2. Development of a methodology for elicitation of human expert decision data
representing HDM flying styles into mathematical value functions. A GUI
was developed and implemented in simulation to interact with HDMs who
were required to select the most optimal flight trajectory from a given set

of alternatives.

3. Quantification of HDM decisions as mathematically modelled preferences
through the application of UTA theory. This research allows for the quan-
tification of HDM or pilot decisions and provides a deeper understanding

of the decisions considered by a candidate HDM during UAS operations.

4. Development of a methodology to allow for real-time replanning in envi-
ronments with variable planning deadlines by dynamically varying automa-
ton size. This approach provides greater flexibility in providing real-time
trajectory planning capabilities on platforms with different computational

capabilities.

6.3 Future work

The concepts developed in this research project provides scope for future research
in various areas. First, this research only considers the feed forward (trajectory
generation) component without any external disturbances (e.g. wind). Inclusion
of simulated wind models and incorporation of a trajectory tracking layer using
a control scheme in future research could allow for more accurate modelling of
the trajectory planning process.

Second, the optimisation strategy used, applies single stage optimisation in
order to select the most optimal manoeuvre for each stage. Single stage optimisa-
tion has the advantage of faster computation and smaller memory footprint over
multi-stage optimisation, however it also decreases global optimality. Extending
this research to consider multiple stages in a computationally efficient manner

would allow the generation of a more globally optimal trajectory.
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Third, this research project considered four possible criteria during optimisa-
tion. Some candidate HDM’s decision profiles were not as accurately modelled;
this may lead to the possibility of additional criteria existing which have not
been considered. Future research into the formulation of additional criteria may
improve the modelling of HDM decisions into mathematical preference functions.

UAS have been employed in a diverse range of military applications to date
and numerous UAS market forecasts portray a burgeoning future. The success
of UAS operations within military fields has brought about the realisation of
the potential of UAS utilisation in the civilian domain. To realise autonomous
civilian UAS operations, seamless operation within the NAS will be required.
This research project has investigated the development of a trajectory planning
solution to provide UAS with the capability to operate with greater autonomy
during low altitude operations in the NAS. Enabling autonomous low altitude
UAS operations can allow for civilian missions to be undertaken in a safer manner,

whilst reducing HDM workload and continuous communications link reliance.
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Appendix A

Human Expert Data Capture

This appendix provides additional information regarding the capture of decision
data from Human Decision Makers (HDMs).

A.1 HDM Information

HDM decision data for this research was collected from four HDMs. The au-

thor did complete the HDM decision capture experiment, but the results are not
included as part of the overall results. Table provides further information

regarding HDM occupation and aircraft operational experience.

HDM | Company | Aircraft operational experience
1 ARCAA UA trajectory planning experience (ARCAA)
2 ARCAA Aerodynamics, Aircraft GPS navigational experience (QUT)
3 ARCAA UA operations experience (Boeing - scan eagle)
4 ARCAA Private Pilots Licence (PPL), UA operations experience (ARCAA)

Table A.1: HDM aircraft operational experience information

A.2 Graphical User Interface

The Graphical User Interface (GUI) was developed using MATrix LABoratory’s
(MATLABs) GUI Design Environment (GUIDE). The GUI presents the HDM
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A.2 Graphical User Interface

with an automaton and cycles through decision scenarios in order to collect HDM
decision data (Figure |A.1)).

Figure A.1: Data Capture

Whilst research has been conducted into the development of Human Machine
Interfaces (HMIs) and Heads Up Displays (HUDs) to improve the supervision
and control of UAS [110; 111}, [112], no relevant research regarding data capture
of HDM decisions for trajectory planning was found. This GUI did not explicitly
apply UA HMI development methodologies, rather it was iteratively improved
based on HDM feedback during data capture.

The main aim of the GUI is to allow the candidate HDM the ability to ef-
ficiently cycle through alternatives so that they can quickly select their desired
solution. Desired alternative selection is accomplished by selecting the preferred

trim primitive and adjusting the manoeuvre length (if necessary).
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A.3 Decision Scenarios

A.3 Decision Scenarios

Each Human Decision Maker (HDM) is sequentially presented with decision sce-
narios and tasked with selecting what they consider to be the most suitable trim
primitive to execute for each particular scenario .

A decision scenario is defined as the relative difference between the goal and
UA positions ((z,
UA with respect to the desired direction at the goal ((¢, —,)). In addition, the

automaton generated will be unique to the platform roll angle (¢,) due to the

— ), (Yg — Yp), (29 — %)) and the relative orientation of the

inclusion attitude rate constraints; this results in a unique set of A for the HDM
to consider. Thus, each unique decision scenario can be represented as ((z, —z,),
(g = up), (29 — 2p), (g — 1p)), &p)-

120 decision scenarios were completed by each HDM. Scenarios were sepa-
rated into five sets to allow HDMs to complete all decision scenarios over several
sessions. Table lists the decision scenarios completed by each HDM during

the data capture process.

Scenario | Scenario | (zg — ) | (yg —yp) | (29 = 2p) | (g — ) Pp
Set Number (m) (m) (m) (Bearing®) | (Degrees)
1 1 0 -100 0 270 -30
1 2 100 100 0 180 -30
1 3 -100 -100 0 0 -30
1 4 -100 0 0 315 -30
1 5 100 -100 0 135 -30
1 6 -100 100 0 90 -30
1 7 0 100 0 45 -30
1 8 100 0 0 225 -30
1 9 -100 0 20 135 -30
1 10 100 100 20 90 -30
1 11 0 -100 20 45 -30
1 12 -100 -100 20 180 -30
1 13 100 -100 20 270 -30
1 14 -100 100 20 225 -30
1 15 0 100 20 0 -30
1 16 100 0 20 315 -30
1 17 0 -100 -20 270 -30
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1 18 -100 100 -20 180 -30
1 19 100 -100 -20 0 -30
1 20 100 100 -20 135 -30
1 21 -100 -100 -20 45 -30
1 22 0 100 -20 90 -30
1 23 -100 0 -20 225 -30
1 24 100 0 -20 315 -30
2 1 0 -100 0 270 30
2 2 -100 0 0 315 30
2 3 100 -100 0 135 30
2 4 100 100 0 180 30
2 5 0 100 0 45 30
2 6 -100 100 0 90 30
2 7 100 0 0 225 30
2 8 -100 -100 0 0 30
2 9 100 0 20 315 30
2 10 -100 -100 20 180 30
2 11 0 100 20 0 30
2 12 -100 100 20 225 30
2 13 100 -100 20 270 30
2 14 -100 0 20 135 30
2 15 100 100 20 90 30
2 16 0 -100 20 45 30
2 17 -100 100 -20 180 30
2 18 100 -100 -20 0 30
2 19 100 0 -20 315 30
2 20 -100 0 -20 225 30
2 21 -100 -100 -20 45 30
2 22 100 100 -20 135 30
2 23 0 100 -20 90 30
2 24 0 -100 -20 270 30
3 1 0 -100 0 270 0
3 2 100 100 0 180 0
3 3 -100 -100 0 0 0
3 4 -100 0 0 315 0
3 > 100 -100 0 135 0
3 6 -100 100 0 90 0
3 7 0 100 0 45 0
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A.3 Decision Scenarios

3 8 100 0 0 225 0
3 9 -100 0 20 135 0
3 10 100 100 20 90 0
3 11 0 -100 20 45 0
3 12 -100 -100 20 180 0
3 13 100 -100 20 270 0
3 14 -100 100 20 225 0
3 15 0 100 20 0 0
3 16 100 0 20 315 0
3 17 0 -100 -20 270 0
3 18 -100 100 -20 180 0
3 19 100 -100 -20 0 0
3 20 100 100 -20 135 0
3 21 -100 -100 -20 45 0
3 22 0 100 -20 90 0
3 23 -100 0 -20 225 0
3 24 100 0 -20 315 0
4 1 400 -400 0 135 0
4 2 0 400 0 45 0
4 3 0 -400 0 270 0
4 4 400 0 0 225 0
4 5 -400 0 0 315 0
4 6 -400 -400 0 0 0
4 7 -400 400 0 90 0
4 8 400 400 0 180 0
4 9 0 -400 80 45 0
4 10 -400 400 30 225 0
4 11 400 0 80 315 0
4 12 400 400 80 90 0
4 13 -400 0 80 135 0
4 14 -400 -400 80 180 0
4 15 0 400 80 0 0
4 16 400 -400 80 270 0
4 17 400 0 -80 315 0
4 18 400 400 -80 135 0
4 19 -400 0 -80 225 0
4 20 -400 400 -80 180 0
4 21 400 -400 -80 0 0
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A.3 Decision Scenarios

4 22 0 400 -80 90 0
4 23 0 -400 -80 270 0
4 24 -400 -400 -80 45 0
5 1 1000 1000 0 180 0
5 2 1000 -1000 0 135 0
) 3 -1000 -1000 0 0 0
) 4 1000 0 0 225 0
S 5 0 1000 0 45 0
) 6 -1000 0 0 315 0
) 7 -1000 1000 0 90 0
) 8 0 -1000 0 270 0
) 9 -1000 0 200 135 0
5 10 -1000 1000 200 225 0
) 11 1000 1000 200 90 0
5 12 -1000 -1000 200 180 0
) 13 0 1000 200 0 0
bt 14 1000 0 200 315 0
) 15 1000 -1000 200 270 0
) 16 0 -1000 200 45 0
) 17 -1000 -1000 -200 45 0
) 18 1000 1000 -200 135 0
5 19 -1000 1000 -200 180 0
) 20 -1000 0 -200 225 0
5 21 1000 -1000 -200 0 0
5 22 1000 0 -200 315 0
) 23 0 1000 -200 90 0
5 24 0 -1000 -200 270 0

Table A.2: Computation results with CATDS enabled and FPW,;, = 1s on

System 1
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Appendix B

Preference elicitation from HDM

decision data

Preference elicitation via UTA [50] is performed through pairwise comparisons of
alternatives, where one alternative is given a preference or indifference over the
other. As the number of alternatives increases, the number of pairwise compar-
isons (and subsequently, memory and processing time) required increases expo-
nentially. However, the use of larger automaton or alternative set A provides the
HDM with more alternatives from which they can select the alternative which
more closely matches their view of the desired solution.

Thus, global preferences were generated using a smaller subset of alternatives
(Agr) pseudorandomly selected from (A). Ag allows for faster convergence due to
less pairwise comparisons required whilst still providing the HDM with the capa-
bility to select the desired alternative from the higher resolution A. Additionally,
multiple pseudorandom Apg are generated and compared to ensure that the global
preferences are formed using an Ag which accurately represents A. The following
section provides an overview of the preference elicitation process applied to this

research.

B.1 Alternative subset formulation

The A presented to the HDM contains 516 alternatives from which the human

expert selects their desired decision for each decision scenario.
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B.2 Selecting global preferences from multiple subsets

Apg is applied during preference elicitation in order to decrease computation
time and reduce the possibility of UTA not finding a valid set of preferences
to represent the HDM decisions for each decision scenario. Apg is formed by
pseudorandomly selecting 20 alternatives from the complete set of A (including
the alternative selected by the HDM). Pseudorandom selection of alternatives
was performed using a randomised number generator with a fixed state. A fixed
states allows for the selection of the same Ap sets for each HDM.

To overcome the possibility that the downsampled subset does not accurately
represent the full set of A, multiple pseudorandom subsets are generated. The
following section provides an overview of the selection of global preferences from

preferences generated using multiple Ag.

B.2 Selecting global preferences from multiple

subsets

To ensure that the global preferences are formed using an A which accurately
represents A, preferences are generated for multiple Ar and compared to select
a global preference set which best represents the given HDM decision. 100 pseu-
dorandom Ap sets are generated and corresponding preferences are formulated
using UTA theory.

The preferences formulated from the Apr sets are applied to the Automated
Decision System (ADS) to generate a bank of trajectory solutions. All tra-
jectory solutions generated from the Ag sets are compared to the HDM decision
against the following parameters; roll angle (A,), euclidean position between goal
and current state (A4_y) and platform yaw angle (A,;). A least squares method
is applied to minimise the sum of the squared residuals and determine the UTA
preference which has the best fit. The least squares equation is presented in (B.1|)
where the Ag resulting in an automated trajectory solution with the best fit is

represented as AR(B est Fit)-
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B.2 Selecting global preferences from multiple subsets

For Ag(i) where i € [1..100]

LSQR(3) = min (\/(Agsl)i2 + (D) + (Apsi)f)

(B.1)

As the number of pseudorandom Apg sets are increased, it is more likely that
an Apr subset results in the formulation of preferences which represented HDM
decision styles. This convergence can be seen in Figures [B.1, [B.2] [B.3] [B.4]

where UTA-4 algorithm converges to a trajectory solution which matches closer

to the HDM decision. LLC-2 remains constant as the least cost formulation doesn’t

apply preference information.
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B.2 Selecting global preferences from multiple subsets

B.2.1 HDM 1
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Figure B.1: Comparison of (A,_y ), (Ay) and (Aps;) for HDM 1 with respect to
the number of Ag sets included in (B.1) for L.C-2 and UTA-4
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B.2 Selecting global preferences from

multiple

subsets

B.2.2 HDM 2
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Figure B.2: Comparison of (Ajy_y), (Ay) and (Aps;) for HDM 2 with respect to

the number of Ag sets

included in (B.1]) for L.C-2 and UTA-4
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B.2 Selecting global preferences from multiple

subsets

B.2.3 HDM 3
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Figure B.3: Comparison of (A,_y ), (Ay) and (Aps;) for HDM 3 with respect to

the number of Ag sets included in (B.1) for L.C-2 and UTA-4
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B.2 Selecting global preferences from multiple subsets

B.2.4 HDM 4
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Figure B.4: Comparison of (Ajy_,), (Ay) and (Aps;) for HDM 4 with respect to
the number of Ap sets included in (B.1f) for LC-2 and UTA-4
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Appendix C

Offline HDM and ADS Decision
Analysis

This appendix section presents the individual HDM’s offline decision set plots.
The box plots (Figures |C.1, |C.2, [C.3] |C.4) compare the costs placed on the
trajectories selected by the HDM, UTA-4 (using corresponding HDM decision

data) and LC-2 algorithms for all decision scenarios presented during data capture

(Table [A.2).
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C.2 HDM 2
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C.3 HDM 3
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C.4 HDM 4
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Appendix D

Chapter 4 Simulation Results

This section presents additional plots comparing UA trajectories generated for
LC-2 and UTA-4 solutions for simulations presented in Section [4.3.3]
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D.1 Terrain simulation 1

D.1 Terrain simulation 1
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Figure D.1: Comparing UA trajectories generated for [.C-2 solution and UTA-4

with HDM 2 dataset
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D.1 Terrain simulation 1

Average and max ¢ per stage

Relative ¥ at Goal (deg)

Relative ¥ at Goal (deg)

0 2 4 6 8 10 12 14 16
Stage

1 error at goal

Stage

8
Stage

Euclidean Distance from Goal

Euclidean Distance from Goal

-100

A(g — s) at goal

50

500

o
A Altitude at Goal (m)

A(g, — s,) at goal

A Altitude at Goal (m)

Stage

Figure D.2: Comparing UA trajectories generated for LLC-2 solution and UTA-4

with HDM 3 dataset

163



D.2 Terrain simulation 2

D.2 Terrain simulation 2
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D.2 Terrain simulation 2
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Embedding Human Expert Cognition into
Autonomous UAS Trajectory Planning

Pritesh Narayan, Patrick Meyer and Duncan Campbell, Member, IEEE

Abstract—This paper presents a new approach for the in-
clusion of human expert cognition into autonomous trajectory
planning, for Unmanned Aerial Systems (UAS) operating in
environments with terrain present. Sets of candidate flight
manoeuvres (primitives) are generated through the application
of manoeuvre automaton theory and aircraft dynamic models.
Smooth trajectories are formed via the concatenation of pre-
defined trim and manoeuvre primitives. During typical UAS
operations, multiple objectives may exist, therefore the use of
Multi-Criteria Decision Aid (MCDA) techniques can potentially
allow for convergence to trajectory solutions which better reflect
overall mission requirements. In that context, Multi-attribute
Value Theory has been applied to optimize trajectories with
respect to multiple objectives. A Graphical User Interface (GUI)
was developed to allow for knowledge capture from a human
expert (pilot or mission commander) through simulated decision
scenarios. The gathered expert decision data is converted into
value functions and corresponding criteria weightings using
UTility Additive (UTA) theory. This allows for the quantification
of the human decision making process during manned operations
and allows the trajectory optimizer to generate similar decisions
during autonomous online trajectory planning. This approach
has been demonstrated in this paper through simulation using
a fixed wing UAS operating in low altitude environments with
terrain present.

Index Terms—Unmanned Aircraft, Unmanned Aerial System,
Trajectory, Autonomous, Multi-Criteria Decision Aid, Optimisa-
tion.

I. INTRODUCTION

NMANNED Aerial Systems (UAS) have been employed

in a diverse range of military applications to date.
With respect to civilian applications, geographically sparse
countries, such as Australia, have considerable potential for
utilization of UAS in asset management, search and rescue,
remote sensing operations and atmospheric observation [1].
However, seamless operation of UAS platforms within the
National Airspace System (NAS) is required to ultimately
realize this potential [2], [3].

Operation of UAS in the NAS creates a new set of chal-
lenges that are not applicable to many military applications.
From a regulatory perspective, UAS need to: (i) demonstrate
an Equivalent Level Of Safety (ELOS) to that of a human pi-
loted aircraft, (ii) operate in compliance with existing aviation
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regulations and (iii) appear transparent to other airspace users
[4].

The majority of UAS operations still require human op-
erators to perform mission management and piloting tasks
through real time communications links with the unmanned
platform. This can result in high operator workload and places
greater reliance on the communications link. One method
to decrease operator workload is through increased levels of
onboard autonomy through the inclusion of intelligent control
architectures [5], [6], [7].

Intelligent control architectures [6], [8] are hierarchical
methodologies which allow for the automation of aspects of
UAS operations which would otherwise require a human in the
loop. This research component focuses on the automation of
the trajectory planning aspect of intelligent control systems.
Trajectory planning is the generation of feasible collision
free flight tracks in an optimal manner. In the presence of
communications failures, the inclusion of automated trajectory
planning processes can allow for the UAS to safely continue
autonomous operations even at lower altitudes where terrain
must be treated as a hazard.

Automating the trajectory planning process is however, non-
trivial and some challenges include: incorporation of complex
platform dynamics, trajectory optimization to meet mission
objectives, and the guarantee that the generated solution is col-
lision free. Additionally, during typical manned and unmanned
operations, multiple mission objectives may exist. These ob-
jectives can include platform safety (collision avoidance and
consideration of platform constraints); successful completion
of the mission; minimizing fuel, time, and/or distance; or
minimizing deviation from the current path. The application
of Multi-Criteria Decision Aid (MCDA) techniques [9] can
potentially allow for convergence to a solution which better
reflects overall mission requirements.

