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An Improved Method to Detect Damage using Modal Strain Energy Based Damage Index  

Wahalthantri B.L.*1, Thambiratnam D.P.*, Chan T.H.T.*, Fawzia S.* 

*School of Urban Development, Faculty of Built Environment and Engineering, Queensland 

University of Technology, Brisbane, Australia 

Abstract: 

This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal 

Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. 

Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the 

calculation process of the MSEDI, more effectively than the two commonly used curve fitting 

techniques; namely, polynomial and Fourier's series. Secondly, a probability based Generalized 

Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection 

process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to 

obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three 

levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection 

is enhanced with increased number of modes and samples used with the GDLI. 

Key Words: Modal strain energy based damage index, noise, sequential curve fitting technique, false 

alarms, probability, generalized damage localization index. 
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1. Introduction 

Vibration Based Damage Identification Techniques (VBDITs) have achieved significant research 

interest in recent years, mainly due to their non-destructive nature, ability to provide uninterrupted use 

and their ability to detect inaccessible and invisible damage locations. The damage index method is 

one of the simplest approaches among the VBDITs presented in the literature and uses changes in 

vibration properties as parameters to detect damage. Many of the initial research on VBDITs attempted 

to detect damage using basic vibration parameters; namely, frequencies, mode shapes and damping 

values (Doebling et al. 1996, Salawu 1997 and Curadelli 2008). However, secondary damage indices 

derived using combinations and/or derivatives of basic vibration properties, have indicated better 

damage detection ability. The four most common secondary damage indices used in past research are 

based on changes in flexibility values, flexibility curvatures, mode shape derivatives and modal strain 

energy values (Doebling et al. 1996 and Alvandi and Cremona 2005). Alvandi and Cremona (2005) 

compared the damage detection ability of these four secondary damage indices under different noise 

levels. Following the pioneer work carried out by Mazurek (1997) and Doebling and Farrar (1998) on 

statistical significance of the damage detection process, Alvandi and Cremona (2005) used two 

probability based parameters (i.e. 1. probabilities of false alarms, and 2. probabilities of correct 

condition detection), to evaluate the four secondary damage indices mentioned above. Results of 

Alvandi and Cremona (2005) showed high stability of damage detection for the Modal Strain Energy 

based Damage Index (MSEDI) compared to the other three damage indices (changes in mode shape 

curvatures, flexibility values, and flexibility curvatures). However, their results indicated increased 

number of false alarms with increased noise levels in the mode shape data. Similar findings were 

reported by Shi and Law (1998).  

Even though, previous research had signified the reduction of damage detection ability of the MSEDI 

in the presence of noise in mode shape data, no methods had been proposed to minimize the effects of 

noise. This study, therefore, examines the factors affecting the accuracy of the MSEDI and presents 
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two novel concepts to improve the damage detection ability of the MSEDI.  As shown in section 1.2 of 

this paper, the curve fitting technique has a significant effect on the damage detection results, 

especially if mode shape values are polluted with noise. The two commonly used curve fitting 

techniques namely polynomial and Fourier series, lead to an increase in the number of false alarms as 

indicated in section 4.1. This paper proposes a sequential curve fitting technique that minimizes the 

impact of noise on calculation of mode shape curvatures and the subsequent calculation steps of the 

MSEDI. Secondly, the paper proposes a new damage index called the Generalized Damage 

Localization Index (GDLI) based on the probabilities of condition detection results of the MSEDI. The 

influence of higher modes and number of samples on the accuracy of the damage localization process 

is evaluated at the end of this paper. 

The next section of the paper presents a brief literature review on the MSEDI and its use in damage 

detection. This is followed by a review of the computational steps associated with the MSEDI 

derivation process. Basic theory and equations are presented in section 2 of the paper. The method and 

results and discussion are presented in section 3 and section 4 respectively.    