Even with greater levels of autonomy present onboard, due
to the potential risks of platform failure, UAS operations are
expected to be continuously monitored by Human Decision
Makers (HDMs) at the ground station. Franke [10] states
that with increasing levels autonomy onboard, UAV operators
move away from direct control of the platform towards a
management by exception control paradigm. Management by
exception occurs when the UAS performs planning and exe-
cution and informs the HDM of its current and future actions.
The operator has the option to veto or override the current
plans and revert to a lower control paradigm if required.
Operating at higher autonomy levels requires the HDM to have
a sense of trust with the automation, where he/she feels that
the UAS onboard systems are making correct decisions.
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It is important to note, that during the decision making
process, the HDM will apply his/her own values, priorities
and preferences for a given decision problem [11]. Different
human operators may possess varying viewpoints on whether a
given solution is acceptable or to be vetoed. Supervising HDM
maybe reluctant to allow a UAS which they are supervising
to continue operations autonomously if they do not agree with
the decisions being made by automated systems onboard.

The analysis of expert decision data gathered from a set of
human operators may provide a deeper understanding of ob-
jectives considered and the preferences they apply during the
decision making process. Incorporating this information into
the multi-objective optimization process can potentially allow
automated trajectory optimizers to better encapsulate mission
criteria considered by supervising HDMs and subsequently
increase the acceptance of the autonomous trajectory solution
[10].

This paper presents a new method for the encapsulation
of the preferences of a human pilot, through multi-criteria
trajectory planning for autonomous UAS operating in partially
known low altitude environments. An outline of automated
trajectory generation approaches and related work is given in
Section II. Section II also outlines the candidate trajectory
generation process, where the solution is generated through
the concatenation of primitives through the application of
Manoeuvre Automaton (MA) theory. Section III provides an
overview of the Multi-Criteria Decision Aid (MCDA) process
in context with the research problem. Section IV then presents
the application of the MCDA process to the current research
problem to formulate preferences from HDM decision data.
Simulation results presented in section V, demonstrate how the
inclusion of the human expert decision data can allow for the
generation of feasible trajectories which mimic aspects of the
candidate decision maker. Finally, conclusions are presented
in Section VL.

II. AUTONOMOUS TRAJECTORY PLANNING OVERVIEW

Due to the potential risk of platform failure, UAS operations
are continuously monitored by the human operator/s via a
ground station. In the event of a communications link loss,
the platform can either continue operations autonomously
(if the capability is present onboard), or perform a forced
landing. In populated regions of the NAS, performing a forced
landing may not be desirable (especially with the use of larger
platforms).

The implementation of an automated trajectory planning
system onboard UAS platforms has the benefit of overcoming
potential ground station link issues. This allows for continued
autonomous UAS operations in cluttered environments, even
in the presence of communications link failures. However,
automating the trajectory planning process is non-trivial and
some challenges include: incorporation of complex platform
dynamics and trajectory optimization to meet given mission
requirements.

The inclusion of vehicle dynamics during the trajectory
planning process, allows for the generation of flight trajectories
which take platform constraints into account. Vehicle dynam-
ics are used to calculate the performance envelope which the

aircraft must remain within to ensure that the platform does
not operate outside performance bounds.

A. Flight trajectory representation

Flight trajectories are generally represented through the use
of either spline based or geometric approximations. Polyno-
mial or spline based techniques [12], [13] place control points
in a particular order to generate the desired trajectory. Geo-
metric based techniques require the concatenation of aircraft
flight manoeuvres to form a smooth flight track [14], [15],

[16], [17].

Fig. 1.
attitude rate constraints

Visual representation of trim concatenation without inclusion of

The actuator control power available on fixed wing plat-
forms is finite; this leads to a transient period where the
vehicle does not remain in a state of equilibrium while the
platform transitions between different states of trim. While
the platform remains in a state outside equilibrium (trim
conditions), attitude rates will be non-zero. During periods
when the platform is not in a state of equilibrium, the
trajectory planner must account for platform attitude rates as a
component of the overall aircraft performance envelope. This
requires the continuous tracking of the platform attitude during
the trajectory planning process. A candidate method which
allows for the inclusion of attitude rates as a component of
overall performance bounds is Manoeuvre Automaton (MA)
theory [18], [19]. Figure 1 presents a visual example of the
concatenation of two coordinated turn manoeuvres without the
consideration for actuator control power.

B. Manoeuvre automaton theory

MA theory, proposed by Frazzoli et al. [18], [19] can be
used in the generation of feasible flight trajectories through
the sequential concatenation of predefined motion primitives
(Figure 2). MA employs two types of primitives: trims and
manoeuvres. Trim primitives represent the vehicle during a
state of equilibrium whilst manoeuvre primitives characterize
the vehicle operating outside a state of equilibrium. Primitives
are generated using a dynamic model of the vehicle, thus plat-
form stability can be implicitly guaranteed through generation
of primitives which ensure that the vehicle remains within
predefined performance bounds.
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Fig. 2. Visual representation of trim concatenation with inclusion of attitude
rate constraints

For this paper, MA theory is used to describe a time-
invariant non-linear, dynamical system , described as a set of
Ordinary Differential Equations (ODE) as [18], [19]:

b= Da(t) = F((r),ult) m
where u is the control input (execution time, manoeuvre

type) = (7, primitive) and x is the state vector ([position],

[attitude], [attitude rate]) = ([z, v, 2], [}, 0, ¢], [(4), (0)])

1) Trim primitive representation: Trim primitives represent
the UAS platform operating in a state of equilibrium. Using
MA theory, trim primitives can be generated by placing the
body fixed roll (¢) and pitch () rates to zero and maintaining
a constant velocity (V), roll (¢) and pitch (f) angle for the
duration (7,) of the primitive execution.

Trim primitives were generated in simulation within the
MATrix LABoratory (MATLAB) programming environment
using a six Degree of Freedom (DOF) flight dynamics model
based on the Aerosonde Unmanned Aircraft (UA) dataset
(available in the Aerosim blockset). Six predefined trim prim-
itives have been implemented in simulation including: cruise,
coordinated turn, climb, descent, helical climb and helical
descent.

The initial platform state x(t;) = x; reaches a final state
x(ty) = x¢ due to the execution of a given trim primitive (g);
this can be represented as:

Ty Ti + Tg%q
@5
t f ti + Tq

where {V, ¢, 0} are constants and {,0} = {0,0}.

It is of importance to note, that for a platform to enter a
state of equilibrium (execution of a trim primitive), the initial
platform attitude must equal the attitude requirements of the
trim primitive to be executed; {¢,0}; = {¢,0},. If the initial
platform attitude does not equal the attitude required to execute
the given trim primitive ({¢,0}; # {¢,0},), a manoeuvre
primitive must be inserted to ensure that body fixed attitude
rate constraints are included within performance bounds.

2) Manoeuvre primitive representation: During the execu-
tion of a manoeuvre primitive, the UAS does not have to
remain in a state of equilibrium. For a fixed wing platform,
the body fixed attitude rate constraint becomes {¢,0} =
{®maz;sOmaz}- In this paper, manoeuvre primitives (p,,) are
employed to connect two trim primitives, if required, in the
formation of feasible trajectories. This allows for the consid-
eration of attitude rates as an additional platform constraint
during periods where the UAS is not in a state of equilibrium,
where {¢>0}Z # {¢a Q}q

If {¢,0}; # {¢,0},, the UAS platform dynamic model
is propagated until the platform reaches the desired state

configuration.

While
{60} # {0,0}4
Tpyr1 = Xk + 2pAT 3)
teyr = tp+ AL

where {(;5,9} = {(i)mam, émax}-

C. Generating feasible trajectories through concatenation

A smooth, nominal, feasible and collision free trajectory
is required for safe guidance of the UA from its current
state to the desired goal state. The final trajectory is formed
through sequential concatenation of selected trim primitives
(and corresponding manoeuvre primitives, if required) where
each trim primitive selected for execution can be considered as
a stage. Concatenation without optimisation, may lead to the
generation of trajectories which do not accurately represent
mission objectives, thus a decision strategy is required to
generate trajectories which best meet one or more mission
criteria.

Dynamic programming (DP) [20] has been previously em-
ployed in related research [21], [22], [18] for the optimization
of feasible trajectories generated through the application of
MA theory. DP is a sequential optimization method which
finds the least cost (optimal) solution from a set of alternative
solutions. To guarantee that the optimal solution is found, the
DP algorithm must consider all possible alternatives across all
stages.

In comparison to the application of DP to trajectory plan-
ning with respect to a generic graph search implementation,
the current UA position can be treated as the current node.
Each possible state the platform can reach through the exe-
cution of currently stored trim primitives must be treated as
neighboring nodes. Expanding each neighboring node would
cause the algorithm to grow exponentially in computational
complexity for each additional stage considered in the overall
optimization process [23].

To decrease the computational complexity and resulting
time to plan, Frazzoli [18], [19] applies a hybrid architec-
ture to the motion planning problem for rotary aircraft. The
hybrid architecture involves integration of DP (optimised over
single stage) with other other optimisation algorithms such
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as Rapidly Exploring Random Trees (RRT) [18] and Model
Predictive Control (MPC) [21].

The research presented in this paper uses the DP search al-
gorithm but limits the search to single stage optimization. This
converts the DP algorithm to a greedy search implementation,
which essentially chooses the trim primitive, trim execution
time and manoeuvre execution time with the least cost for the
each stage in a sequential manner. The UAS position after
execution of the optimal trim primitive is taken as the next
node for expansion, and continues until the goal is reached.

Executing a DP search algorithm iteratively over a single
stage without explicit consideration for future stages ensures
that the computational complexity and resulting time to plan
remains comparatively small. However, not considering all
stages during the optimization process means that global
trajectory solution optimality and completeness cannot be
guaranteed.

Global path solution optimality and completeness can be
guaranteed through the application of an intelligent control
architecture with a mission/path planning layer which uses
a deterministic search algorithm to generate an optimal set
of waypoints from the current position to the goal [23]. In
addition, during operations in dynamic and partially known
environments, a greedy motion planning implementation can
suffice as it may not be possible to find a global trajectory
solution due to limited environment representation.

D. Summary of findings

This section presented the generation of feasible colli-
sion free trajectories for fixed wing platforms operating au-
tonomously using MA theory. Planning in 3D enviroments
was possible through the formulation of common aircraft
flight modes. Attitude rate constraints were included through
the inclusion of manoeuvre primitives to allow for increased
trackeability. Single stage DP optimisation was selected for
the generation of trajectories in a computationally efficient
manner.

Operating at higher autonomy levels requires the HDM
to have a sense of trust with the automation, where he/she
feels that the UAS onboard systems are making correct de-
cisions. During the decision making process, the HDM will
apply his/her own values, priorities and preferences for a
given decision problem [11]. Furthermore, different human
operators may possess varying viewpoints on whether a given
solution is acceptable or should be vetoed. The inclusion of
multiple criteria through Multi-Criteria Decision Aid (MCDA)
strategies during the trajectory selection process may allow for
better representation of the HDM’s preferences and mission
objectives. MCDA is a field of research for the development
of multi-criteria decision tools to assist HDMs and can also be
applied to autonomous scenarios [24]. The following section
investigates application of MCDA methodologies to represent
HDM and mission requirements more accurately during the
generation of feasible trajectories based on MA theory.

III. MCDA STRATEGY

Many problems can be solved through the application of
decision analysis and decision aid techniques. The decision aid

process generally provides a HDM with the most appropriate
solution from a given set of alternatives. Each alternative will
have one or more characteristics (criteria) which represent dif-
ferent dimensions in which an HDM can view the desirability
of a given alternative by.

During the course of flight operations, the pilot/UAS oper-
ator may have to consider multiple criteria in order to achieve
mission success. Examples of mission criteria generally in-
clude: achieving the mission goal/s; safety of the vehicle, the
environment and the public at all times; mission efficiency
(minimising time, fuel and/or cost); and/or limiting operations
to below a specified altitude ceiling. Mission objectives and
their priorities can dynamically change at any point during
UAS operations (usually at the discretion of the operator).

Decision making during autonomous trajectory planning
requires the selection of the most optimal feasible collision
free trajectory with respect to one or more criteria. Gigerenzer
et al. [25] have shown that HDMs do consider multiple criteria
during real-life decision making processes. Therefore, the
use of MCDA methodologies during autonomous trajectory
planning may allow for convergence to a solution which better
reflects overall mission requirements. The following section
presents an overview of MCDA techniques.

A. MCDA overview

MCDA is a category of decision aid methods in which de-
cisions are formulated through the comparison of alternatives
with respect to multiple criteria. Many MCDA techniques [24]
have been published to date which can be used to determine
the most suitable alternative, or to sort or rank a set of
alternatives. MCDA techniques can roughly be divided into
two categories: on the one hand Multiple Attribute Value
Theory (MAVT) [26], [27], which aims at aggregating the
multiple points of view into a unique synthesis criterion,
and, on the other hand outranking methods [28] which aim
at comparing the decision alternatives pairwisely and accept
incomparability.

MCDA allows for the encapsulation of the HDM’s decision
style through the inclusion of preference information and a
relevant set of criteria. Preference information can take various
forms, among which for example the relative importance of
each criterion to the HDM. The capture of these human
preferences is called preference elicitation and depends on the
HDM’s individual decision experiences and training that he
may have received. The following section presents a generic
overview of the MCDA process and its use in the context of
automated flight operations.

B. MCDA process

The MCDA process requires the implementation of algo-
rithms which attempt to mimic aspects of the HDM’s decision
making style and take into account his/her preferences. Clas-
sically, an MCDA process can be divided into the following
four steps [29]:

1) Determining the relevant criteria and alternatives;
2) Evaluating the alternatives on all the criteria;
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3) Eliciting the HDM’s preferences related to the current
decision problem;

4) Combining the evaluations and the preferential informa-
tion to solve the decision problem and produce a decision
recommendation.

In the sequel we detail each of these steps in our context.

1) Determining relevant criteria and alternatives: The DP
algorithm is applied to this research for optimal trajectory
selection, but the search is limited to single stage only.
Optimisation using DP search over one stage involves selection
of the optimal manoeuvre and corresponding jump time from
a predefined set of manoeuvres for each stage in an iterative
manner. Each discrete jump time, for a given manoeuvre, can
be represented as a unique decision alternative, as it will result
in a different final state if executed. Let A be the set of such
alternatives.

For this research problem, the decision alternatives gen-
erated are sets of trim primitives (p) which can be safely
executed by the platform (Figure 6). The trim primitives
represent a set of sampled states (¢) which the UAS can reach
after successful execution of a relevant manoeuvre. Thus, the
total number of alternatives for (m) trim primitives is:

m
n=1

The criteria represent different dimensions with which an
alternative can be viewed by. In literature, it was found that
Frazzoli et. al [18] applied two such criteria: minimizing
euclidean distance of current (s) and goal (g) states (criterion
crit(|4—4)y); and minimizing platform yaw (1) and goal yaw
(¢g) angles (criterion crit(ja,()) during optimal manoeuvre
selection.

If crit4_,) and critay)) do not completely encapsulate
the HDM’s decision strategies, then the inclusion of addi-
tional criteria allows the onboard trajectory planner to take
into account certain aspects of the mission which cannot be
considered using only the current two criteria. For example,
executing very sharp turns (high bank angles) can lead to
platform instability [30].

Platform safety can be implicitly considered through the
inclusion of crit(|4)) which focuses on the minimization of
high platform roll angles (¢s). It is important to note that
through the implementation of MA theory, platform safety can
be increased without penalizing platform manoeuvrability.

The second additional criterion (crit(,, _,_|)) considers the
minimization of the altitude of the goal (g,) and current state
(s2). For decision scenarios where the goal is not at the same
altitude as the platform, this criterion captures how focused a
HDM is on reaching the required altitude.

2) Evaluating alternatives on all the criteria: In order to
perform decisions on the set of alternatives (e.g. generating the
most optimal decision or ranking/sorting), an evaluation scale
needs to be attached to each of the criteria. Each alternative
is then evaluated by placing a cost to go (from current state
to the alternate state) on all attached criteria.

Whilst Frazzoli has not explicitly defined the criteria applied
in literature, crit(,_ 4|y can be expressed in 3D planning space

as the euclidean distance between the goal location (g) and
the current location (s). A lower cost (c(j4—s)) is placed on
p which drive the UAS platform closer to the goal (5).
crit(aqy|) allows for greater control of the heading of the
platform. For this research (14) represents the direction to
next goal. The cost (c(jay()) can be calculated by taking the
absolute difference between the desired (1)4) and absolute
platform headings (1,). Alternatives with a resulting ()
closer to (14) will have a lower cost placed on them (6).

C(lg—sl,i) = |9 — 8| € [min|g — s|, maz|g —s[]]  (5)

cavli) = |ta — vl € [0,7] (6)

The evaluation of crit(|4y has been performed by placing
a greater cost (c(g;)) on trim primitives which are executed
with higher roll angles (7). Finally, a greater cost (¢(|q, —s,|))
is placed on trim primitives which do decrease the relative
vertical distance between the platform state (s,) and goal state

(gz) for Crit(\gz—sz\) (8).

Clp,i) = ¢ € [07 ¢maz] 7

C(lg.—s2|,0) — |gz - Sz| S [mln |gz - Sz|7max|gz - Sz” (8)

Each candidate HDM may have their own perception of the
relative importance of each criteria and thus the desirability of
the alternatives presented. If an automated onboard trajectory
planner applies multiple criteria without accounting for the
relative importance placed on each criteria by the candidate
HDM, the trajectory solution maybe quite different from what
the UAS operator expects. The following section provides an
overview of methods present in literature which formulate
preferences through the analysis of HDM decision data.

3) Eliciting the HDM’s preferences related to the current
decision problem: Roughly speaking, this elicitation can be
performed either by questioning the HDM directly on the
values of the various preferential parameters, or by extracting
this information via a disaggregation technique from an order
on some alternatives which the HDM is able to express.

To capture such expert knowledge in a direct way, one can
use the MACBETH technique (Measuring Attractiveness by a
Categorical Based Evaluation Technique) [31]. MACBETH’s
goal is to build a cardinal scale measuring the attractiveness
of options through a learning process involving an interactive
software. The HDM is asked to perform qualitative pairwise
comparisons regarding his preferences between various evalu-
ation levels and express himself on a scale reaching from very
weak to extreme.

A well-known disaggregation approach is UTA (UTilité Ad-
ditive) [32]. Here the HDM is tasked first with ranking a few
well-known alternatives. Linear Programming (LP) techniques
are then used to perform an ordinal linear regression in order
to determine a preference model which is consistent with
the HDM’s overall preferences. Both MACBETH and UTA
approaches generate value functions and weighting vectors
which correspond to the HDM’s preferences. These can then
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be used in MAVT based decision algorithms. UTA has been
selected as the candidate method for the conversion of HDM
decision strategies to preference parameters as it allows for
more intuitive capture if the alternatives are presented to
the HDM visually through a Graphical User Interface (GUI)
(Figure 3).

Let A = {x,y,z,...} be the set of alternatives and J =
{g1,...,9n} be the set of n criteria. Each criterion can be
seen as a real-valued function on the set A. Let g(x) be the
vector of evaluations of alternative = of A on the criteria of
J. The criteria aggregation model in UTA is assumed to be
an additive value function of the following form:

u(g(x)) =Y wiui(gi(z)) Vo e A )
i=1
where u; (+ = 1,...,n) are real-valued functions called

marginal value functions which are normalized between 0 and
1, w; is the weight of criterion ¢, and v is the overall value
function. A higher value of w; is associated with a better
alternative on criterion 1.

In UTA, the ranking given by the HDM on a subset of
alternatives is transformed into a set of linear constraints on
u, which are added to the UTA disaggregation LP (see [32]
for further details). The objective of this LP is to minimize the
gap between the initial ranking given by the HDM and the one
produced by the aggregation model. The output of the UTA
LP is a set of value functions and associated weights which
represent the HDM’s preferences, based on the input ranking
that he/she provided.

4) Determining a ranking of the alternatives: In order to
determine which alternative is the most attractive for the HDM,
a ranking of all the alternatives is computed. This allows the
HDM direct access not only to the “best” solution, but to the
remaining solutions and corresponding rankings.

The aggregation technique used here is based on MAVT and
requires the value functions and the weights obtained by the
UTA technique. Consequently, the aggregation formula (9) is
applied on the set of feasible alternatives. Thus, each of the
alternatives gets an overall value (u), which allows to rank
them from the most to the least attractive one.

C. Summary of findings

This section presented a brief overview of MCDA and
outlines the MDCA process to generate feasible trajectories
which applied aspects of candidate HDMs decision styles.
Alternatives were defined as unique feasible sampled states
which could be reached by the UAS platform. Criteria rep-
resented different dimensions with which a HDM could view
the desirability of each alternative by.

The UTA disaggregation technique was selected to formu-
late preference information to represent HDM preferences and
priorities for each criteria. An additive, MAVT decision strat-
egy would then be applied to incorporate HDM preferences
during the aggregation of value functions representing mission
criteria. The following section details the application of the
proposed MCDA process to the current research problem to

generate trajectory solutions which more accurately represent
HDM and mission objectives.

IV. APPLICATION OF THE PROPOSED MCDA PROCESS TO
THE CURRENT RESEARCH PROBLEM

This section applies the MCDA process to the current
research problem to formulate preferences which represent
HDM'’s mission priorities. The following section details an
overview of the HDM data capture process.

A. Expert knowledge capture and decision modeling strategies

One way of viewing the trajectory planning problem using
single stage optimisation is that the candidate HDM is pre-
sented with unique decision scenarios, where they must select
the most appriopriate trajectory segment in an iterative manner
until the mission is completed. During trajectory selection,
the HDM’s preferences may vary depending on the decision
scenario presented to them, for example, the HDM may have
a different set of preferences in mind when the UA is closer
to the goal as opposed to decision scenarios where the UA
position is farther from the goal.

A decision scenario can be defined as the relative difference
between the goal and UA positions (|zg — xp|, |Yg — Yp| |24 —
zp|) and the relative orientation of the UA with respect to
the desired direction at the goal (¢, — ). In addition, the
automaton generated will be unique to the platform roll angle
(¢p) due to the inclusion attitude rate constraints; this results in
a unique set of A for the HDM to consider. Thus, each unique
decision scenario can be represented as (|zg — Zp|, |yg — Ypl,
|2g — 2p|, (g —¥p), ¢p). Figure 4 shows an example scenario
presented to the candidate HDM.

The capture of HDM decision data for each unique decision
scenario only provides a discrete snapshot of the candidate
HDM’s decision preferences for that particular scenario. In
order to perfectly model a HDM’s decision style would
require data capture over an extremely large (approaching
infinity) set of unique decision scenarios; this is not feasible.
Thus, a sampled set of unique scenarios (which represent a
discrete approximated subset of unique decision scenarios) are
presented to the HDM via the GUI during data capture.

In order to elicit human expert decision preferences, a
GUI was developed to generate a set of simulated decision
scenarios, and to capture the corresponding candidate HDM’s
decision patterns (Figure 3). The HDM uses the GUI to
intuitively select what they consider to be the most suitable
decision from a set of alternatives (discrete sample points
along each trim primitive) for each unique decision scenario.
The trim primitives include straight and level flight, climb,
descend, coordinated turn, helical turn and helical descent
manoeuvres.

120 unique decision scenarios are completed by each HDM
to form a bank of HDM decisions (Figure 5). The HDM
decisions are then used to form preferences, for inclusion
into a MAVT based ADS, that generates trajectories which
incorporate aspects of HDM decision strategies. The following
section provides an overview of the formulation of preferences
through the application of UTA theory to the current research
problem.
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Fig. 3. Graphical User Interface developed for HDM data capture
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Fig. 4. Example decision scenario presented to HDM

B. Preference formulation using UTA

UTA is applied to all decision sets completed by the HDM
to form a selectable bank of preference data (Figure 5).
The following sections present three experiments on three
different problem formulations. A least cost formulation (LC-
2) represents the inclusion of crit(|4_s| 4y and crit(a, ;) with
equal preference weighting as the reference solution. UTA-2
represents the inclusion of crit(|,_ |y and crit(a ) where UTA
is applied to generate value functions and weighting values
using the candidate HDM’s decision data. UTA-4 describes the
inclusion of all four criteria presented in Section III-B1 where
value functions and weighting values are again generated from
candidate HDM decision data using UTA.

1) LC-2: An ADS applying the LC-2 decision algorithm
generates trajectories where crit(|g_,)) and crit( o,y are given
equal preference. The cost functions ¢(|, 4|y and c(jay)) can
be equivalently represented as value functions pi(4_g,4) and
H(Awp,q) respectively (10)(11).

“(lg—sl,i)
_sli) = 11— —FF—7 10
H(lg—sl.i) (max(C(gs,L.n)) 1o

@ e @
®e e
®e @
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Fig. 5. Decision sets completed by HDM

[ A ) = 1— ((CAW)) (11)

™

03

0.2

-500

Y (m) -400 X (m) 0.1

Fig. 6. Normalized aggregated decision values for all criteria (LC-2)

LC-2 may not accurately represent mission requirements as
the candidate HDM may have their own perceptions on which
criteria’s are relevant to the current mission scenario and the
preference given to each relevant criteria.

2) UTA-2: UTA theory is applied to the HDM decision sets
to generate value functions and weighting values for crit(|,_g))
and crit(|a|) Which provide a mathematical representation of
the HDM’s decision style for each given scenario. Figure 7
shows the value functions generated using UTA theory for the
sample decision scenario when crit(,_) and crit(ay)) are
applied (Figure 4). Note that the weighting value is embedded
within each value function (the maximum value of the value
function corresponds to the weight coefficient of Formula 9).

The aggregate decision values generated by the ADS, with
the application of UTA-2 (Figure 8) for the set of A shows
that the desirable alternatives are concentrated into a singular
region. In comparison, the aggregate decision values generated
by LC-2 (Figure 6), UTA-2 shows a region focused near the
goal state where alternatives have the highest utility decision
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Fig. 7. UTA value functions (UTA-2 with HDM 2 dataset) representing
HDM preferences for sample decision scenario (Figure 4)

values. This is due to the value functions generated using UTA
place a higher preference for crit,_,) during optimisation
(Figure 7).

Fig. 8. Normalised aggregated decision values for all criteria (UTA-2 with
HDM 2 dataset))

3) UTA-4: In order to investigate if the inclusion of ad-
ditional criteria can allow UTA to represent HDM decisions
with further accuracy, UTA-4 applies two additional criteria
(crit()g)) and crit()g, —,_|)) during preference formulation using
UTA theory. Figure 9 shows the value functions generated
using UTA theory for the sample decision scenario (Figure 4)
when the two previous and two additional criteria are applied.

The aggregate decision values generated by the ADS (UTA-
4 with HDM 2 dataset) (Figure 10) show several regions which
are near optimal. We can see on Figure 9 that crit(| o) has the
greatest effect, thus all alternatives which have a low c(1ay))
appear as near optimal solutions.

The following section compares UTA-4 and UTA-2 against
LC-2 (reference least cost solution) to investigate the HDM
decision modelling accuracy of UTA theory using HDM
datasets captured using.

C. Accuracy of UTA

The average results for all decision sets were compared
to the trajectories selected by the HDM to determine how
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Fig. 10. Normalised aggregated decision values for all criteria (UTA-4 with
HDM 2 dataset)

accurately the decisions were modelled by calculating the
difference between the human and the ADS solutions for; roll
angles (Ay), euclidean position between goal and current state
(Ajg—s)) and platform yaw angles (A,s;).

The application of UTA-2 generated decisions which had
a lower average Ag, Ajg_g and A,y; in comparison to the
automated generation of decisions using LC-2 (Figure 11).
This implies that crit(4_) and critay)) are relevant and
considered by the HDM during the decision making process.
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Additionally, the inclusion of additional criteria (UTA-4) gen-
erated decisions which were even closer to the HDM decisions
captured than with just the inclusion of two criteria (UTA-2)
(Figure 11).
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Fig. 11. Average error comparison between human and automated trajectory

decisions for all decision sets

Further analysis of the individual HDM’s offline decision
set shows how the UAS platform is expected to perform
during autonomous operations with the inclusion of HDM
preferences. HDM 2 generally executed flight manoeuvres
where ¢ € [20°,40°] (Figure 12). The ADS with the inclusion
of HDM preferences (UTA-4) executed primitives within a
similar range to HDM 2. The LC-2 formulation does not
explicitly take ¢ limitations into account, subsequently the
ADS using an LC-2 optimisation had greater variance in the
roll angle range of the primitives executed (Figure 12). It is
expected that UTA-4 using HDM 2’s decision data will not
periodically execute manoeuvres with higher roll angle values
unlike the ADS using an LC-2 optimisation. This is desired as
the execution of flight manoeuvres with higher wing loading
values has a greater possibility of platform instability [30].
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Fig. 12. Box plots comparing UAS platform ¢ for offline trajectories selected
by HDM 2, ADS LC-2 and ADS UTA-4 solutions

HDM 3 selected flight manoeuvres where a greater prefer-

ence was placed on minimizing the altitude of the platform
s, with respect to the goal altitude g, (Figure 13). LC-2 only
considers altitude minimisation as a component of crit(|4_s),
therefore during offline simulation, it was found that LC-2
optimisation had a greater variance in comparison to the HDM
and UTA-4 trajectory solutions. It is expected that UTA-4 with
the inclusion of HDM 3’s decision data is more likely generate
trajectories with lower |g. — s,| values in comparison to the
ADS using an LC-2 optimisation (Figure 13). This reflects
on the candidate HDM’s preference on maintaining a similar
altitude to the goal which can be beneficial for certain missions
e.g. airborne surveillance and video capture.
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Fig. 13. Box plots comparing UAS platform |g. — s | for offline trajectories
selected by HDM 3, ADS LC-2 and ADS UTA-4 solutions

It was found that the ADS with the inclusion of human
expert data to model preferences, generated decisions which
were closer to the HDM decisions captured using the GUI
implementation (Figure 11). Thus, the inclusion of preferences
formulated using captured HDM decision data allows for the
automated generation of trajectory decisions which are similar
to the decisions generated by the candidate HDM for each
given decision scenario. The following section demonstrates
the inclusion of HDM preferences derived using UTA to
generate feasible trajectories which mimic aspects of the
candidate HDMs decision process in 3D low altitude simulated
environments.

V. RESULTS

This section presents the automated generation of feasible
trajectories through the concatenation of primitives using MA
theory (Section II-B). The automated process mimics aspects
of the HDM decision process through the inclusion of pref-
erences formulated using UTA theory from HDM expert data
captured.

A. Simulation setup

A simulated 3D terrain environment (figure 14) was setup
in MATLAB to simulate mission scenarios where the UAS
assignment includes safe and efficient navigation through a
set of globally optimal waypoints. The simulation has been
performed on a computer with an Intel Core 2 quad core
processor operating at 2.8GHz to simulate how the inclusion of
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Primitive Type Primitive No. (m) | Primitive Samples (7)
Straight and Level 100
Coordinated Turn 12 100
Constant Climb 1 100
Helical Climb 12 100
Constant Descend 1 100
Helical Descend 12 100

TABLE I
PRIMITIVE TYPE, NUMBER AND SAMPLES PER PRIMITIVE APPLIED
DURING ONLINE SIMULATIONS

human expert data to the motion planning problem can lead to
the generation of UAS flight trajectories which mimic aspects
of the HDM decision process.

The ADS is tasked with generating an optimized, feasible
and collision free trajectory through all mission level way-
points until the goal is reached (Figure 14). The waypoints
can either be selected by the user, or provided by a mission
planner. The advantage of using a mission planner is that
global optimality is guaranteed as the planner will generate
a set of waypoints which are globally optimal with respect to
a predefined set of criteria. We use a mission planning solution
by Wu [33] for the low altitude trajectory planning results in
simulated environments with terrain present.

10000

100

4000

Y Axis - Distance (m) 0

Fig. 14. Simulated mission environment (terrain simulation 1)

The ADS generates a set of alternatives for each stage by
selecting the the number of primitives (m) and the samples
per primitive (7) (Section III-B1). A large set of alternatives
provides a greater number of final states which the platform
can reach and a higher resolution of the region within the
platforms performance bounds. Consequently, a large set of
alternatives requires a greater computational effort and subse-
quently a longer time to plan. Table I lists the primitive types,
(m) and (i) applied for this section.

B. Preference selection during online planning

During online trajectory planning, the automated decision
algorithm compares the current online decision scenario to the
set of decision scenarios presented to the candidate HDM of-
fline (Figure 5). A least squares formulation (12) is applied to
map the preference data for the offline decision scenario which
most closely matches the current online decision scenario.

X Axis - Distance (m)

10

The least squares formulations compares the following
differences between the current online scenario and offline
scenario set (Figure 5); distance to goal in x, y and z
dimensions (Ax, Ay, Az) and platform roll angle (A¢). The
least squares formulation for n offline scenarios becomes:

For i € [1..n]

LSQRy — min <\/ (A2)% + (Ay)i® + (A2):2 + (Aqs)ﬁ)
(12)
where Ax, Ay, Az, A¢ € [0..1]

The ADS applies the preferences from the offline HDM
decision with the lowest least squares formulation value
(LSQRYy,) to the weighted sum formulation (9) to generate an
optimized solution. The following section presents the results
of the online simulations where the automated trajectory
mimics aspects of HDM decision styles through the inclusion
of preferences formulated using HDM decision data via UTA
theory.

C. Simulation results

High altitude operations in civilian airspace are generally
conducted in IFR under the guidance of air traffic control.
Whilst automated trajectory planning can still provide benefits
for UAS platforms operating at high altitudes, low altitude
operations can be considered as more challenging, as terrain
must be treated as a hazard during planning and operations
(Figure 16) .

Without the inclusion of collision avoidance methods, a
safe output trajectory cannot be guaranteed, even with the
application computed set of optimal collision free waypoints.
For the inclusion of collision avoidance during 3D trajectory
planning using MA theory, the terrain map data is used to
cull trim primitives which are below a specified terrain height,
at the given grid location (Figure 15). This ensures that an
optimized collision free trim primitive can be selected for each
stage from the remaining collision free set of primitives.

The automated LC-2 solution is used as a reference and
compared the solution generated by the ADS with the in-
clusion of the candidate HDM'’s decision patterns through
UTA theory. The comparative trajectory applies the candidate
HDM'’s decision style through the inclusion of HDM prefer-
ences formulated using UTA-4.

1) Terrain Simulation 1: HDM 3’s dataset was applied to
UTA-4 and compared to the reference solution generated by
LC-2 (Figure 16). Analysis of HDM 3’s offline dataset showed
that the HDM placed a greater preference on minimizing
crit()g, —s.|) (Figure 13). Subsequently, during online trajectory
planning in simulated environments, UTA-4 generated colli-
sion free trajectories which had lower |g, — s.| on average
than LC-2 (Figure 17).

2) Terrain Simulation 2: HDM 2’s dataset was applied to
UTA-4 and compared to the reference solution generated by
LC-2 (Figure 18). HDM 2 preferred to minimize platform ¢
variance during the offline simulation set (Figure 12). LC-
2 has a higher preference for crita,) which leads to the
selection of manoeuvres which exhibit a low c(jay) (6). This
can result in the selection of primitives on the edge of the
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Fig. 15. UAS platform altitude during simulation (UTA-4 with HDM 3
dataset) (terrain simulation 1)

300

10000

N}
S
S

Altitude(m)

4000 X Axis - Distance (m)

2000

Y Axis - Distance (m)

Fig. 16. Comparing trajectories from LC-2 solution and UTA-4 with HDM
3 dataset (terrain simulation 1)

platforms wing loading performance bounds as LC-2 does not
explicitly consider crit(ae[) during optimisation. This can be
viewed in Figure 19 where LC-2 exhibits higher maximum ¢
values than UTA-4.

VI. DISCUSSION AND CONCLUSIONS

This paper presented a new approach for the inclusion of hu-
man expert cognition into autonomous trajectory planning, for
Unmanned Aerial Systems (UAS) operating in environments
with terrain present. Expert decision data was gathered using a
Graphical User Interface (GUI), allowing for the quantification
of the human decision making process. Aspects of human
cognition were applied to MA theory to generate feasible 3D
collision free trajectories which were optimized to generate
similar decisions with respect to the candidate HDM during
autonomous operations.

It has been demonstrated that mission requirements and
HDM decision styles can be better represented in automated
trajectory planning systems through the inclusion of HDM
decision data through the UTA MCDA technique. Using auto-
mated decision algorithms which apply human expert decision
strategies may result in increase confidence in UAS operations
over populated regions and potentially bring civilian UAVs
closer to being operated autonomously in the NAS.
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Abstract—This paper presents a new approach which allows
for the computation and optimization of feasible 3D flight
trajectories within real time planning deadlines, for
Unmanned Aerial Systems (UAS) operating in
environments with obstacles present. Sets of candidate
flight trajectories have been generated through the
application of manoeuvre automaton theory, where smooth
trajectories are formed via the concatenation of predefined
trim and manoeuvre primitives; generated using aircraft
dynamic models. During typical UAS operations, multiple
objectives may exist, therefore the use of multi-objective
optimization can potentially allow for convergence to a
solution which better reflects overall mission requirements.
Multiple objective optimization of trajectories has been
implemented through weighted sum aggregation. However,
real-time planning constraints may be imposed on the multi-
objective optimization process due to the existence of
obstacles in the immediate path. Thus, a novel
Computationally Adaptive Trajectory Decision (CATD)
optimization system has been developed and implemented
in simulation to dynamically manage, calculate and
schedule system execution parameters to ensure that the
trajectory solution search can generate a feasible solution, if
one exists, within a given length of time. The inclusion of
the CATD potentially increases overall mission efficiency
and may allow for the implementation of the system on
different UAS platforms with varying onboard
computational capabilities. = This approach has been
demonstrated in th'is paper through simulation using a fixed
wing UAS operating in low altitude environment’s with
obstacles present.
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1. INTRODUCTION

Unmanned Aerial Systems (UAS) have been previously
employed in a diverse range of military applications. With
respect to civilian applications, geographically sparse
countries, such as Australia have great potential for
utilization of UAS in asset management, search and rescue,
remote sensing operations and atmospheric observation [1].
In order to realize this potential, seamless operation of
UAS with the National Airspace System (NAS) is required
[2, 3]; this is a difficult problem

Operation of UAS in the NAS creates a new set of
challenges that are not applicable to many military
applications. From a regulatory perspective, UAS need to:
(i) demonstrate an Equivalent Level Of Safety (ELOS) to
that of a human piloted aircraft, (ii) operate in compliance
with existing aviation regulations and (iii) appear
transparent to other airspace users [4].