 

1.1.Modal Strain Energy Based Damage Index 

Stubbs et al. (1992) pioneered the research on using changes in modal strain energy values to detect 

damage and proposed the first MSEDI for 1D elements. Stubbs et al. (1995) confirmed the 

applicability of the MSEDI, by detecting the damage in a steel bridge.  Later, Cornwell et al. (1999) 

extended the above MSEDI for 2D structural elements such as plates. Since 1992, different formulae 

for MSEDIs have been presented by Stubbs et al. (1992), Cornwell et al. (1999), Park et al. (2002), Li 

et al. (2007), Shih et al. (2009) and Wahalathantri et al. (2010). Some other researchers who used the 

MSEDI to detect damage in structures are: Petro et al. 1997, Osegueda et al. 1997, Carrasco et al. 

1997, Cornwell et al. 1998, Yoo et al. 1999, and Pereyra et al. 2000, and Alvandi and Cremona (2005). 

Wahalathantri et al. (2010) proposed a weighting function that minimizes the intensity of false alarms 
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of the MSEDI at vicinities of nodal points (at points where the mode shape values become zero). In the 

present study, the concept of the weighting function as proposed by Wahalathantri et al. (2010) is 

combined with the MSEDI derived by Stubbs et al. (1992) to enhance damage detection. The 

necessary equations required to calculate the MSEDI are presented in section 2 of the paper. 

 

1.2. Overview of the MSEDI calculation process 

Computation of the MSEDI using displacement mode shapes involves three steps; namely, 1. 

calculating second derivatives of displacement mode shapes (mode shape curvatures), 2. integrating 

mode shape curvatures (to obtain strain energy values for individual elements and the whole structure), 

and 3. calculating the MSEDI (using equations given in section 2 of this paper). All three above steps 

are entirely based on computational techniques. Hence, the accuracy of the measurements is a key 

factor associated with the MSEDI. In particular, the processes leading to the calculation of mode shape 

curvatures should be improved as this paper does.    

In most cases, mode shape curvatures are computed based on the displacement mode shapes using 

computational techniques such as the "central difference" formula (Salesh et al. 2004, Pandey et al. 

1991). Chance et al. (1994) indicated that some false alarms are associated with the computational 

techniques when using the displacement mode shapes. Hence, Chance et al. (1994) proposed an 

alternative method to obtain mode shape curvatures using direct strain measurements. On the other 

hand, attempts have been made to use smoothing techniques such as the weighted residual penalty 

based technique to improve the calculation process involving displacement mode shapes (Maeck et al. 

1999). The method proposed by Maeck et al. (1999) has drawbacks as the selection of the penalty 

factor is a trial-and-error process, which indicated problems of convergence if higher penalty factors 

are used. The method proposed in this paper uses three curve fitting techniques given in section 2.3 in 

a sequential order to minimise the effect of noise on subsequent calculation steps.  Hence, the proposed 

curve fitting technique advances the use of displacement mode shapes for calculating the MSEDI.     
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2. Theory 

2.1. MSEDI (Modal Strain Energy based Damage Index) 

The modal strain energy, Ui of an Euler Bernoulli beam for the mode ‘i’ is given by Eqn.1, in which E, 

I, L, and  ϕi represent the elastic modulus, second moment of area, length and the mode shape of the 

mode ‘i’ respectively. Eqn. 2 gives the elemental strain energy, Uij of the element ‘j’. (Alvandi and 

Cremona 2005, Shih et al. 2009). 

 

 

 

The fractional strain energy, Fij, of the element ‘j’ for the mode ‘i’ is defined as the strain energy of the 

element ‘j’ (Uij) divided by the total strain energy (Ui) as given in Eqn. 3. 

 

The first MSEDI of the element ‘j’ for the mode ‘i’ , (βij)1 as proposed by Stubbs et al (1992) is 

presented in Eqn. 4, in which subscripts ‘d’ and ‘h’ denote the damaged and undamaged states 

respectively  

 

The damage index presented in Eqn. 4 and the weighting function, MFi, proposed by Wahalathantri et 

al. (2010) are combined to form one of the MSEDI used in the present study as given in Eqn. 5.  The 

MSEDI given in Eqn. 5 is calculated based on individual modes and denoted by βAa in which ‘a’ 

denotes the mode number, whereas ‘A’ serves the purpose of identification.  
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The weighting function MFi is defined in Eqn. 6 in which, [MSC]ij denotes the mode shape curvature 

value at the centre of the element ‘j’ for mode ‘i’ and |[MSC]ij|max denotes the absolute maximum value 

of the mode shape curvature of mode ‘i’. (Wahalathantri et al. 2010) 