The majority of UAS operations still require human
operators to perform mission management and piloting tasks
through real time communications links with the unmanned
platform. This results in high operator workload and places
greater reliance on the communications link. The inclusion
of automated planning systems onboard can potentially
improve mission efficiency and allow for continued
operations in the presence of communications failures. In
particular, the automation of global and local path planning
components assist in ensuring that the flight occurs in
accordance with the rules of the air; a key ELOS
requirement.

Local path planning provides a navigation strategy for safe
traversal through cluttered environments. The desired track,
represented as a collision free flight trajectory, ensures that
the platform remains within platform performance bounds.
Automating the local path planning process is non-trivial
and some challenges include: incorporation of complex
platform dynamics, trajectory optimization to meet mission
requirements, real-time constraints on computation time
imposed by obstacles in the flight path, and the guarantee
that generated trajectories are collision free.

During operations, civilian UAS may have multiple
objectives to meet. The use of multi-objective optimization



allows the generation of a solution which better reflects the
overall mission requirements. Additionally, if operations
are undertaken at lower altitudes, the environment may
present several challenges not encountered during high
altitude flight. Terrain and urban structures become hazards
to the safety of the UAS. The proximity of obstacles to the
UAS places real-time constraints on re/planning
computation time.

This paper presents a new framework for the
Computationally ~ Adaptive = Multi-Objective  Flight
Management of UAS in civilian environments. An outline
of UAS trajectory generation approaches and related work
is given in section 2. Section 3 presents an overview of the
trajectory optimization process, and section 4 outlines the
real-time replanning requirements of UAS operating in
cluttered requirements. Simulation results presented in
section 4 demonstrate how the addition of the CATD can
allow for the generation of feasible trajectories within given
real-time deadlines. Finally, conclusions are presented in
section 5.

2. FEASIBLE TRAJECTORY REPRESENTATION

A local path planning process is generally described as a
system which generates a smooth trajectory representing the
aircraft track through a set of mission level waypoints;
typically generated by a global planner. The trajectory
generated is required to be feasible and collision free to
ensure that UAS flight track is safe and within platform
performance bounds.

UAS Platform Constraints

The inclusion of vehicle dynamics during the trajectory
planning process, allows for the generation of flight
trajectories which take platform constraints into account.
Vehicle dynamics are used to calculate the performance
envelope which the aircraft must remain within to ensure
that platform does not operate outside performance bounds.
In the presence of a Stability Augmentation System (SAS)
onboard, trajectories which do not consider platform
performance bounds may lead to poor tracking.

Flight Trajectory Representation

Flight trajectories are generally represented through the use
of either spline based or geometric approximations.
Polynomial or spline based techniques [5, 6] place control
points in a particular order to generate the desired trajectory.
Geometric based techniques require the concatenation of
aircraft flight manoeuvres to form a smooth flight track [7-
10]. However, these flight manoeuvres are usually limited
to cruise and constant radius turns and roll/’yaw coupling
effects are not considered; an essential flight characteristic
of fixed wing platforms.

During the execution of a constant radius turn for a fixed
wing aircraft, the consideration of roll/'yaw coupling allows
for the inclusion of platform roll rate as a component of the
overall aircraft performance envelope. However, this
requires the additional tracking of the platform attitude (roll
component) during the trajectory planning process. One
candidate method which allows for the inclusion of roll rate
performance bounds is manoeuvre automaton theory.

Manoeuvre Automaton Theory

Manoeuvre Automaton (MA) theory, proposed by Frazzoli
etal. [11, 12] can be used in the generation of feasible flight
trajectories through sequential concatenation of predefined
motion primitives. MA employs two types of primitives:
trims and manoeuvres. Trim primitives represent the
vehicle during a state of equilibrium whilst manoeuvre
primitives characterize the vehicle operating outside a state
of equilibrium. Primitives are generated using a dynamic
model of the vehicle, thus platform stability can be
implicitly guaranteed through generation of primitives
which ensure that the vehicle remains within performance
bounds.

Trajectory Representation Implementation

For this paper, MA theory is used to describe a time-
invariant non-linear, dynamical system S , described as a set
of ordinary differential equations (ODE) as:

(1) :=%x(r) = F(O).u(t)) 1)

Where u is the control input (execution time, manoeuvre
type) = {7, primitive} and x is the state vector.

Trim Primitive Representation

Trim Primitives represent the UAS platform operating in a
state of equilibrium. Using MA theory, trim primitives can
be generated by placing the body fixed roll (@) and pitch

(0) rates to zero and maintaining a constant velocity (V) ,
roll(@) and pitch(6) angle for the duration(7,) of the

primitive execution. Trim primitives were generated using
a 6 Degree of Freedom (DOF) flight dynamics model based
on the Aerosonde UAS platform data set available in the
Aerosim Blockset [13]. Six predefined trim primitives have
been implemented in simulation including: cruise;
coordinated turn, climb, descent, helical climb and helical
descent.

The initial platform state x(Z,) =X, reaches a final state
x(t,)=x, due to the execution of a given trim

primitive (q) ; this can be represented as:
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Where {V/,$,0} are constants and {@, 0} = {0,0}

It is of importance to note, that for a platform to enter a state
of equilibrium (execution of a trim primitive), the initial
platform attitude must equal the attitude requirements of the

trim primitive to be executed; 19,60}, ={9,6},. If the

initial platform attitude does not equal the attitude required
to execute the given trim primitive, a manoeuvre primitive
must be inserted to ensure that body fixed attitude rate
constraints are included as a performance bound.

Manoeuvre Primitive Representation

During the execution of a manoeuvre primitive, the UAS
does not have to remain in a state of equilibrium. For a
fixed wing platform, the body fixed attitude rate constraint

becomes {@, 0} = {¢max,9max}. In this paper, manoeuvre

primitives  (p)
primitives, if required, in the formation of feasible
trajectories. Furthermore, this allows for the consideration
of attitude rates as an additional platform constraint during
periods where the UAS is not in a state of equilibrium (e.g.
switching between trim primitives

where {@, 6}, # {9,6}, ).

are employed to connect two trim

If{@, 6}, # {¢,0}, , the UAS platform dynamic model is

propagated until the platform reaches the desired state
configuration {¢), 0}, = {¢, 0}, making the execution of

the next trim primitive feasible.

While {9,6}, # {,6},
Xy =X F prT

A3)
oy =1, + A

Where {¢), 9} = {&maxag.max}

The manoeuvre primitive required to switch between cruise
and coordinated turn trim primitives is shown in Figure 1.

z (metres)

X (metres)

Figure 1 — Visual Representation of Trim and
Manoeuvre Primitive Concatenation

Generating Collision Free Trajectories

Safe UAS operation in cluttered environments requires the
generation of collision free trajectories. This has been
accomplished through the inclusion of collision detection
algorithms. The transition trajectory must be deemed
collision free before collision detection along the candidate
flight mode takes place. However, due to the sequential
nature of manoeuvre concatenation, a collision free
candidate trajectory does not guarantee vehicle safety
during the next manoeuvre. Safe state manoeuvres [14] are
executed at each sampled point along the candidate flight
mode and then tested for collisions. This ensures that the
UAS can enter a safe state if no collision free trajectory is
determined during the optimization of the following stage
(Figure 2).

Figure 2 — Safe States Generated for a Candidate
Coordinated Turn Trim Primitive

3. TRAJECTORY OPTIMIZATION

Dynamic programming (DP) [15] has been previously
employed in related research [16, 17] for the optimization of
feasible trajectories that have been generated using
manoeuvre automaton theory. DP is a sequential
optimization process where each trim primitive selected for
execution can be considered a stage. Thus the final
trajectory is formed through sequential concatenation of a
set of selected trim primitives (and corresponding
manoeuvre primitives, if required) for all stages used in the
computation.



DP is a very computationally expensive algorithm for the
motion planning application. In comparison to the
application of DP to trajectory planning with respect to a
generic scenario, the current UAS platform position can be
treated as the current node. Each possible state the platform
can reach through the execution of currently stored trim
primitives must be treated as neighboring nodes.
Expanding each neighboring node would cause the
algorithm to grow exponentially in computational
complexity for each additional stage considered in the
overall optimization process. Additionally, due to the
inclusion of manoeuvre primitives, it is difficult to calculate
how many stages are required before a solution is found (if
one exists).

In a typical UAS scenario, constant trajectory replanning
maybe required if operations take place in partially known
environments (e.g. active onboard sensing is predominantly
used for navigation). To decrease the computational
complexity and resulting time to plan during DP
optimization over multiple stages, hybrid architectures
involving DP with Rapidly Exploring Random Trees (RRT)
[11] and DP with Model Predictive Control (MPC) [18]
have been implemented.

The research presented in this paper uses DP search
algorithm but limits the search to single stage optimization.
This converts to a greedy search algorithm which essentially
chooses the most optimal trim primitive, trim execution time
and manoeuvre execution time required to execute the
optimal trim primitive for each stage. The UAS position
after execution of the optimal trim primitive is taken as the
next node for expansion, and continues until a solution is
found (Error! Reference source not found.).

Figure 3 - Greedy Search Algorithm Implementation

Executing a DP search algorithm iteratively over each stage
significantly decreases search time. However, not
considering all stages during the optimization process
means that global solution optimality and completeness
cannot be guaranteed. Additionally, this may lead to
scenarios where the platform becomes trapped in local
minima. UAS motion planning in 3D space has the
advantage for allowing the execution of certain motion
primitives (e.g. helical ascent) to escape local minima and

continue operations [19]. In addition, during operations in
dynamic and partially known environments, a greedy
motion planning implementation can suffice as it may not
be possible to find a global solution (e.g. due to limited
environment representation). Furthermore searching for a
globally optimal solution may be infeasible as there can be
real-time constraints placed on the replanning time, imposed
by obstacles in the flight path.

Multiple Objective Optimization Process

During operations, civilian UAS may have multiple
objectives to meet including platform safety; successful
completion of the mission; minimizing fuel, time, and/or
distance; or minimizing deviation from the current path. The
use of multi-objective optimization allows for the
generation of a solution which may better reflect the overall
requirements of the mission. For example, by placing
greater emphasis on safety, operations in populated
environments may benefit from the inclusion of additional
objectives which minimize platform control loss.

During each stage, the utility value is calculated using a
weighted sum aggregation for all feasible trim primitives.
The objectives included in the optimization process are,
minimization of distance to goal and minimization of
vehicle heading with respect to goal. Two additional
objectives have been included to generate trajectories which
are less likely to lead to loss of platform control. These
objectives include: minimizing wing loading; and
minimizing transition length required to execute next flight
mode. The optimal solution for each stage is the trim
primitive with the highest aggregated weighted sum value.

My =D Wi, 4)
i=1

Where (i, is the total utility value, W,is the objective

weighting and /£, is the utility value objective utility value.

The following section provides an overview of the need for
the inclusion of real time deadlines into the optimization.

4. REAL TIME OPTIMIZATION

In the presence of real time deadlines, there is a finite length
of time available (Finite Planning Window) for the UAS to
complete the trajectory solution search before a predefined
safety manoeuvre must be executed to ensure collision free
flight. Convergence to a solution, if one exists, within this
Finite Planning Window (FPW) is dependent on current
system execution parameters and computational power
available.

The time required to perform an optimal trajectory solution
search during manoeuvre generation is dependent on system



execution parameters such as search resolution (number of
primitives available); manoeuvre resolution (number of
points representing primitive). Scenarios may occur where
a feasible solution cannot be generated within the FPW if
the search and resolution settings are too great.
Consequently, solution completeness may be further
diminished if the settings are too low.

A novel Computationally Adaptive Trajectory Decision
(CATD) optimization system has been developed and
implemented in simulation to dynamically manage,
calculate and schedule system execution parameters. This
ensures that the trajectory generator can complete the
trajectory solution search and generate a feasible solution, if
one exists, within the FPW.

CATD is an expert system which composed of two
components. The offline component benchmarks the
computational performance of the system using sets of
predefined execution parameters.  The computational
performance can be estimated as the algorithm is
deterministic in nature. However, the offline component
must be re-executed if the computation capabilities of the
system are modified.

The online component dynamically computes the most
optimum set of execution parameters with respect to the
available computational power and FPW. Multi-objective
theory is used to find a best compromise solution where the
conflicting objectives are maximization of search and
resolution and minimization of search time.

The inclusion of the CATD potentially increases overall
mission efficiency and may allow for the implementation of
the system on different UAS platforms with varying
onboard computational capabilities. The following section
presents the results for the generation of feasible trajectories
with the CATD both enabled and disabled.

5. RESULTS

A 3D environment representation was setup in MATLAB to
simulate an urban scenario where the UAS assignment
included safe and efficient navigation through a set of
predefined mission level waypoints. The FPW is calculated
as the time taken to complete the current stage. During the
simulation the platform operates at a constant velocity of 30
m/s. The simulation has been performed on a computer
with an Intel Core 2 quad core processor operating at
3.4GHz to simulate the how the inclusion of the CATD can
allow for the generation of feasible trajectories within a
given FPW. The FPW value is has a maximum value of
ranging from 3 to 5 seconds to simulate a finite horizon
(FH) between 90 and 150m

Simulated Results — CATD Not Enabled

The first set of results show the algorithms performance
without the CATD enabled for each computing setup. The
manoeuvre generation algorithm finds a feasible solution
(Figure 4 and Figure 5) using a predefined set of manoeuvre
and search resolution parameters (Table 1).
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Table 1 — Algorithm Run Time: CATD Not Enabled

FH Manoeuvre Search Average | Minimum
(m) Resolution | Resolutio Utility FPW (s)
n Value
90 80 89 0.52 -0.7
120 80 89 0.52 0.1
150 80 89 0.52 1.2
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Without the CATD enabled, there is not guarantee that
feasible trajectories will be generated within a given FPW.
Using predefined search and manoeuvre resolution
parameters may use of the computation time available
inefficiently in scenarios where the FH is relatively large
(Figure 6). In scenarios, where the given FH is shorter
(Figure 7), the platform may not be able to compute a
feasible solution within the available FPW.

Simulated Results — CATD Enabled

Enabling the CATD dynamically adjusts the manoeuvre and
search resolutions with respect to the available FPW. Table
2 presents the results for the simulated results with the
CATD Enabled.

Table 2 - Algorithm Run Time - CATD Enabled

FH | Manoeuvr Search Average Minimum

(m) e Resolution Utility FPW (s)
Resolution Value

90 | Dynamic Dynamic 0.93 1.6
(Figure 10) | (Figure 11)

12 | Dynamic Dynamic 0.93 0.3

0

15 | Dynamic Dynamic 0.9 0.5

0 (Figure 14) | (Figure 15)
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The inclusion of the CADT ensures that a feasible solution
is generated within the given FPW. By dynamically
adjusting the search and manoeuvre resolution parameters,
the system compromises search completeness for time
required to generate a solution. However, systems with
greater onboard computational capabilities and/or longer FH
(simulating onboard sensors) (Figure 9), benefit from the
ability to complete a search at a higher resolutions. Systems
without lower computational resources and/or Shorter FH
can continue to generate feasible trajectory solutions
(Figure 13) within the given FPW. This requires the search
to be conducted at lower resolutions.

6. CONCLUSIONS

This paper has presented a new framework which allows for
the computation and optimization of feasible 3D flight
trajectories within real time planning deadlines, for UAS
operations in cluttered environments. A novel real time
flight management subsystem (CATD) was implemented to
dynamically adjust manoeuvre and search resolution
parameters to ensure that a feasible trajectory solution could
be generated (if one existed) within a given FPW.

The inclusion of the CATD coupled to a multi-objective
manoeuvre automaton based trajectory planner can
potentially allows for more efficient use of the
computational time available. Additionally, the utilization
the offline component of the CATD to evaluate the
performance of a given system, may potentially allow for
the implementation of CATD on different platforms with
varying onboard computational capabilities and Finite
Planning Windows.
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Abstract. Planning and decision making, especially the plapnof
dynamically negotiable collision free paths, isiategral part in the operation
of Unmanned Aerial Vehicles (UAVs). Effective patlanning ensures that the
UAV operates safely, and conforms to the rules eegllations governing
flight within the National Airspace System (NAS).To demonstrate an
Equivalent Level Of Safety (ELOS) to that of pildtaircraft for certification
purposes, UAVs must demonstrate a high level obrearhy without a human
in the loop. This research surveys the literataseto how human experts
perform planning tasks and forms a framework whypomotes shared
authority of UAV mission (re)planning and path piarg, and can adopt sole
authority should the UAV communications link fait ¢he human operator
relinquishes decisions. It has been demonstratemigh simulation that the
optimization of flight manoeuvre sets using mukipbbjectives allows for
convergence to a solution which better represeuiian mission requirements
whilst emulating common flight patterns of traingtbts. These initial findings
highlight the challenges involved in replicatingettskills of human pilots
onboard a UAV. It is revealed that UAV planningdatiecision making is a
multi-disciplinary problem that combines the field§ path planning (search
optimization), trajectory generation, and humannitgn

1 Introduction

Unmanned Aerial Vehicles (UAVs) have been employeith great effectiveness, in

a diverse range of military applications. Howewggpgraphically sparse countries,
such as Australia, have great potential for utii@a of UAVs in a wide range of
civilian applications. These include asset managensearch and rescue, and remote
sensing. In order to realise this potential, hésessary to gain access to the National
Airspace System (NAS).

Operation of UAVs in the NAS creates a set of arales not applicable to many
military applications. From a regulatory perspeetiUAVs need to: (i) demonstrate
an Equivalent Level Of Safety (ELOS) to that ofuartan piloted aircraft, (ii) operate
in compliance with existing aviation regulationdd(ii) appear transparent to other
airspace users [1]. Additionally, for the majorit§ current UAV operations, the



human operator acts as both the mission managethengilot using a real time
communications link [2]. This results in high oger workload and places great
reliance on the communications link.

Path planning assists in ensuring that the flighbperated in accordance with the
rules of the air. The inclusion of automated plagrsystems onboard can potentially
improve mission efficiency and reduce the needldborious input from a ground-
based human operator. This avoids problems asedcweith communications link
failures and operator fatigue. UAV path plannirende considered in terms of
global (mission) planning and local (trajectoryrmhing. This paper outlines the
challenges involved in both types of planning aediews studies on how human
pilots currently perform these tasks. In lighttbése findings, candidate planning
algorithms are identified to replicate human plaigrand decision making.

2  Global Planning

Global planning is concerned with finding a fligiian that minimises a cost function.
Flight plans typically follow the standard profédown inFig. 1. The en-route flight
plan comprises a series of waypoints, assumed joiteed by straight line trajectory
segments, originating at the climb phase just aféeoff and terminating at the
descent phase prior to approach. For the purpdsbssgaper, it is assumed that the
UAV operates under Visual Flight Rules (VFR) as maivil applications (e.g. crop
dusting) are performed under VFR [3].

En Route

Departure Descent

Takeoff Approach

Preflight Landing

P

Fig. 1. Standard flight profile [4]

2.1 Path Planning and Sequential Decision Making

It has been shown that the path planning probleof BSPACE complexity [5]. This

complexity arises due to the exponential increassmémory and computation time
with dimensionality. In 3D flight planning, thegislem is further compounded by the
size of the search space (due to the flight rafdg#A¥'s) and the need to optimise for
multiple objectives (such as fuel, risk and ruléghe air) [6]. Therefore, it is of

value to study and replicate the cognitive skilfshaman expert pilots given their
proficiency at flight planning [7]. Conventionalaglh planners are complex,
incomplete and computationally costly [8]. Replioa of decision strategies (as



opposed to direct replication of human knowledgeactvhs difficult [9]) of human
experts can help create a planning framework thatdre efficient. Additionally, this
provides a high degree of cognitive compatibilithigh increases the system'’s
usefulness in terms of design and operation.

The flight planning problem can be modelled as@ueatial decision process where
actions are chosen to maximally satisfy multiplsigeated objectives [5, 8]. These
decisions are not independent as later decisians@nmstrained by earlier decisions.
Furthermore, the decisions need to be made irtireal[8].

Typical path planning methods model this sequemt&tision process through the
dynamic programming recurrence equation [5]:

9(S1) = 9(s) +c(5050) (1)

where sOS is a node in the 3D search spageg, is a child node tg (the parent)g

is the total cost to reach a node from the stagersp andc(s.s«1) is the edge cost,
i.e. the transition cost of moving from to S;. Methods such as A* iteratively
evaluate nodes in the search space and calcutatmsiy to neighbouring nodes until
the minimum cosg* for the goal nodey has been found. From (1), it can be seen
that the cost of each nodeis a summative accumulation of individual decision
outcomes from the start node.

Ideally, the multi-objective sequential decisionking process should be conducted
in decision space (which includes, in additiorxty, z, variables like fuel and risk).
Unfortunately, this is computationally challengirn small aircraft due to the
PSPACE complexity of path planning [5]. It is commpractice (e.g. [10, 11]) to
“aggregate” the decision variables into a singlet @ariable. Thus, the optimal path is
in actuality the least aggregated cost path.

However, the majority of human pilots, when equippéth the appropriate decision
interface, are capable of planning satisficing pathat are at worst 5% more
expensive from an “optimal” path generated by a poater [8]. Therefore, it is
instructive to examine the cognitive strategieshafnan pilots for the purpose of
flight planning.

2.2 Pilot Decision Model

It has been found that human pilot decision maléag be described with ‘non-
rational’ or naturalistic decision making model2][1 This form of decision making
is characterised by the conceptbofinded rationality [13]. Studies have shown that
humans characteristically focus only on three to fategories of attributes (less than
ten variables), adopton-compensatory decision strategies (especially when under
duress), and process only a few decision alteres{iv4].

Additionally, studies have revealed that expemtgilpredominantly employ intuition
based decision making but also include some elesrafreinalytical decision making



[9]. Intuition can be defined as “knowledge bas®d experiences and acquired
through sensory contact” [9]. One way of charasiteg this form of decision making
is through theRecognition Primed Decision Making (RPDM) model. This model is
in actuality an intuitive form of diagnosis and gietion which can be surmised as (i)
recognition (pattern matching), (ii) serial evaloat (generating situational
awareness) and (iii) mental simulation. Thus, theeet pilot employs pattern
matching using experience honed cues (effectivdlyria of a priori knowledge) to
structure the decision process. This then actvatmditional IF THEN rules which
produce the final decision outcome [9, 12].

It has been observed that human pilots frequendliyenuse of rules and procedures in
their decision making processes [7, 9, 12]. Thigart stems from the vigorous
training of procedures and aviation rules. Addititty, human pilots also manage the
weighting and selection of rules, attributes andnesearch cues based on the overall
situational awareness; this is known as meta-ciagnjiL2, 15]. Rasmussen’s model
[16] provides a holistic framework that captureshbtihne RPDM and meta-cognitive
elements of human pilot cognition. The CASSY [Ekliation decision support
system is based on Rasmussen’s model.

Using Rasmussen’s model, the decision making commofeach evaluation of (1))
of the flight planning task can be described aswshim Fig. 2. At each increment in
the flight plan, decision variables are extractednf sensor data, Geographic
Information Systems (GIS), weather and air traffidormation and from the
aggregated cost of previous decisigis). These variables form the antecedents for
IF THEN rules for RPDM and meta-cognition. Therefahe cost function needs to
be a multi-objective evaluation function capableémplementing multiple rules in a
hierarchical manner. A candidate method for thisila be fuzzy inferencing [6].

Features that {degree of
I~ influence search Decision of task truth of meta - .
aeaten strategy {dist. to realisation cognitive rule Sy
goal} antecedent}
Features used
for cost Tl {degree of Y
calculation: | oy —» truth of rule —blEorised rules
{risk, fuel, flight antecedent}
rules, terrain }
Current waypoint: . Y
X, y, Z, world maps & ! Next waypoint:
databases, aggregate | X,Y, Z, aggregate cost g’
costg I
; l
e Memorised
Discriminating ’
»| (sensorimotor)
Features
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Fig. 2. Rasmussen’s 3 layer model [16] depicted as afttatadiagram for flight planning



An important component in the decision making psscebove is the use of
heuristics. Human pilots often employ heurist@s;ategory of cognitive processes
whose primary role is to reduce the search spacetlaums speed up the decision
process [12]. The heuristic is a meta-cognitivprapch that can be used to prioritise
the sequential decision process (i.e. choose wiegions of the search space to
explore first). Some heuristics, such as repregeness, availability and bias can
adversely affect the solution outcome [18]. A usékuristic, however, is adjustment
and anchoring. With this heuristic the search @ssds seeded with an initial guess
which is then adjusted based on available situatioawareness information.
Adjustment and anchoring is well suited to flightaqming as flight plans
predominantly follow the standard flight profile gilsown inFig. 1 [18].

The anchoring and adjustment heuristic can be imefged with a heuristic search
algorithm such as A*. In A* the search procesprisritised according to a heuristic
cost term:

f(s):g(s)+h(s,sg) )

whereh is a heuristic estimate of the cost to go freto the goalk, andf is the total
cost § to g). Therefore, through careful selection lofit is possible to bias the
search towards the standard flight profile.

2.3 Using Cognitive Techniques in Path Planning

The previous review of literature concerning pitleicision making has established
three key points: (i) pilots tend to find a satigfg rather than an optimal path, (ii)
pilots employ pattern matching (IF THEN rules, ooguction rules [9]), and (iii)
heuristics aid in culling the search space. Theegfbeuristic search algorithms such
as A* can be used as a suitable starting pointrdplicating human pilot planning.
These algorithms have been used extensively in Imabbotics [19]. However,
anytime replanning variants of A*, such as ARA*e aven better suited as, through
adjustment of a heuristic inflation facterit is possible to quickly find a satisficing
solution. Furthermore, the solution path has al st of at most-times the optimal
path cost [20]. Thus, if time is available, itgessible to iteratively decreaseuntil
&1 which gives the optimal solution.

Fig. 3 depicts an implementation of A* showing a solatipath in a complex

environment. The decision variables for this inigegion, based on VFR operation,
are: (i) altitude Above Ground Level (AGL), (ii)rapace type, (iii) population risk
(fatality risk per flight hour presented to peopa the ground [21]), (iv) fuel

consumed, and (v) weather (wind and storm cellfe $earch algorithm uses the
framework presented in [6] for integrating a mualiteria cost function into a path
planner.
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Fig. 3. Example flight paths using A*, Fuzzy Dynamic Pragiming (FDP) with min t-norm,
and with product t-norm. Controlled airspace, population risk shown.

The problem with A* like algorithms is identified (1). The summative aggregation
of prior decision outcomes means that decisionsaggegated using a disjunctive
operator [22]. Therefore, as is highlightedrig. 3, there are cases where A* chooses
a path with highly undesirable segments (i.e. higtremental cost) because the
resultant summed cost is low. Oftentimes, it isiddle to avoid these high
incremental cost paths unless if no other alteveatexist.

One method for addressing this shortcoming is topleyn Fuzzy Dynamic
Programming (FDP) [22]. Here, the sequential derigprocess is tracked using a
conjunctive or t-norm operator:

Mo (%) =max, (e () Dt (%) )

At each decision step along a path, the utilityueals, ()gﬂ) of a statex.,, is found
by the t-norm [()) of the parent utility value, ()g) , and the state transition action
that gives maximaly (x.,). The transition actio is transformed into a utility
value using a constraint Membership Function (MF) (u). Note that fuzzy
dynamic programming is cast in terms of a utiliglue, which is simply the negative
of the cost.

Two FDP t-norm operators are evaluated against Ahe min and the product
operators. The resultant paths are also showfign3; note these paths avoid the
higher risk regions. Over a number of simulatidh$s unsurprising to find that the
FDP methods find paths with lower maximum increrabmiath costs Kig. 4).

However, when using the min t-norm, the solutiothpare significantly longer. This
occurs because the min operator is more pessimasitt does not allow for



compensation between the constraints and the ¢@2]s On the other hand, the
product operator tends to find paths with a bdiedance between incremental path
cost and path length. Unfortunately, both FDP méshtake longer computation time
than A*, and this is due to the fact that the corf@DP framework doest not include a
heuristic component to guide the search.
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Fig. 4. Box and whiskers plots, showing inter-quartilegarior incremental path costs, path
length, and planning time

This preliminary investigation into automation oAV flight planning has revealed
that there are benefits in replicating human exgertA survey of existing studies on
human pilot cognition reveals that pilots predomiha rely on RPDM (pattern
matching) and heuristics. This can be modelledifipally for flight planning using
an adaptation of Rasmussen'’s three layered cogmitiodel. In turn, this sequential
decision model can be replicated using A* or fudggamic programming; by using a
product t-norm operator, a path that mimics hunmepeetations is found. However,
there remain many challenges that need to be afdtesThese include evaluation of
suitable multi-criteria cost functions (e.g. [6Bfudy of suitable heuristics and
incorporation of heuristics into fuzzy dynamic pragiming. Unlike A*, the existing
fuzzy dynamic programming framework does not ineladheuristic term (3).

3 Local Planning

Local planning provides a navigation strategy fafestraversal through cluttered
environments. This can be represented as a odlliiee flight trajectory which

ensures that the platform remains within perforneamaunds. The implementation of
local planning systems onboard UAV platforms hasnerous benefits including

overcoming potential ground station link issues.owidver, automating the local
planning process is non-trivial and some challerigelside: incorporation of complex
platform dynamics, optimisation of trajectory to ehenission requirements, real-time
constraints on computation time imposed by obssaglethe flight path, and the
guarantee that trajectories generated are collfsee The following section presents
a brief overview on flight trajectory representatio



3.1 Flight Trajectory Representation

A flight trajectory typically represents the desirenotion of the aircraft during
transversal between two points in airspace (i.erectt and goal position). The
inclusion of vehicle dynamics during the traject@ignning process, allows for the
generation of flight trajectories which take platfoconstraints into account.

Vehicle dynamics are used to calculate the perfomaanvelope which the aircraft
must remain within to ensure vehicle stability dariflight. The types of aircraft
performance bounds which can be included duringrdgjectory planning process is
dependent on the number of states used for trajecepresentation (e.g. position,
velocity, acceleration, attitude, attitude rates).3 Degree Of Freedom (DOF)
trajectory representation can allow for the inabasof multiple aircraft performance
bounds including: min (stall) and max velocitiesnrturn radius, and max climb and
descent rates. However, a more complex 6 DOFctajg representation is required
for the inclusion of attitude rate constraints (engx roll rate).

An example of flight trajectory representation sdugh the use of polynomial or
spline based techniques [23, 24], where contraitsaian be placed in a certain order
to generate the desired trajectory. The use of moohyal or spline curve
approximation limits trajectory representation tdyo3 DOF. Without attitude and
attitude rate state information, it is not possitieguarantee that the aircraft motion
remains within platform performance bounds; in igcafar, the attitude rate
constraints.

3.2 Trajectory Generation using Manoeuvre AutomatoriTheory

Manoeuvre Automaton theory is a published apprd28f, where smooth feasible
flight trajectories are formed via concatenationpoédefined trim and manoeuvre
primitives. Generating trajectories using manoeusutomaton theory allows the
inclusion of attitude information (roll, pitch angaw) for trim manoeuvres and
attitude rate information for manoeuvre primitive$his ensures that the trajectory
generated is within vehicle performance boundsrtheumore, trim and manoeuvre
primitives can be configured to emulate flight memeres performed by trained pilots
(e.g. coordinated turn). The following sectionstlioes the implementation of
manoeuvre automaton theory to generate smoottctoaies for fixed wing UAS in
3D space.

3.2.1  Trim Primitives

Six predefined trim primitives (referred to as fitgnodes) have been implemented in
simulation including: cruise; flat turn, climb, dent, helical climb and helical

descent. The flight dynamics model is based on Abeosonde UAV data set

available in the Aerosim Blockset [26].



3.2.2  Transition Primitives

A transition primitive has been implemented to eaghat the platform remains with
performance boundaries while switching betweerhfligmodes. The UAV platform
dynamic model is propagated until the UAV reaches desired state configuration
for execution of the next flight mode. The traimsitmanoeuvre required to switch
from cruise to coordinated turn flight modes inwhan Fig. 5.

Coordinated Turn Flight Mode

Transition Manoeuvre

X (metres)

Fig. 5. Transition Manoeuvre Linking Cruise and Coordidateirn Flight Mode

3.3 Trajectory Optimisation

Dynamic programming has been previously employeetliated research [27, 28, 29]
for the optimization of feasible trajectories thatve been generated using manoeuvre
automaton theory. Dynamic programming is a setiglesptimization process and is
appropriately suited to this particular optimizatiproblem (referred to as manoeuvre
generation) since only one flight mode can be eteztat any one time.

Traditionally, trajectory generation techniques \emnge to near/optimal solutions by
minimizing a singular cost function (e.g. fuel, @ndistance). However, during each
mission; civilian UAS may have multiple objectivés meet including platform
safety; successful completion of the mission; miring fuel, time, and/or distance;
or minimizing deviation from the current path. These of multi-objective
optimization allows the generation of a solution ymetter reflect the overall
requirements of the mission.

The manoeuvre generation process was implementsimlation using MATLAB
to demonstrate how the inclusion additional objexdican potentially lead to the
generation of trajectories which better represemetrall mission requirements. A 3D
environment representation was setup to simulaterlan scenario, where the UAV
assignment included safe and efficient navigatiorough a predefined set of
waypoints.

3.3.1 Single Objective Optimisation

To ensure mission completion; single objective mj#ation of trajectories generated
through manoeuvre generation have been limited istamte minimization.

Essentially, the optimal solution (per iteratios) the candidate flight manoeuvre
which, once executed, minimizes the distance reduito travel to the goal.



Simulated results for a single objective manoegereration scenario are presented
in (Fig. 6).
-------- Flight Mode Execution (roll angle < 60deg) 300&
-------- Flight Mode Execution (roll angle > 60deg)
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Fig. 6. Simulated Results for 3D Manoeuvre Generationgisingle objective optimisation

Single objective optimization during manoeuvre gatien only considers the

distance remaining to goal after flight mode exmmeout This may lead to the

generation of trajectories which do not adequaselysfy mission requirements. For
example, the trajectory generated in simulatibig.( 6) requires the execution of
flight modes approaching the performance limitshaf platform; placing the vehicle
at greater risk to loss of controllability. Thuke solution generated may not be
deemed acceptable if flight safety was an importaigsion requirement. The
inclusion of additional objectives during the optation process can potentially
provide a better representation of overall missiequirements. The following

section presents simulated results for multi-oljectoptimization of manoeuvre

generation with respect to civilian operations.

3.3.2  Multi-Objective Optimisation

Loss of platform control can potentially result @ollision with the surrounding
environment. The consequences may be greater f bferations are undertaken in
populated regions. Thus, operations in populatedr@nments may benefit from the
inclusion of objectives place a greater emphasisafety by minimizing platform
control loss during manoeuvre generation.

Two additional objectives have been included in tdpimisation process of the
simulated urban scenario to generate trajectorl@shnare less likely to lead to loss
of platform control. These objectives include: mmizing wing loading; and

minimizing transition length required to executextniight mode. The wing loading
minimization objective gives a greater utility valto candidate flight modes which
maintain a lower roll angle during execution simeere controller power is available
to recover from unexpected disturbances (e.g. vgost). The transition length
minimization objective gives a greater utility valto candidate flight modes which
require shorter transition manoeuvres before ei@tuthus potentially decreasing
platform instability due to coupling between latexad longitudinal responses [30].

Fig. 7 presents simulated results after the inclusiowisfg loading minimization
objective to the single objective optimization pes. AdditionallyFig. 8 presents



simulated results for the inclusion of transiti@ndth minimization to the single
objective optimization process. FinalllFig. 9 presents simulated results for the
inclusion of both objectives to the optimisationgess.
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Fig. 7. Inclusion of wing loading minimization objective bptimisation process
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Fig. 8. Inclusion of transition length minimization objee to optimisation process
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4  Conclusions

The research presented in this paper demonstriagesntlti-disciplinary nature of
UAV planning and decision making. Despite the claxipy of flight planning and
trajectory generation, human pilots perform suakgawith proficiency. A survey of
existing studies on human pilot cognition reveatedt human cognition can be
modelled using Rasmussen’s three layered structufee paper presented some
initial findings in replicating this model using Agnd fuzzy dynamic programming.
Additionally, it has been shown through simulatithat optimization of flight
manoeuvres can be used to emulate common fligherpat of trained pilots.
Inclusion of multiple objectives mimicking human cil#on making results in
trajectories that better match mission requirements

This initial work presented here paves the wayfditure research into replication and
modelling of human cognition with planning algorth for UAV operation. Future

work includes evaluation of suitable multi-critegast functions, study of suitable
heuristics and incorporation of heuristics intoZyzlynamic programming.
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Multi-Objective UAS Flight Management in Time
Constrained Low Altitude Local Environments

Pritesh Narayan Duncan Campbéland Rodney Walkér
Australian Research Centre for Aerospace Automation (ARCAA), Queensland University of Technology (QUT),
Brisbane, Australia

This paper presents a new framework for Multi-Objedive Flight Management of
Unmanned Aerial Systems (UAS), operating in partidy known environments, where
planning time constraints are present. During UASoperations, civilian UAS may have
multiple objectives to meet including: platform saéty; minimizing fuel, time, distance; and
minimizing deviation from the current path. The planning layers within the framework use
multi-objective optimization to converge to a solubn which better reflects overall mission
requirements. The solution must be generated withithe available decision window, else the
UAS must enter a safety state; this potentially lirits mission efficiency. Local or short range
planning at low altitudes requires the classificabn of terrain and infrastructure in
proximity as potential obstacles. The potential iorease in the number of obstacles present
further reduces the decision window in comparisond high altitude flight. A novel Flight
Management System (FMS) has been incorporated withithe framework to moderate the
time available to the environment abstraction, pathand trajectory planning layers for more
efficient use of the available decision window. Hbling the FMS during simulation
increased the optimality of the output trajectory an systems with sufficient computational
power to run the algorithm in real time. Conversey, the FMS found sub-optimal solutions
for the system with insufficient computational capaility once the objective utility threshold
was decreased from 0.95 to 0.85. This allowed th$AS to continue operations without
having to resort to entering a safe state.

|. Introduction

In recent times, UAS have been employed in an asingly diverse range of applications. NumerousSUA
market forecasts portray a burgeoning future, iiclg predictions of a USD10.6 billion market by 281 Within
the civilian realm, UAS are expected to be useiybérforming a wide range of airborne missions saghlisaster
monitoring, search and support, and atmospherierohtiorf. However, to realize these civilian applications,
seamless operation of UAS within the NAS will bguiged,; this is a difficult problem.