 

The MSEDI derived by combining first ‘b’ modes is denoted by, βBb, and given in Eqn 7 in which ‘B’ 

serves the purpose of identification, while ‘b’ indicates that the damage index is derived using first ‘b’ 

modes (mode 1 to mode b). The ‘MSVi’ term in Eqn. 7 denotes the modal sensitivity value of the mode 

‘i’ as proposed by Lee et al. (2004), which assigns higher weight to the modes that are more sensitive 

to the damage. The MSVi is defined in Eqn. 8 in which λi is the Eigen-value of the mode ‘i’. 

 

 

Where MSVi is given as, 

 

 

2.2. Computation of curvature of mode shapes using displacement mode shapes 

As mentioned in the introduction section, this paper first examines the effect of the polynomial and 

Fourier series based curve fitting techniques on damage detection accuracy of the MSEDI. Two of the 

curve fitting techniques available in the MATLAB software (The Mathworks, Inc. 2010) are, 

therefore, used in the present study. These two curve fitting techniques are; 

1. “spapi”: Spline interpolation technique (curve fitting technique using polynomial function), and 

2. Fourier series based curve fitting technique. 
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Order of these two curve fitting techniques should be determined from the number of available data 

points as described in section 2.3.1. The first curve fitting technique is denoted as CF01, whereas the 

second technique is denoted by CF02 in subsequent sections of the paper. 

 

2.3. Proposed Sequential Curve Fitting Technique (CF03) 

The new method proposed in this paper uses three curve fitting techniques available in the MATLAB 

software (The Mathworks, Inc. 2010) in a sequential order. In fact, the first (“csaps”) and last 

(“spaps”) curve fitting techniques are smoothing techniques. This sequential order is designed to 

minimise the effect of noise on subsequent calculation processes as confirmed by the results in section 

4.1. Three curve fitting techniques combined in this paper in their sequential order are: 1. cubic 

smoothing spline technique (“csaps”), 2. Fourier series based technique, and 3. higher order smoothing 

spline technique (“spaps”). 

 

2.3.1. Minimum Requirements for CF03 

As the proposed method, CF03, is based on curve fitting techniques available in the MATLAB 

software, the user should have access to the MATLAB software (The Mathworks, Inc., 2010) with the 

license for the curve fitting toolbox. The highest possible order (eight in this case) for both Fourier 

series and spline techniques (“spapi” or “spaps”) are used. The orders of the curve fitting techniques 

are governed by the sampling resolution. The required minimum measurement points are tabulated in 

Table 1 for different orders of Fourier series. The order of the polynomial series used in two spline 

curve fitting techniques (“spapi” and “spaps”) should be equal or less than the number of data points 

available. The cubic spline technique (“csaps”) needs minimum of three data points.  

In the present study, mode shape values at 20 nodes were extracted from the ABAQUS finite element 

simulation, and hence eighth order is used for both Fourier series and spline techniques in CF01, CF02 

and CF03 as applicable.  
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2.4.  Probability based Generalized Damage Localization Index (GDLI) 

The probability values of the MSEDI indicate that higher the number of samples used, higher the 

accuracy of the damage detection results. This leads to the proposed GDLI given in Eqn. 9. The 

notation GDLI(βCd) is used to distinguish the MSEDI used when computing the GDLI (i.e. GDLI(βCd) 

= GDLI(βAa); if the MSEDI is calculated using individual modes, or GDLI(βCd) = GDLI(βBb); if the 

MSEDI is calculated by combining higher modes). The symbols αj, αm, and αsd in Eqn. 9 represent the 

probability of detecting jth element as a damaged element, mean value of αj, and standard deviation of 

αj respectively.  

 

Any element with a positive value for the MSEDI (either βAa or βBb) is taken as a damaged element 

neglecting the value of the MSEDI. Hence, value of the generalized damage localization index does 

not account for damage severity but provides a comparative measure of the probability of being 

damaged.  

 

3. Method 

The main objective of this paper is to improve the damage detection results of the MSEDI with the 

presence of noise in the mode shape data.  In order to achieve this, the following three enablers are 

required.   