Most literaturé  indicate that an equivalent level of safety (EL@SYhat of a human pilot will be one of the
requirements for integration of UAS into the NAShe ELOS requirement indicates that the system rhast
capable of replicating some of the capabilities dfuman pilot; this leads to the need for a higlegree of onboard
autonomy.

Automation assists in overcoming restrictions comimdound on current Remotely Piloted Aerial Vekgl
(RPV). For example: Limited RPV range due to sidimaitations; the need to stay within line of stghf remote
pilot; decrease in pilot reaction; and pilot fagguA higher degree of onboard autonomy includesathility to
respond automatically to hardware failures andamedpo changes in the environment through onbogpthnning
and execution. These tasks are routinely perforineluman pilots; automating these tasks onboagdltsein a
more robust UAS that is not as susceptible to orbtalures. Such autonomy could potentially l¢éad decrease
in operational costs.
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Low altitude UAS operations present further challes not encountered in high altitude flight. Terrand
urban structures may become hazards to the safféhe dJAS, and must be treated as obstacles. fdiesion of
terrain and urban structures as obstacles potignitadreases the overall obstacle density withigiveen mission
environment; conversely, the distance between olestas decreased. Thus, UAS operating at lowudkls may
have less time available (shorter decision windaev)generate and perform the appropriate manoeufaes
successful obstacle avoidance.

Traditionally, local path planning and trajectorgngration techniques converge to near/optimal isoisitby
minimizing only one cost function (e.g. fuel, tina, distance). However, during each mission; @wlUJAS may
have multiple objectives to meet including and limatted to: safety of vehicle, the immediate enwvineent and the
public at all times; successful completion of th&ssion; minimizing fuel, time, and/or distance; améhimizing
deviation from the current path. The use of moiljective optimization allows the generation ofodution which
better reflects the overall requirements of thesiois. For example, multi-objective optimizationyrellow UAS
operating partially known environments to perforallision avoidance whilst optimizing the solutiom &lso meet
other objectives, such as mission completion; ghatentially increasing mission efficiency. Howevtire solution
must still be generated within this limited decisiwindow; otherwise the platform must resort toeeinty a safe
state.

UAS vehicles can be broadly categorized into twmesy rotary and fixed wing. Rotary UAS travelingaw
velocities have the capability to brake and hofi¢hé planner does not converge to a solution withe available
decision window, thus averting a potential collisioFixed wing and Rotary UAS traveling at highetocities can
offer increased mission efficiency, but an alteir@atollision avoidance strategy must be availabke solution is
not available within the decision window. The csithn avoidance strategy can be in the form of dieelé non-
holonomic safety manoeuvre$. A collision avoidance strategy implicitly guatees vehicle safety, however
mission efficiency decreases each time the plasaenot converge to a solution within the decisiondew.
Decreasing the frequency of which safety manoeuaresrequired during operations can potentiallyd léz an
increase in mission efficiency.

This paper presents a new framework for Multi-Objec Flight Management of UAS operating in pargall
known environments whilst addressing replanningetioonstraints. An outline of UAS local path plami
approaches in partially known environments andtedlavork is given in section Il. Section Il prese an
overview of the proposed framework, while simulatiesults in section IV show how the addition offIS can
increase mission efficiency. Finally, conclusi@ms presented in section V.

Il.  Problem Formulation

A local path planning system is generally descriasd system which generates a smooth trajectory HAS
to follow through a set of mission level waypointét higher altitudes and typically remote opergtincations;
UAS are not constantly required to avoid statidgnamic obstacles. Therefore a trajectory generaty be all
that is required to generate a smooth trajectaxguiih mission level waypoints.

During low altitude local path planning howevere tlenvironment may present several challenges not
encountered in high altitude flight. Terrain amtan structures become hazards to the safety di&% and must
be treated as obstacles. Due to the limited distmrbetween objects, UAS have a limited decisiomdoiv to
generate and perform the appropriate manoeuvresuocessful obstacle avoidance. Low altitude Iqusth
planning may require the additional inclusion dbeal waypoint planner to generate a collision fpe¢h between
mission level waypoints first.

If UAS possess the capability to safely navigate kltitude environments, additional civil applicats can
potentially include: traffic surveillance; responseemergency situations; assisting search andieesfforts and
aerial mapping.

A. Related work

This section provides an overview of relevant Iquath planning systems presented in literature.
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1. Known Environments

SingH presents a 2D local path planning algorithm, whjenerates an optimal trajectory through a preddfin
set of waypoints in an environment knownpriori using Model Predictive Control (MPC) techniques.hisT
algorithm performs the planning component off-litteereby limiting UAS operations to purely statiovgonments.

Schouwenaafs® presents a 2D MPC based local path planning ahgorivhich takes into account a static 2D
environment knowm priori. The solution is optimized using Mixed Integendéar Programming (MILP). The safe
state component of the algorithm ensures vehidietysés preserved if solution is not generated imith specified
deadline.

Other research into planning in known environméats been presented by RathBfuienetic algorithms) and
Petterssort al. from the Wallenberg Information Technology and @dndgmous Systems (WITAS)(probabilistic
planning).

Navigation in known environments implies the uséigh resolution maps. This may not be feasibtestime
forms of UAS (e.g. mini or micro variants) due twst; computational; or payload limitations. Ateahative is to
use active or passive onboard sensors to perfolimeomapping; this is generally referred to as plag in partially
known environments.

2. Partially known Environments

Sebastiaret al.*? present a local planning system which construgparially known 3D environment online
using LAser Detection And Ranging (LADAR) informati. A Laplacian (a type of potential field implentation),
drives the UAS towards the goal until an obstasléétected by onboard sensors. A reactive calliaMpidance
system, entitled the dodger is activated once atacle is detected. The obstacle avoidance mamd&iiimited to
either moving around, or over an obstacle.

Griffiths et al.'® present another local planning system which géeemn approximate 3D representation of the
environment using low resolution map datan initial path is constructed using a rapidlypkxing random tree
(RRT) algorithm. Similarly to Sebastignif the UAS encounters an obstacle which has eenkplanned for, an
obstacle avoidance algorithm (using static LADARsSSeg data) is activated to perform collision aavide.

Other research into planning in partially known iesements has been presented by*SHi(MILP optimization
of LADAR sensing data) and NikolB§Evolutionary optimization of simulated sensindaja

Planners onboard UAS operating in partially knowmvienments generally overcome the possibility of
becoming trapped in local minima (it is still pddsi though), by planning in 3D. However, if a sege collision
avoidance algorithm is activated when an unforesdestacle is detected; the safety is of UAS usuadigomes the
only priority. This can potentially lead to subtiopal results since the optimal path to the goaly mat be
considered during the obstacle avoidance scenafidditionally, the capability to consider multipkebjectives
could potentially benefit UAS operations in thigsario.

Manoeuvre Generation; developed by FrazZdfi refers to the generation of a smooth trajectorgr av set of
waypoints through concatenation of predefined tamd manoeuvre primitives. Various UAS flight modes
including: cruise; coordinated turn; climb or desteand fixed wing safety manoeuvres (e.g. loiteah be
represented through trim and manoeuvre primitives.

Richard$® presents a local path planning system which appifazzoli’$’° manoeuvre generation technique to
low altitude 3D collision avoidance scenarios. Adified A* algorithm is used to generate a set afypoints.
Sub-optimal trajectories are generated using mameeautomaton which explicitly takes UAS flight exepe and
non-linear motion constraints into account. Simjla Singlf* and Schouwenadrshave applied manoeuvre
generation to the local path planning problem.
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B. Unresolved Local Path Planning Considerations

There are two research challenges which have rest bgplicitly considered in the local path planngygtems
presented: optimization with respect to multiplgestives; and the more efficient use of the avédatecision
window to generate an optimal solution.

Local planning systems presented in this sectidimige a solution by minimizing only one cost fuioct (e.g.
fuel, time, or distance). However, during eachsiois; civilian UAS may have multiplebjectives to meet. Multi
objective optimization allows convergence to a soluwhich takes numerous aspects of the missitmancount.
Additionally, each cost function to be met can lieeg a weighting to provide an indication of thepiontance
placed on each objective. For example, during atpers in collision free environments, greater Weigan be
placed on fuel, time and distance objectives, wadgeperations in environments with obstacles ptasay require
greater weighting to be placed on safety cost fanst

UAS operating without mapping sensors are resttitte operations strictly within known regions awahile
through onboard maps. Mapping sensors allows tipesaoutside known regions and may decrease dveral
payload requirements since onboard maps are optiokBbwever, planning in partially known environnmgn
requires processing of sensor information and piaién fusion of sensor data with onboard mapavidilable. The
computational complexity of this process is notleiy taken into account by any of the local paitanning
systems presented. It is generally implied thdficsent processing power is available that thi®qass occurs
instantaneously. With limited onboard computatlaeaources; environment abstraction will takergtdi length of
time; thus decreasing the overall time available tfee path planning and trajectory generation dtlgors to
converge to a solution within the available decisiandow.

Environment abstraction, path planning and trajgcteneration layers each require a “slice” of dwailable
decision window assuming that sufficient computaiopower is available to converge to a solutiothimi the
planning time available. To the author's knowledgethe available computational power is insuffici, no
research in literature explicitly attempts to maderthe time available to each layer to generat@rtial solution. If
the flight management can provide a partial or sptimal solution within the decision window, thifoavs the
UAS to continue operations without having to resorentering a safe state.

This concludes the overview of related work in fredd of low altitude local path planning. The posed
solution presented in the next section incorporateki-objective optimization into the local patlapning process.
Additionally the proposed solution identifies thengputational complexity of environment abstractiomd planning
and attempts to generate a partial solution ifehgiinsufficient time for the planning algorithiisconverge to an
optimal solution.

lll.  Proposed UAS Framework

In general, the local path planning process caddseribed as an iterative procedure (Figure 1)revharrent
sensor data is fused with onboard mapping infolrnatif available) to form an abstraction of the iromment. The
environment abstraction is used by an intermedpatéh planner to generate a set of collision fregpwants
between two mission level waypoints. Finally, sosth trajectory is generated through the interntedigaypoint
set by a trajectory generation algorithm.

This entire process must be completed to ensutethiealocal path planning system converges to atisol
within the finite decision window (Figure 1). litisations where the planner cannot converge tolaisn within
the time available; a partial solution should beitable so the UAS can continue with the missiothadit having to
resort to entering a safe statePotential benefits from more efficient use o tvailable decision window are
increased mission efficiency and reduced operatioosts.
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A. Proposed Architecture

The architectur@ (Figure 2) presented in this section is suited WAS operations in partially known
environments, and potentially offers greater mis®fficiency and mission completion opportunitisscomparison
to the current approaches presented in Secti@ubisection A.

The inclusion of an FMS can provide greater misgéfitiency through more resourceful use of theilatte

decision window. The FMS dynamically allocatesnitd “slice” to the environment abstraction, patid trajectory
generation layers, with the length of time depehden available onboard computational resources aretall

decision window length.
Flight Mission Mission Path
Gl Planning Layer
Other

a priori A 4
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Figure 2. Proposed Architecture for Local Path Planing Concept Presented
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1. Flight management layer

The FMS is an expert system which manages and sldsedhe execution parameters of the environment
abstraction, path planning and trajectory genemdtigers. In scenarios with approaching real titeadlines, there
is a limited amount of time available to the UASctinverge to a new feasible solution before a gafetnoeuvre
must be executed ensuring the safety of the vehicle

The environment abstraction layer requires a fidgagth of time to generate a representation of the
environment. The time remaining is then allocai@dhe path planning and manoeuvre generation sayén a
worst case scenario, the path planning algorithnstnine terminated while enough time remains to geaea
manoeuvre between two waypoints. To ensure tleaFMS can moderate the length of time allocateshtth layer,
certain limitations must be emplaced on the: emritent abstraction, path planning and trajectoryeggion layers.
These limitations are discussed in the followinctisas.

2. Environment abstraction layer

The environment abstraction layer uses availabis@e map and other onboard data to create a mypet®n
of the immediate environment. Environment absioactnust be performed first since trajectory anthgdanning
layers must have knowledge of possible hazardsiwipnoximity before a suitable navigation strategpn be
devised. Additionally, if the environment abstrantlayer does not output a situational represamtawithin the
time allocated by the FMS, its operations are detkeiso the planning layers can attempt to genexdtasible
solution within the time remaining.

3. Trajectory generation layer

The trajectory generation layer creates a feadifalgctory through a set of mission level waypointsilst
meeting dynamic and kinematic constraints of theSUfatform. This is sufficient for operations ihstacle free
environments however, in the presence of obstattiespath planning layer must be initialized to eyate a set of
intermediate waypoints representing a collisiore fygath between mission level waypoints. Additipnalhe
trajectory generation algorithm should possess#émpability to output a solution which is either ey sub-optimal
or both.

4. Path planning layer

During operations with obstacles in proximity, thath planning layer is initialized to generate & sk
waypoints which represent a safe feasible path fitmencurrent position to the next mission level paipt. The
planner must take platform kinematic and dynaminst@ints into account to ensure that waypointsegead
within the platform performance envelope.

For the path planning algorithm to output a solutigithin a predefined set of time, it is desirafde it to
display anytime qualities, where either a partiati/ar sub-optimal solution can be output whenewsjuired.
Additionally, the path planner can operate in datab the environment abstraction trajectory gatien layers, but
must generate the forthcoming intermediate waypbaiore the trajectory generator is initializedheTtrajectory
generator requires this information to calculate éxit attitude of the UAS when generating a tri@jgcbetween
two waypoints.

This concludes the overview of the proposed plaprfimmework for UAS operations in partially known
environments. The following section provides amplementation overview and subsequent results toodstrate
the feasibility of the framework presented in Ill.

IV. Demonstration of Framework Feasibility

The framework was implemented using MATLAB to dersioate its potential to improve overall mission
efficiency during operations in partially known @onments. The following section provides an ovemw of the
implementation regarding the: FMS; environment i@esion; path planning and trajectory generatigrta.
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A. Framework Implementation Details

A 2D environment representation was setup to sitawda urban scenario (Figure 3) where the UAS assigt
included safe and efficient navigation through & afepredefined mission level waypoints. The #niecision
window is calculated as the time taken to compthte current stage, where each waypoint pair isrdsghas a
single stage. Additionally a fixed wing platforra used during simulation due to their incapacitybtake and
hover. If no solution is available once the dexiswindow comes to an end, the UAS permanentlyrergesafe

state using a loiter manoeuvre.

Waypoint 3 X
m Em
7 m m m Obstacles
£ Present
m E W
20 Waypoint 2 %
Stage
1
100 Waypoint 1
UAS‘ Starting !ocation\

I
-200 -100 0 100 200 300
X (metres)

Figure 3. Environment Setup for Simulation

The path planning algorithm (Figure 4) implemeriebased on Smith’s fuzzy logic path planning ation®.
The iterative nature of Smith’s algorithm makegyiite suitable for local path planning as a parsialution is
available if the algorithm is terminated by the FM&ore completion; it also performs planning widspect to

multiple mission objectives.

Iteration 1 Safe state (fixed
wing loiter . . P
manoeuvre) ! j.l, J
Inserted Waypoint .-'. Stage
X."WaypointZ 2
Iteration 2
u %E u Stage
E RN 3
Iteration 3 Ba W .
Stage
Bim W 4
E EE
Figure 4. Path Planning Algorithm
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The trajectory generation algorithm (Figure 5) mséd on Frazzoli® manoeuvre generation framework.
Frazzolf® states that pre-defined discrete classes of mame®iwcan be concatenated together to create smooth
trajectories through a set of waypoints. Représgrdircraft motion as classes of manoeuvres hagiqusly been
demonstrated i ® %+ 2! Frazzoli's manoeuvre generation research ansesutent work has been limited to rotary
UAS only; thus new trim and transition manoeuvres $er fixed wing UAS operating in cruise and cdaeded turn
flight modes were created for simulation.

a00 —

400 —

Transition manoeuvre
Manoeuvre (primitive)

300

¥ (metreg)

Coordinated turn
(Trim primitive)

| east cost trajectory

L o

Il Il Il Il Il ! Il
200 -100 0 100 200 300 400
* (metres)

Figure 5. Trajectory Generation Algorithm (six predefined coordinated turn trim primitives)

Multi-objective optimization is applied to both pgtlanning and trajectory generation algorithmszay multi-
objective optimization is already a component ofitBim path planning algorithfit however a simpler aggregation
of the utility of multiple objectives (a utility adne denotes a cost of zero) has been appliec tvajectory solution
for computational efficiency.

The FMS initializes the environment abstractiorelaip generate a representation of the environmihin the
current stage. If obstacles are detected, thepdatimer is initialized to generate a set of wagmivithin the stage
to reach the next mission level waypoint. The tiremaining is allocated to trajectory generatioyetawhich
iteratively finds a more optimal solution until teeis insufficient time left. If excess time remsiafter the
trajectory generator outputs a solution, this tileeallocated the environment abstraction; path rgtegn and
trajectory generation layers to generate solutfonguture stages. Conversely, if no solution vai&ble then the
UAS resorts to entering a safe state indefinitely.

B. Simulation Setup

The Aerosonde UAS has been used as the vehiclemptator the simulation results presented in thikofeing
section. During the simulation the platform opesaat a constant velocity of 15 m/s in either &uis coordinated
turn flight modes. The maximum roll angle is settb degrees; this has been verified using thegéegeof freedom
Aerosonde UAS model available with the Aerosim Bket for MATLAB. The objectives chosen for simiidant
include: distance minimization, meeting yaw angiquirement (generated by path planner) at goatitmtand
distance of candidate solution from the goal lazgtall objectives have equal weighting.

The simulation has been performed using three ctempwith varying processing capabilities (Tabletd)
simulate the how an FMS can potentially increasgsion efficiency of the same UAS with different qautational
capabilities.
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Computer Processor Memory MATLAB Operating
(RAM) Version System
A Core 2 Duo @ 3.2 GHz 2 GB 7 Windows XP
B Core 2 Duo @ 2.13 GHz 2 GB 7 Windows XH
C Centrino Duo @ 2 GHz 2GB 7 Windows Vista

Table 1. Available Computing Power of Candidate Cmputers

C. Simulated Results — Section 1: FMS Not Enabled

The first set of results show the algorithms perfance without the FMS enabled for each computingpse
The algorithm finds a feasible path using a comfimmaof: cruise; six coordinated turn trims; anc tfesulting
transitions between candidate trim manoeuvres.

400 —

y (metres)
w
]
g
I

200 —

100 —

0 L 1 1 L 1 1 L
-200 -100 [ 100 200 300 200
¥ (metres)

Figure 6. Least Cost Trajectory Solution generatedising Cruise and six Coordinate Turn Trims

The mean results for a Monte Carlo setup (100 dlguor iterations) are presented (Table 2). Theltota
simulation run time is given in conjunction witheage run times for each layer. The decision windepresents
the time available all layers for planning (Figie If the decision window remaining at the endh& simulation is
positive, then a potentially more optimal trajegt@ould have been generated through more efficiset of the
decision window. Conversely if the remaining disisvindow is negative, insufficient time (or preseng power)
was available to generate the solution in real tinkowever, it may still be possible to find a leggtimal path
within the given decision window.

Algorithm Run Time [mean (std dev)] (seconds) Decisi Utility
- ecision Threshold
Computer Env Abstraction| Path Planning ggg?;%gn Total Run RWrIrrw]dicr)1\iArlw (Upper
Layer Layer Layer Time emaining Bound)
A 0.706 (0.234) 1.345(0.048) 7.899 (0.102 9.9360) 15.136 (0.227) 0.95
B 1.318 (0.346) 2.013 (0.053) 12.066 (0.098) 15.39829) | 9.790 (0.274)| 0.95
C 4.893 (0.797) 3.624 (0.883) 25.356 (2.768) 33.87285) | -8.095 (3.719) 0.95

Table 2. Algorithm Run Time for Cruise and six Coadinated Turn Trim Manoeuvres (FMS not enabled)
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Figure 7. Available Decision Window during Simulaion (Computer A - left) (Computer C — Right)

Table 3 presents the optimality of the solutionnidun terms of its utility rather than cost. Whene optimal
solution in terms of least cost solution approacter®, the normalized utility of the solution apgches one. To
generate solutions more efficiently, an upper booh@.95 has been set. Once a feasible solutidouisd which
exceeds this value, the trajectory generator dtmgsng for other possible solutions for the cutrstage and moves
to the next stage. This prevents the trajectonyegeor continuously searching for other solutievisen an
acceptable solution has been previously discoverEis can be seen in Figure 7 where the trajecgenerator
finds a solution with a utility above 0.95 relafiydast for stage 4 and immediately proceeds td finfeasible
trajectory solution for stage 5.

Computer Utility Value of Output Trajectory (max value = 1) Utility Threshold
P Stage 1| Stage 2 Stage|3 Stage4 Stage5 Averagepper Bound)
A,Band C| 0.872 0.863 0.933 0.977 0.891 0.907 0.95

Table 3. Utility V alue of Output Trajectory (FMS not enabled

D. Simulated Results — Section 2: FMS Enabled
The second set of results present an overvieweodlporithms performance once the FMS has beerlezhab

Computers A and B have sufficient processing paeegenerate a solution for the given scenario @i tiene.
Since the time required finding a feasible solutieas less than the UAS flight time, this resultadai positive
decision window remaining at the end of the non Fé@&bled simulation (Table 2). Enabling the FMSuhs in
more efficient use of the decision window (Figufy &nd subsequently, a more optimal solution isifb(Figure 8)
(Table 4).

Computer C has insufficient processing power akigldo generate a solution in real time; thus #maining
decision window is negative (Table 2). The FMSmipts to find a sub-optimal solution, however nasfble
solution can be found within the given decision dadw of stage 2 (Table 4) (Figure 11); the UAS nthen resort
to entering a safe state (Figure 9). A feasiblaetem was discovered by the FMS by decreasinguthigy threshold
to 0.85 (Table 5). The resulting solution was legsimal in comparison, but allowed the UAS to ¢one
operations without having to initiate a safe statmoeuvre (Figure 10).
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Figure 8. Trajectory Solution Generated (No FMS {eft) (Computer B with FMS enabled — right)

|

Figure 9.

([

\

-

(Computer C: utility threshold 0.85 - right)

EJE =
7
=N =

/

f

Trajectory Solution Generated (FMS Enabkd) (Computer C: utility threshold 0.95 - left)

Computer Algorithm Run Time [mean (std dev)] (seconds) Decision Utility
Env Abstraction| Path Planning Trajectory Total Run Window Threshold

Layer Layer Generation Layer Time Remaining (Upper

Bound)
A 1.194 (0.349) 1.531 (0.05)] 23.236 (0.2889 25.96067) | 0.344 (0.017) 0.95
B 1.394 (0.353) 2.107 (0.067) 22.322 (0.306) 25.82@7) | 0.071(0.011) 0.95
C 2.105 (0.46) 2.211(0.121) 9.452 (0.635) 13.777p.6 | 0.033 (0.046) 0.95
C 4.114 (1.0) 3.276 (0.264) 16.071 (0.742) 23.46F1)1| 1.897 (1.008) 0.85

Table 4. Algorithm Run Time for Cruise and Coordinated Turn Trim Manoeuvres (FMS Enabled)
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Figure 11. Available Decision Window during Simuléion (Computer C: FMS not enabled - left)
(Computer C: utility threshold 0.85 - right)

Table 5 presents an overview of the utility valdiehe output trajectory after the FMS has been kghblt can
be seen that candidate systems possessing suffiiecessing power to compute a solution in reaktibenefit
from an increase in the average utility value o thutput trajectory once the FMS is enabled. Acidilly
computer C is able to find a feasible solutione@alrtime once the utility threshold is reduced 850 The utility
threshold is currently set manually. Implementingariable utility threshold has the potentialudtier increase the
effectiveness of the FMS.

Computer Utility Value of Output Trajectory (max value = 1) Utility Threshold
Stage 1| Stage 2 Stage|3  Stage 4 Stage 5 Average (Upper Bound)
A 0.972 0.958 0.952 0.965 0.932 0.956 0.95
B 0.972 0.958 0.936 0.924 | 0.867 0.931 0.95
C 0.8715 | O 0 0 0 0 0.95
C 0.8715 | 0.8625 | 0.8845| 0.9063 | 0.8759 | 0.8801 0.85

Table 5. Utility value of Output Trajectory (FMS Enabled)
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V. Conclusions

This paper has presented a new framework for robjective flight management in time constrained low
altitude local environments. A finite length ofne defined as the limited decision window was dyicatty
distributed among the: environment abstractionh pd&nning; and manoeuvre generation layers byr¥8. In a
particular scenario where the UAS does not possefiicient processing capabilities to generate ladolution
within the time available, a partial and/or subhma solution was found in several scenarios. Hiisws the UAS
to continue the mission without having to resortetatering a safe state; thus potentially increasimigsion
efficiency.

It is expected that in future, the overall capdieti of the framework implementation will be exteddn several
areas. 3D planning and trajectory generation caremployed through the implementation of additiofight
modes, for example climb and descend. Additionalhe implementation of a variable utility thresthahay
increase the effectiveness of the FMS further.
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Abstract

In recent times, Unmanned Aerial Systems (UAS) have been employed in an increasingly diverse range of
applications. Numerous UAS market forecasts portray a burgeoning future, with many applications in both the
military and civilian domains. Within the civilian realm, UAS are expected to be useful in performing a wide
range of missions such as disaster monitoring (e.g. wildfires, earth-quakes, tsunamis and cyclones), search and
support, and atmospheric observation.

However, to realise these civilian applications, seamless operation of UAS within the National Air Space (NAS)
will be required. Increasing the levels of onboard autonomy will help to address this requirement.
Additionally, increased autonomy also reduces the impact of onboard failures, potentially lower operational
costs, and decrease operator workload.

Numerous intelligent control architectures do exist in the literature for mobile robots, space based robots and
for UAS. These include: the WITAS project, Open Control Platform, Remote Agent and TRAC/ReACT.
However, none of these are specifically targeted at providing the required support for a wide range of civilian
UAS missions. Operation of UAS in the NAS for civil applications require robust methods for dealing with
emergency scenarios such as performing forced landings and collision avoidance to preserve the safety of
people and property.

This paper presents a new multi layered intelligent control architecture. The highest layer provides deliberative
reasoning and includes situational awareness and mission planning subsystems. The middle layers deals with
navigational aspects (such as path planning and manoeuvre generation). Finally, there is a functional control
layer which comprises sensor and actuator subsystems and provides reactive functionality to enable forced
landings and collision avoidance. Collision avoidance and forced landing technologies are currently under
development at the Australian Research Centre for Aerospace Automation (ARCAA).
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An Intelligent Control Architecture for Unmanned Aerial Systems (UAS) in the National Airspace System (NAS)

Introduction

In recent times, UAS have been employed in an
increasingly diverse range of applications.
Numerous UAS market forecasts portray a
burgeoning future, including predictions of a
USD10.6 billion market by 2013 [1]. Within the
civilian realm, UAS are expected to be useful in
performing a wide range of airborne missions such
as disaster monitoring, search and support, and
atmospheric observation [2].

However, to realise these civilian applications,
seamless operation of UAS within the NAS will be
required; this is a difficult problem. Most literature
[3, 4] indicate that an equivalent level of safety
(ELOS) to that of a human pilot will be one of the
requirements for integration of UAS into the NAS.
The ELOS requirement, indicates that the system
must be capable of replicating some of the
capabilities of a human pilot; this leads to the need
for a higher degree of onboard autonomy.

A higher degree of onboard autonomy includes the
ability to respond automatically to hardware
failures and respond to changes in the environment
through onboard replanning and execution. These
tasks are routinely performed by human pilots;
automating these tasks results in a more robust
UAS that is not as susceptible to onboard failures.
Furthermore, it reduces the human operator’s
workload and therefore potentially allows a single
human to operate multiple unmanned aircraft
instead of many human operators controlling one
aircraft. As well, it allows the operator to focus on
the mission rather than piloting aspects. Such
autonomy could potentially lead to a decrease in
operational costs.

However, taking the human pilot out of an aircraft
removes much sensory and decision making
capability. To demonstrate that a UAS still has an
equivalent level of safety to a human piloted
aircraft, this capability must be automated. For this
to occur, UAS will need to possess greater
“intelligence” than they do today, aspiring to
acquire the traits of the human pilot. The UAS will
need to acquire the capacity to monitor the
vehicle’s internal systems and the outside world,
and to detect any changes that affect the mission
safety and mission outcome. With  this
information, the UAS must then make rational
decisions and take the necessary actions to preserve
safety and achieve mission objectives.  This
capability can be implemented through the use of
an intelligent control architecture.

Defining Intelligent Control

Intelligent control is a multi disciplinary field
(Figure 1) that involves the use of techniques from
the fields of Artificial Intelligence and Control
within the context of the Operational Requirements
of the task. Intelligent control systems are
generally structured in a hierarchical manner. High
level (Complex and abstract) tasks are decomposed
into a series of time critical low level tasks (data
rich and precise). This obeys the so called
“principle of increasing precision with decreasing
intelligence” [5].

Artificial Operational
Intelligence Requirements

€ Optimisation Dy
€Dynamics

Control

Figure 1 - Definition of Intelligent Control Discipline [6]
Intelligent Control and the Human Pilot

Replicating the capabilities of a human pilot is not
a trivial task. For example, during a routine
manned flight in civilian airspace, the pilot uses
available data (e.g. terrain maps), sensor readings
and instructions from air traffic management
(ATM) to fly the aircraft safely to its destination.
The pilot is capable of dealing with varying
situations including and not limited to: turbulence,
onboard failures (e.g. actuator, sensor, engine),
performing a forced landing and avoiding potential
collisions with terrain and other aircraft.

To encapsulate the qualities of a human pilot
within UAS, the intelligent control architecture
must accurately model a pilot’s decision making
process. An example of aircraft pilots cognitive
process [7] during routine flight is shown in Figure
2. The cognitive model is relatively complex but
the reader should note that human pilots have their
own sensors (e.g. vision, touch) and actuators (e.g.
hands, feet). Pilots use their own perception (e.g.
recognition of obstacles) in conjunction with
memory (prior experiences) to take appropriate
actions in a broad range of scenarios.
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The purpose of this paper is to combine the
principles of the human cognitive process and the
field of intelligent control to encapsulate the
qualities of a human pilot. In order to achieve this,
a review of existing architectures is presented in
the next section.

Review of Intelligent Control
Architectures

An overview of existing architectures in robotics,
spacecraft and UAS is presented in this section to
identify relevant architecture design methodologies
and the benefits and shortcomings of different
architectures.

Robotics Architectures

Traditionally, many architectures in the field of
robotics have made use of the state-action model.
The state action model is based on the idea that the
system can be described as a set of states [8]. The
agent (e.g. a ground based robot) transitions from
one state to another through actions. This is under
the assumption that the environment remains
constant unless acted upon by the robot.

Bonasso [9] is the pioneer of a three tiered (3T)
intelligent control architecture which has been
successfully implemented on a variety of robotics
platforms (Figure 3). The deliberation layer
evaluates goals, resources and timing constraints
and outputs a partial list of ordered tasks called a
Reactive Action Package (RAP). The sequencing
layer decomposes a selected RAP, into a sequence
of skill sets (basic agent commands e.g. move left)
which are activated and deactivated to accomplish
tasks. This architecture does not provide any way
of enforcing hard real time limits on these specific
skill sets.  Furthermore, since all replanning
(mission level and reactive) is performed by the
deliberation layer, it is difficult to calculate the
time required to generate a RAP as deliberative
planners are generally symbolic in nature. This
may not pose a problem for slow moving robots,
but is a critical problem in UAS operations (e.g.
reactive sense and avoid).

Partial Task Ordering
Sequencing
Instantiated Tasks

Reactive Skills

Sensor Readings Actuator Commands

v
World/

Environment

Figure 3 - 3T Intelligent Control Architecture [9]

The ATLANTIS architecture by Gat [8] is very
similar to Bonasso’s 3T architecture [9].
ATLANTIS also includes planning and reactive
skills to allow the robot to operate in dynamic
environments. The main difference is that
ATLANTIS leaves the overall control of the
system to the sequencing layer. Deliberation is
treated as an activity that is scheduled by the
sequencing layer. In situations where the
computational urgency of the reactive component
is greater (e.g. obstacle avoidance), the sequencer
can temporarily suspend other ongoing deliberative
activities. However, ATLANTIS also lacks a
method for enforcing real time constraints.

Noreils [10] developed a three layer architecture
with the aim of improving overall system
reactivity. The highest two layers (planning and
control) correspond approximately to the top two
layers of Bonasso’s 3T architecture [9]
(Deliberation and Sequencing layers). However,
the Functional (reactive) layer of Noreils’
architecture includes sub-modules (Figure 4)
which can independently trigger the appropriate
actions (e.g. obstacle avoidance, target tracking) if
the required command is not provided by higher
layers in time. As a result, the use of independent
sub-modules increases the extensibility of the
architecture. Specialised modules are very
beneficial for performing specific tasks which must

meet real time deadlines. However, using
specialised modules also results in added
complexity as adding additional functionality

requires the addition of new sub-module
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mention has been made about the inclusion of
onboard payload activity (e.g. onboard camera
control) scheduling; an important component for
civil UAS operations (e.g. surveillance, disaster
monitoring).

Brooks [12] presents another architecture known as
Subsumption, which decomposes the control
system problem into multiple modules (a module is
an independent subsystem which is focused on
completing a specific task), also referred to as
behaviours. The simplest module is implemented
first, and subsequently more complex modules are
then implemented above it, providing more
functionality (Figure 5). As more functionality is
added to the robot, the system can quickly become
very complicated. Furthermore; this architecture
lacks flexibility, where once a complete system is
implemented, it becomes very difficult to change
the system functionality as each module is very
task specific.

In addition, there are no provisions for fault
detection and accommodation (FDA) in the
robotics architectures reviewed here. This may not
an issue for operations in controlled environments,
but is a critical issue for UAS operations over
populated environments (e.g. urban terrain).

Figure 5 — Brooks’” Subsumption Architecture [12]

The architectures reviewed in this section represent
the most common architectures used in robotics. A
review of the architectures used in space based
robotics is presented in the following section.

Space Based Architectures

A wide variety of architectures for onboard
intelligence have been developed for space based
systems. The operation of spacecraft bears many
similarities to that of UAS; both deal with a remote
semi-autonomous system that operate in the natural
environment and must therefore deal with dynamic
changes and uncertainty. The need for robustness
in space-based applications is important, due to the
significant financial cost of failure. Furthermore,
both are constrained by finite resources (such as
fuel and battery energy) and must meet stringent
real time computational requirements. Both UAS
and spacecraft are currently heavily reliant on
human operation and receive commands for low
level control (such as manoeuvre control) from
manned ground stations. Consequently, both fields
can benefit greatly from increased onboard
autonomy. A brief overview of several key
projects in space-based automation is presented
here.
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NASA’s Autonomous Science-craft Experiment
(ASE) [13] demonstrated automated scheduling
and planning routines on the EO-1 Satellite
launched in late 2000. This was the first time a
space based mission was conducted autonomously
using an intelligent control architecture (Figure 6)
implemented onboard the spacecraft.

The cornerstone of the ASE architecture is the
Continuous ~ Activity  Scheduling  Planning
Execution and Replanning (CASPER) [13] module
which employs a repair based technique to: create a
plan (which resolves conflicts that violate
spacecraft constraints); propose a set of resolutions
for a chosen conflict using a genetic algorithm; and
choose the desired solution using heuristics. This
process occurs iteratively until no more conflicts
remain.  The Spacecraft Command Language
(SCL) uses rule based checking to convert this high
level plan into low level commands. Therefore,
even though the general concept is useful, the
architecture itself is not focused on path planning
and is instead concerned with scheduling of
activities; which are critical aspects of UAS
operations.

Image taken
by spacecraft

}

Onboard
image Photograph new
processing / < target (use SCL)

feature A

I

CASPER
(Onboard
replanning)

i

Retarget for
New
Observation

Goals
Figure 6 - NASA ASE architecture [13]

Another NASA based architecture is the
Automated  Planning/Scheduling  Environment
(ASPEN) [14] system which is essentially a
software based application framework. It is an
object oriented framework based on C++ that can
intelligently schedule activities onboard the
spacecraft. Activities are represented using state
action models with the actual scheduling decisions
performed using a parameter dependency network.
This is similar in concept to a temporal constraint
network [15] but extends its capabilities to include
physical resources. A temporal constraint network
is a graph based method for scheduling where
nodes represent instances in time and edges

Ihttp://www.nasa. gov/mission_pages/hurricanes/m
ultimedia/index.html

represent time delays. ASPEN has been tested in
numerous scenarios including onboard the New
Millennium Earth Observing One (NM EO-1)
satellite and Navy UHF Follow On One (UFO-1)
satellite. Again, this architecture is targeted at the
scheduling of activities rather than the path
planning and execution problems, so important for
UAS.