1.  Studying the impact of curve fitting technique on accuracy of the damage detection process 

and verifying the improvement in damage detection with respect to the proposed sequential curve 

fitting technique,  

2.  Verifying the improved damage localization ability of the GDLI, and  

3. Studying the influence of the number of samples and modes on damage detection process. 

Figure 1 shows the methodology of this study including key steps in a schematic diagram. The overall 

analysis process relies on the vibration properties extracted from a validated ABAQUS finite element 
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model. The validation process is based on the reinforced concrete beam setup experimentally tested by 

Perera et al. (2008) and includes material model calibration using numerical technique proposed by 

Wahalathantri et al. (2011). The general arrangement of the four point beam bending test performed by 

Perera et al. (2008) and the cross section details of the beam are shown in Figure 2 and Figure 3 

respectively.  More details of finite element modelling and validation process are presented in sections 

3.2 and 3.3 following the details of the experimental setup given in section 3.1. Section 3.4 provides 

details of the two case studies and methodology used in the analysis process.  

 

3.1.  Experiment Details 

Perera et al. (2008) performed a comprehensive test on a reinforced concrete beam under four point 

bending test and presented both static and dynamic test results in terms of load vs. displacement curve, 

and first two frequency values. The tested RC beam was 4.54m in length with cross section dimensions 

of 0.32m and 0.22m in depth and width respectively. Figure 2 illustrates the loading arrangement with 

necessary dimensions whereas Figure 3 illustrates the cross section details of the RC beam including 

reinforcement details.  

The elastic modulus, density and yield strength of reinforcement bars were taken as 210GPa, 

7850kg/m3 and 510MPa respectively.  The experimentally measured compressive strength of concrete 

was 32MPa. Elastic modulus of concrete was calculated using linear portion of the load vs. 

displacement curve (Figure 4) presented by Perera et al. (2008). 

 

3.2. Finite Element Modelling 

The finite element package ABAQUS (Dassault Systèmes Simulia Corp. [SIMULIA] 2008) is used to 

simulate the load induced flexural cracking of a RC beam using modified material model presented by 

Wahalathantri et al. (2011). The main and shear reinforcement layers in the beam are simulated using 

smeared reinforcement layer technique (Abaqus Analysis User Manual – Abaqus Version 6.8 2008). 
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Three dimensional eight noded, fully integrated linear element type C3D8 is assigned for the concrete 

section. Four noded quadrilateral surface element type SFM3D4 is used for all the reinforcement 

layers, which are embedded in the concrete elements assuming full bond between reinforcement and 

concrete. Then validation of the finite element model is carried out using experiment test results of 

Perera et al. (2008).  

 

3.3. Finite Element Model Validation 

The experiment load vs. displacement curve given in Figure 4 is used to calibrate the material model 

required to develop the ABAQUS concrete damage plasticity model (Abaqus Analysis User Manual – 

Abaqus Version 6.8 2008) which accounts for tensile softening and stiffening. Stresses, inelastic 

strains and damage parameters obtained from the calibrated material model are given in Tables 2 and 3 

for concrete under compression and tension respectively. The load vs. displacement curve obtained 

from ABAQUS finite element model is superposed in Figure 4, which indicates that the FEM 

validation is achieved under static condition for both linear and nonlinear regions.   

Table 4 compares the frequency values between the present ABAQUS finite element model and the 

experimental results presented by Perera et al. (2008), under six different structural arrangements: 1. 

Undamaged beam, 2. Undamaged beam with two 100kg masses at 1.32m away from ends of the beam, 

3. Undamaged beam with two 160kg masses at 1.32m away from ends of the beam, 4. Beam after load 

step of 8kN, 5. Beam after load step of 20kN (stage at damage initiation), and 6. Beam after load step 

of 52kN (at damaged state). The maximum percentage difference recorded in Table 4 is 2.56% and 

establishes the validation of the present ABAQUS finite element model under different structural 

arrangements including damage states.  

 

3.4.  Case Studies 

This study is conducted using a simply supported reinforced concrete beam setup as shown in Figure 
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5. Cross section details and material properties used here are identical to that of the ABAQUS model 

described in the previous section. The self weight is applied as a uniformly distributed pressure over 

the top surface of the beam. Frequencies and mode shapes of the undamaged beam are obtained from 

the self loaded RC beam. The beam is then loaded at quarter span with a point load to simulate two 

levels of damage severity. A concentrated load (W) of 60kN is used to simulate a moderate damage 

severity whereas W=90kN is used to simulate higher damage severity. In both cases, frequencies and 

mode shapes are obtained for the first five flexural modes.  

As vibration properties obtained from ABAQUS finite element models do not include measurement 

noise, all mode shapes are polluted with artificially generated random noise as used by other authors 

(Alvandi and Cremona 2005 and Shi and Law 1998). The polluted mode shape value at a general 

sampling point j can be given as in Eqn 10. 

 

Where (MS)jP = Polluted mode shape value at sample point j, (MS)j = Mode shape value obtained from 

ABAQUS finite element model, Noise = Percentage of noise, (RandVal)j = randomly generated noise 

obtained from MATLAB function ‘rand’ (MATLAB® R2010b Help Browser 2010). For both damage 

cases, mode shape values are polluted with three noise levels (1%, 3%, and 5%). 

A finer mesh with 60 elements along the longitudinal axis of the beam is used during the ABAQUS 

finite element simulation. However, mode shape values are only obtained at predefined 20 sampling 

points given in Figure 5 and processed through each of the three curve fitting techniques (CF01, CF02, 

and CF03). The unpolluted mode shape values are used to identify the baseline damage elements using 

MSEDI, βB5 (MSEDI derived by combining first five flexural modes using Eqn. 7). Polluted mode 

shape values are then used to calculate both forms of MSEDIs βAa (Eqn 5) for individual modes 

(subscript ‘a’ represents the mode number) and βBb (Eqn 7) for combinations of first five modes 

(subscript ‘b’ represents the number of modes combined).  
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The severe damage case (damage at W=90kN) is used to examine the accuracy of damage detection 

using each of the three curve fitting techniques (CF01, CF02, and CF03) under different noise levels. 

Results are evaluated based on the probability of correct condition detection and probability of false 

alarms using 10 samples for each noise level and curve fitting technique. The numbers of samples are 

varied to study their influence on the accuracy of the damage detection results. Three damage indices 

βA1, βA2, and βA3 are calculated to study the damage detection ability of first three modes on an 

individual basis. The damage indices βB2, βB3, and βB5 are calculated by combining first 2, 3 and 5 

modes respectively to show the improvements in damage detection results when higher modes are 

included.  

 

4. Results and Discussion 

4.1. Evaluation of three curve fitting techniques 

4.1.1. Evaluation Process  

Damage detection abilities of three curve fitting techniques (CF01, CF02 and CF03) are first evaluated 

under three different noise levels (1%, 3%, and 5%) for the RC beam under severe damage level (at 

W=90kN). This leads to the evaluation of nine cases in total: CF01, CF02, and CF03, each with 1, 3 

and 5% noise. For each of the nine evaluation cases, ten samples are used by polluting the mode shape 

values obtained from ABAQUS simulation with randomly generated noise as given in Eqn. 10 and 

hence a total of 90 samples are analysed during this stage.  

Firstly, baseline damage elements are identified using the damage index βB5 (βBb with first five modes 

(b=5)) without adding any noise to the mode shape values. The damage identification using MSEDI 

βB5 is first compared with the smeared crack pattern (based on tensile damage parameter) observed in 

ABAQUS simulation (Figure 6). The observed ABAQUS smeared crack pattern (with a finer mesh 

having 60 elements in the longitudinal direction) is used to identify the damage states of 20 elements 

shown in Figure 5. The datum level to identify the damage using MSEDI βB5 is taken as zero as 
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Wahalathantri et al. (2010) proposed. It has to be noted that βB5 is a measure of change in strain energy 

values at two stages and hence value of βB5 can be positive or negative. The positive values are taken 

as an indication for the presence of damage, while the negative values are to be disregarded. On this 

basis, Figure 6 depicts that βB5 has correctly localized the vicinity of the severe damage region 

indicating that elements 4-10 are damaged. Therefore, baseline condition of elements 4-10 are taken as 

damaged whereas elements 1-3 and 11-20 are taken as undamaged.   