NASA’s Remote Agent [16] is another intelligent
control architecture designed for use onboard
satellites. It employs a three tiered hierarchy
similar to that presented by Bonasso [9]. The
remote agent contains a set of decision making and
scheduling tools to synthesise responses to
unexpected situations which may arise during the
mission (Figure 7). The Mission manager
determines achievable goals both in the long term
and current short term. The Planner/Scheduler
takes these goals and uses a heuristic guided
backtracking search to create an execution schedule
of activities. Like ASPEN, plans are generated
using temporal constraint network related methods.
The Smart Executive plays a similar role to the
sequencing layer in Bonasso’s model and also
makes use of Reactive Action Packages to
implement these activities. Additionally, there is a
Mode  Identification and  Reconfiguration
subsystem that provides dynamic information on
the status of the spacecraft. This provides an added
layer of robustness as the execution of plans is
dynamically modified by the perceived health of
the spacecraft. Unlike the ASE and ASPEN
scheduling systems, this architecture is more
comprehensive as it includes methods for handling
changes in the spacecraft’s internal state as well as
the external state. However, again, it is more
focused on activity scheduling rather than path
planning.

Ground
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!

Real-Time
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Executive

A
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Scheduler

\x
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Flight
Hardware

Planning Experts

Figure 7 - NASA's Remote Agent Architecture [16]

The architectures reviewed in this section represent
the most common architectures used in spaced
based operations. A review of the architectures
used within UAS is presented in the following
section.
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UAS Architectures

Intelligent control architectures implemented
onboard UAS are generally extensions of
architectures found in robotics. However, many
robotics  architectures cannot be  directly
implemented in UAS. Firstly, UAS operate in
highly dynamic environments where atmospheric
changes can occur almost instantaneously;
therefore, the agent’s response must meet real time
constraints. This is further compounded by the fact
that aircraft typically travel at much greater
velocities than ground based robots. Secondly,
UAS dynamics can be highly non-linear and thus
require careful consideration in the controller
design and how this will interface to other
subsystems onboard the aircraft. Finally, failures
onboard UAS can be catastrophic and result: in loss
of the UAS; property damage; and in the worst
case, loss of human life as these robots are exposed
to the general public.

A UAS can be thought of as a special type of robot
that takes directives asking it to move from one
location to another within a certain timeframe.
Generally, there are two types of UAS:
rotary/helicopter UAS that have the ability to brake
and hover, and fixed wing UAS. Rotary UAS
generally have shorter flight times while fixed wing
UAS often have greater endurance but must always
maintain some minimum (greater than stall)
velocity.

Various architectures have been proposed that are
specifically targeted at UAS. Schaefer [17] for
example, presents a multi-layered UAS decision
making architecture known as “Technologies for
Reliable Autonomous Control (TRAC)”. This is a
variation of the 3T architecture pioneered by
Bonasso [9] that has been augmented with another
layer known as the Meta-Executive layer. The
meta-executive layer is used to coordinate and
synchronise interactions between the deliberative
(which is goal driven e.g. performing a set of tasks
based on accomplishing a particular goal) and
execution (which is event driven e.g. performing a
set of tasks based on a schedule) layers.

The TRAC architecture (Figure 8) revolves around
a central data communications and storage module
named the Active State Cache. The topmost,
deliberative layer is called Closed Loop Execution
and Recovery (CLEaR). This is responsible for
high level mission management and task
sequencing. Plans created by CLEaR are acted
upon by the Autonomous Command Executive
(ACE) which oversees the execution of mission
plan elements. Beacon-based Exception Analysis
(BEAM) and Spacecraft Health Inference Engine
(SHINE) are subsystems that monitor the health of

the unmanned vehicle in real time. The TRAC
architecture is an extension of that developed in the
NASA Remote Agent project. Significant
emphasis has been placed on the importance of low
level fault detection and Identification (FDI)
through the inclusion SHINE and BEAM
subsystems. The ACE subsystem can deal with
some reactive situations, but this is limited to
terrain avoidance and stability corrections during
wind gusts [18]. There is no specific subsystem
onboard to deal with reactive collision avoidance, a
necessity for flight operations within the NAS.

Initial
mission CLEaR

Overall mission Plan, steps,
Goal requests

plan, goals, observables
.—L. \ Active

Plan
resources, data

ACE State
) Cache

Flight Operators

Sensor Subsystem SlleSSLSmEnt

signals commands
Failures
Vehicle
Subsystems

Figure 8 - TRAC System Structure [19]

The NASA APEX software robotics Architecture
[19] is also based on Bonasso’s 3T architecture [9].
This architecture has been successfully applied to a
range of applications, notably that of NASA’s
Autonomous Rotorcraft Project. The upper two
layers of APEX are collectively referred to as
Reasoning and Control Services (RCS). This
architecture ~ emphasises  reusability  through
modularity and thus separates RCS procedures
(which are the most reusable) from lower layer
modules which are less reusable.

Boskovic [20] presents a UAS architecture which is
optimized for navigation, in similar fashion to the
upper layers of AURA [11]. The layers within this
architecture are defined with respect to specific
UAS functionalities rather than generic functions in
robotics. The highest layer (Figure 9) in this
hierarchal four layered model is the Decision
Making layer. This layer uses a priori information
in conjunction with information obtained from
sensors to make appropriate decisions to achieve
mission goals. The next level is the Path Planning
Layer which generates mission waypoints. If an
obstacle is detected that was not known a priori,
then the waypoints are recomputed online. There is
no communications subsystem to give the operator
any decision making capability throughout the
mission. Again, there is no specific subsystem to
deal with reactive collision avoidance.
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Figure 9 - Boskovic's UAS Decision Making Architecture [20]

The WITAS UAS project [21] presents yet another
intelligent  control  architecture ~ which has
deliberative, reactive (like sequencing) and control
layer components. It is best to view this as a
reactive concentric architecture as the individual
processes at the various levels of abstraction are
executed concurrently at different latencies (high
level path planner runs at higher latency than low
level controllers). The deliberative layer here
contains a collection of path and trajectory
planners, predictors and recognition packagers. A
set of flight control modes such as hovering,
dynamic path following and take-off and landing,
are automated using sets of Task Procedures
(similar to a RAP in 3T). However, in order to
switch between autonomous flight modes, it is
necessary for the UAS to brake and hover before
executing the next Task Procedure. Doing so
decreases the operational efficiency the UAS;
furthermore, this strategy is infeasible for fixed
wing UAS. Finally, there is no explicit provision
for handling collision avoidance.

The open control platform (OCP) [22] is similar to
APEX in that it too is a software robotics
architecture based on Bonasso’s 3T architecture
[9], which can potentially be applied to UAS
operations. The top layer here comprises of
supervisory tasks such as: data management; event
detection and situation awareness. The middle
layer (reconfigurable control) performs mode
transitioning stability control (e.g. use of an
adaptive control algorithm during transition
between approach and landing phases) whilst the
lower level is dedicated to trajectory tracking (low
level controller implantation). All internal
communications makes wuse of middleware
(CORBA) with custom extensions implemented to
ensure hard real time execution of commands. This
also allows the architecture to operate as a
distributed network (similar to the WITAS Project)
and different components can be written in
different languages. Similar to other UAS

architectures, there are no specific subsystems to
deal with external communications.

Summary of Findings

From the literature review, it was found that the
vast majority of architectures were hierarchical.
This approach was often used to separate slower,
deliberative planning processes from faster, time-
critical hardware control systems [9]. Additionally,
it allows for abstraction of complexity from one
layer to the next; this is useful not only in reducing
subsystem complexity, but also helps in software
reusability [19]. The vast majority of architectures
employed some variation of Bonasso’s 3T
hierarchy [9] which had separate layers for
deliberation, sequencing of actions and control
execution.

Ideally, a human operator should only need to
interact with the high level deliberative layer. In
this scenario, the operator performs high level tasks
such as specifying mission goals and the schedule
associated with these goals. In these instances,
there is a need for a communications subsystem
that provides the link between the remote agent and
the ground station. Such a communications
module is incorporated into the ASE, APEX and
Remote agent architectures [13, 16, 19].

It was found that in many UAS and spacecraft
based architectures that an important capability was
a method for monitoring the agent’s internal state
(i.e. the health of the vehicle) and its impact on
vehicle performance. This was implemented as a
form of Fault Detection and Accommodation
(FDA) in TRAC, Remote Agent and OCP and in
Boskovic’s architecture [16, 17, 20, 22].

At the same time, it is important to have accurate
knowledge of the external environment in which
the agent is situated. It was found that even though
all architectures made provisions for a sensing
mechanism, very few explicitly explored the
computational complexities involved in processing
sensor information for use in higher level planning
algorithms. Obviously, very little processing is
required for low level control systems as raw data,
such as position and velocity can feed directly into
an actuator control module. However, avoiding
dynamic obstacles when generating manoeuvres
requires predictions of the current and future state
of the dynamic obstacle. Therefore, analysis of
sensor data is required to transform it into a form
usable by the higher level algorithms through
sensor fusion.  There is currently no UAS
architecture which explicitly separates the sensor
data requirements between lower (raw sensor data)
and higher layers (accurate state information
calculated through sensor fusion methods).
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Figure 10 - Summary of the functional requirements for an architecture during civilian UAS operations

As the majority of UAS operations require
positioning the aircraft in the right place at the right
time, it can be seen that there is a need for a robust
architecture that provides this path planning and
execution functionality. It was found that the
majority of architectures focus on only the mission
execution component of UAS operations and do
not explicitly provide for a method of ensuring the
safety of the aircraft and the minimisation of risk to
other aircraft and people on the ground. There has
been some work in the areas of fault tolerance and
reliability, but risk mitigation (actions to reduce the
impact of a risk) has not fully been addressed
(Figure 10).

Furthermore, the vast majority of architectures do
not provide a complete end to end architecture from
goal deliberation to planning to action execution
(with the exception of Boskovic [20]). However,
Boskovic’s architecture does not address the
problem of managing risks in during UAS
operations. There is no communications subsystem
to give the operator any decision making capability
throughout the mission. Also, there is no specific
subsystem to deal with collision avoidance. A
proposed architecture is presented in the following
section addressing these critical issues.

Proposed Architecture

We propose an architecture for civil UAS
operations based on Boskovic’s [20] architecture.
This architecture not only accommodates path
planning and FDA, but also includes provisions for
intelligent execution of activities not explicitly
involved in path planning. As well, it also
encompasses modules dedicated to ensuring the
safety of the aircraft. At this point in time, all
aspects of high level decision making however, are

left to the responsibility of the Human Operator
(e.g. choosing which goals to pursue). In terms of
efficiency, this architecture provides the potential
to reverse the current Civilian UAS trend from
many operators monitoring a single UAS, to a
single operator monitoring multiple UAS.

To allow the human operator interaction with the
onboard high level deliberative layer, a
communications subsystem has been included to
allow real time interaction between a human
operator and UAS activities (e.g. uploading new
mission goals) during the flight operation.

In the previous section, it was concluded that, none
of the current UAS architectures explicitly separate
the sensor data requirements between lower and
higher layers. In the proposed architecture, raw
sensor data is forwarded to lower layers (which
have real time requirements) in an effort to
minimise any lag which may occur with processed
data. Raw sensor data is also forwarded to a sensor
fusion subsystem which generates an accurate
approximation of the aircraft state. This data is
stored within the Integrated Shared State Memory
(ISSM - similar to Schaefer’s Active State Cache
[17]) which can be accessed by the relevant layer.

To incorporate risk mitigation strategies within the
proposed architecture, specific modules (similar to
Noreil’s Architecture [10]) to deal with sense and
avoid and forced landing situations were used. The
sense and avoid module performs detection of
obstacles within the immediate vicinity of the
aircraft. This data is used by the manoeuvre
generation layer to perform the appropriate
collision avoidance manoeuvres. Likewise, the
forced landing site classifier module is used to
detect potential landing sites during critical
onboard failures.
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Currently, Boskovic’s architecture does not include
any functionality for scheduling and control of
payloads (e.g. camera, lights) as it is focussed
purely on the navigational aspects of UAS
operations. The proposed architecture includes an
activity scheduler and controller. The activity
scheduler creates a schedule of payload activities
by synchronising start and finish times using
mission time and aircraft state. The activity
controller activates and deactivates the relevant
payload. This feature allows the UAV to perform a
range of missions including and not limited to
surveillance, disaster monitoring and search and
support. A detailed representation of the Proposed
UAS Architecture is presented in Figure 11
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Figure 11 - Proposed Civilian UAS Architecture
Virtual Operator

The Virtual Operator (VO) is concerned with
providing mission goals to the lower layers and
simultaneously monitoring the state of the UAS in
assessing whether these goals have been achieved
or not. When communicating with the mission
flight planner, the VO provides a set of prioritised
goals which may be defined in terms of spatial
position, velocity, aircraft orientation and time. The
mission flight planner calculates a path based on
these goals and returns the costs (in terms of fuel
and time for example). With this information, the
VO can then make a decision as to whether to
continue the mission using the current plan or to
reject this plan and create a new one by changing
one or more mission goals. A similar process is
necessary for interaction with the Activity
Scheduler. When communicating with the Activity
Scheduler, the goals the VO provides are instead
activities that need to be performed when the UAS
reaches certain states. For example, an activity
could be to turn on the camera and begin capturing
images when the aircraft is at a specified location.

In the case that the VO is the human operator, the
operator has the full authority (and accountability)

to choose the order of operations. Once the
operator has decided on an operations schedule, the
schedule can be uploaded to the unmanned aircraft
via the communications channel and stored in
onboard memory. The VO has the authority to
update the operations schedule and the maps used
for planning (e.g. terrain maps) throughout the
mission. In the absence of certifiable decision
making techniques that can meet the requirements
of such a VO, it is envisaged that a semi-
autonomous VO module, coupled to a Human
Machine Interface (HMI) and human operator
would constitute the VO shown in this architecture.

Mission Flight Planner

The Mission Flight Planner is in essence a multi-
objective path planner that evaluates multiple
criteria in determining an optimal path for the
aircraft. It receives goals, which may comprise
multiple prioritised waypoints from the VO. As
well, it obtains information about the environment
through multi-resolution maps stored in the
memory module. These maps could include terrain
data, risk data (risk associated with overflying
certain areas) and predictions of dynamic obstacles
(such as other aircraft).

Additionally, the planner also obtains from this
dynamic memory the current aircraft position, fuel
load and other related constraints (such as the need
to maintain within line of sight of the operator).
The VO is informed of the costs involved in
reaching each waypoint and of any unreachable
waypoints. At the same time, the mission flight
planner passes to the Manoeuvre Generation
subsystem a path which effectively consists of a
series of intermediate goals (or waypoints). When
there are changes to the environment (which is
reflected in the data obtained from dynamic
memory), or significant deviation of the aircraft
from the planned route as reported by the
Manoeuvre Generation subsystem, the mission
flight planner replans a new flight path. If any of
the intermediate goals are unachievable, the
Manoeuvre Generation subsystem modifies the
maps in memory and marks these unachievable
regions as no-go.

Manoeuvre Generator

The Manoeuvre Generation Layer generates a
feasible local path between a set of intermediate
waypoints given by the Flight Mission Planner. A
feasible path is one that is collision free and which
satisfies  aircraft ~dynamic and kinematic
constraints.

Basic Manoeuvres (e.g. flying straight and level,
pitching, rolling and yawing motion) can be
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combined together to create more complex
manoeuvres. Representing aircraft motion as a set
of manoeuvres is essential for flight in civilian
airspace.  For example, consider a scenario
whereby the UAS is instructed to reach a higher
altitude to avoid other aircraft, but is not physically
able to do so due to the constraints of restricted
airspace and the limitations of the aircraft’s
manoeuvrability (insufficient rate of climb). A
candidate solution in this situation is to perform a
spiral manoeuvre.

A sense and detect capability within UAS is
essential for flight in segregated airspace. The
sense and detect subsystem uses onboard sensors
(e.g. vision) for detection of obstacles (static and
moving). The manoeuvre generation algorithm
then uses the data provided by the sense and detect
unit to generate collision free path segments, and to
perform emergency collision avoidance
manoeuvres if necessary. Carnie [23] is currently
investigating the use of machine vision to provide
sense and detect capabilities onboard UAS at the
Australian Research Centre for Aerospace
Automation (ARCAA).

The forced landing classifier is used to detect
potential landing sites during flight, in case the
UAS needs to perform an emergency landing due
to onboard failures which cannot be accommodated
(e.g. engine failure). This information is input to
the Manoeuvre Generation algorithm, which
provides the adaptive controller with a suitable
landing trajectory for tracking. Fitzgerald [24] has
conducted research into detection and classification
of potential forced landing sites at ARCAA.

Adaptive Controller

The low level controllers are designed to ensure
aircraft stability at all times. A broad range of
techniques are available to create the desired
response including: Proportional, Integral and
Differential (PID); State Space; Fuzzy; Optimal; to
mention a few [6].

Small scaled UAS generally, do not have the
available onboard payload capacity to include
sensor redundancy. If sensor failure occurs without
detection, this can lead to critical failure as the
stability controllers will receive incorrect or no
state information. Critical Failure can also occur if
an actuator becomes inoperable.

Fault Detection and Accommodation algorithms
(FDA) are used to detect if a particular sensor is
providing  erroneous data, and allowing
continuation of operations by disable the erroneous
sensors operation. This however leads to reduction
in aircraft performance, as fewer sensors are now
available to provide an estimation of the UAS state.

This information is conveyed to the Dynamic
Constraints Subsystem for recalculation of new
UAS dynamic and kinematic constraints. Cork
[23] is currently investigating FDA techniques to
reduce the effects of erroneous sensors at ARCAA.

Concluding Remarks

It is apparent that the operation of UAS in civilian
applications requires an equivalent level of safety
to that of manned aircraft. Achieving this level of
safety requires, in addition to system robustness, an
intelligent system that is capable of both tactical
and strategic planning to minimise the risk
involved when undertaking a mission. At the same
time, the system must also be able to execute
emergency procedures in the event of hardware
failures.

Through an investigation of existing architectures
in unmanned aircraft, space based systems and
robotics, it was found that few offered a framework
that catered for the path planning and manoeuvre
generation aspects of onboard intelligence in light
of the needs of sensor integration. Many have
considered mission scheduling and fault detection
and accommodation, but few have integrated this
with the aforementioned path planning and
execution elements with a focus on emergency
scenarios; including and not limited to collision
avoidance and forced landings. Furthermore, even
fewer have considered the multiple criteria, in
terms of airspace regulations, mission objectives
and mission safety that must be considered in civil
UAS operations.

To address these deficiencies, an intelligent control
architecture for UAS was devised that addresses
the requirements of intelligent planning, execution
and handling of emergency scenarios. This
architecture encompasses many subsystems that are
currently being developed at ARCAA. It is
envisaged that the integration of the various
components in this architecture would help
increase the level of intelligence onboard
unmanned aircraft in terms of mission efficiency
and increased safety. This is not only paramount to
the acceptance of UAS in the NAS, but will also
allow for decreased operator workload and thus
reduce operational cost.
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