Once the baseline conditions of elements are detected, βB5 values are re-calculated for all 90 samples. 

Positive values of βB5 are taken as damage indications for the candidate elements as did with the 

baseline condition detection process. The probability of damage indication (Pdj) and probability of 

undamaged indication (Puj) for the jth element is then calculated using Eqn 11 and Eqn 12 for each of 

the nine evaluation cases.   

 

 

Eqn 11 and 12 are then used to calculate the probabilities of correct condition detection and 

probabilities of false alarms for the jth element as defined below. The baseline condition of the element 

j is used as the comparative measure. (In all cases j represents the element number that varies from 1 to 

20). 

1. Puuj = Puj; if baseline condition of element j is indicated as undamaged (i.e. probability of 

correct condition detection of an undamaged element) 

2. Pddj = Pdj; if baseline condition of element j is indicated as damaged (i.e. probability of correct 

condition detection of a damaged element) 

3. Pduj = 1 – Puj; if baseline condition of element j is indicated as undamaged (i.e. probability of 

false alarm of detecting undamaged element as damaged) 

4. Pudj = 1 – Pdj; if baseline condition of element j is indicated as damaged (i.e. probability of false 
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alarm of detecting damaged element as undamaged) 

Eqn. 13-16 are used to derive another four parameters (A, B, C, and D) that are used to evaluate the 

overall performance of damage detection with respect to each of the curve fitting technique under three 

noise levels.  

 

 

 

 

Parameters A and B represent the probabilities of correct condition detection whereas C and D indicate 

the probabilities of false alarms. Therefore, probability of correct condition detection and false alarms 

are respectively obtained from average of A and B and average of C and D respectively.  

 

4.1.2. Results on evaluation of curve fitting techniques 

Figure 7 represents probabilities for damage indication (Pdj) for three levels of noises for each of the 

three curve fitting techniques (CF01, CF02, and CF03). It can be seen that, both CF01 and CF02 

caused a significant number of false alarms whereas CF03 has indicated lesser number of false alarms. 

CF03 has therefore detected the damage region more accurately compared to CF01 and CF02 under all 

three noise levels. However, the accuracy of damage detection has reduced with increased noise levels 

for all three curve fitting techniques.  

The four parameters given in Eqn. 13-16 (A, B, C, and D) are used to present results in terms of 

probabilities of accurate condition detection and false alarms as tabulated in Table 5. With the 
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presence of 1% noise in measurements, percentage of accurate condition detection (average of A and 

B) for three curve fitting techniques are recorded as 78%, 76%, and 91% for CF01, CF02, and CF03 

respectively. With increased noise levels, accuracy of correct condition detection is reduced to 59%, 

55% and 91% for 3% noise and 59%, 57% and 86% for 5% noise for CF01, CF02, and CF03 

respectively.  CF01 and CF02 curve fitting techniques have indicated high percentages of false alarms 

with more than 20% false alarms at the lower noise level of 1% and more than 40% at moderate and 

higher noise levels of 3% and 5% respectively. The proposed sequential curve fitting technique (CF03) 

has recorded less than 10% false alarms at 1% and 3% noise levels and about 15% false alarms with 

the presence of 5% noise. These probability based values indicate the improvements achieved if the 

proposed sequential curve fitting technique is used in damage index calculation process. Only the 

proposed sequential curve fitting technique is therefore used in further studies reported in this paper. 

 

4.2. Results on generalized damage localization index 

Figure 8.a plots the variation of probability values of damage indication for all 20 elements which are 

calculated based on the MSEDI, βB5 using ten sample for severe damage level (at W=90kN) with 5% 

noise in mode shape values. These probability values produced five false alarms for the elements 1-3, 

15 and 20. When the generalized damage localization index, GDLI(βB5) is used in the damage 

detection process for this damage scenario with 5% noise, elements 3-10 are indicated as damage 

locations as shown in Figure 8.b. Compared to the baseline damage detection results in Figure 6, only 

one false alarm is recorded with GDLI(βB5) (Figure 8.b) at element 3. At noise levels of 3% and 1%, 

no false alarms are recorded if GDLI(βB5) is used in the damage detection process as illustrated in 

Figure 9.a and 9.b.   

The GDLI is further evaluated for damage localization ability for the moderate damage severity (at 

W=60kN) with 5% noise in mode shapes. Baseline condition detection process using βB5 detects 

elements 4-9 are as damaged as shown in Figure 10.  Compared to the intensity of βB5 for the severe 
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damage level (Figure 6), intensity of βB5 for the moderate damage level (Figure 10) has significantly 

reduced indicating the influence of damage severity on βB5 value.  

Once baseline conditions of elements are detected, mode shape values are polluted to obtain 10 

samples for each of the noise levels and GDLI(βB5) is calculated. Figure 11 illustrates the damage 

identification results using GDLI(βB5) for 5% noise for moderate damage level. Compared to the 

baseline detection results, presence of 5% noise in measurements has caused three false alarms 

corresponding to elements 1, 2 (detecting undamaged elements as damaged) and 4 (detecting damaged 

elements as undamaged). This implies that the accuracy of condition detection using GDLI is reduced 

with reduction in damage severity if the same number of samples is used. However, improved damage 

detection ability is recorded with the increased number of samples as shown in section 4.3. 

 

4.3. Effect of number of samples 

This section investigates the influence of the number of samples on the accuracy of the condition 

detection process using GDLI(βB5) by varying the total number of samples to 5, 10, 15, 20, 25 and 30 

for the moderate damage severity with 5% noise. Table 6 tabulates the element numbers corresponding 

to both positive false alarms (indication of undamaged elements as damaged) and negative false alarms 

(indication of damaged elements as undamaged). Table 6 indicates that significant numbers of false 

alarms are recorded if the sample number is equal or less than 15. With 20 samples, only one negative 

false alarm is recorded for the element 4. With 25 samples or above, no false alarms are recorded for 

the moderate damage severity with 5% noise. A minimum of 25 samples is therefore required to avoid 

all false alarms for the moderate damage severity with 5% noise.  

Similar procedure is adopted to determine the minimum number of samples required (as given in Table 

7) at lower noise levels for both damage severities. As Table 7 illustrates, the minimum numbers of 

samples are reduced to 20 and 15 at reduced noise levels of 3% and 1% respectively. Whereas for the 

severe damage case, minimum requirements are 15, 10 and 5 for 5%, 3% and 1% noise levels 
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respectively. These figures imply that the minimum number of samples required for correct condition 

detection depends on both the noise level and the damage severity. When GDLI is used to assess the 

state of a structure, the variation of the GDLI should therefore be tracked with the measurements 

taken.  

 

4.4. Effect of higher modes 

This section evaluates damage detection accuracy of GDLI using six forms of MSEDIs calculated 

using Eqn. 5 and Eqn. 7 for the moderate damage severity at 5% noise. Eqn. 5 is used to calculate βA1, 

βA2, and βA3 using first three individual modes. Eqn. 7 is used to calculate βB2, βB3 and βB5 by 

combining first 2, 3 and 5 modes respectively. Six forms of GDLIs (GDLI(βA1), GDLI(βA2), 

GDLI(βA3),  GDLI (βB2), GDLI (βB3) and GDLI (βB5)) are then calculated using probabilities of 

damage indication using MSEDIs. Total number of samples used is set to 30, above the minimum 

requirements determined from Table 7.  

First three GDLIs (GDLI(βA1), GDLI(βA2) and GDLI(βA3)) are used to study the accuracy of the 

condition detection results on individual mode basis. As Figure 13.a illustrates, GDLI(βA1) indicates 

six positive false alarms for elements 1-3 and 18-20 with respect to the baseline condition of elements 

as detected from Figure 06. The GDLI(βA2) in Figure 13.b gives 4 positive false alarms (elements 11-

13, 19) and two negative false alarms (elements 4 and 9) whereas GDLI(βA3) in Figure 13.c indicates 

four positive false alarms (elements 1-2, 10 and 15). Overall, generalized damage localization index 

derived using first three individual flexural modes does not accurately detect the condition of elements. 

Three GDLIs derived by combining higher modes (GDLI(βB2), GDLI(βB3) and GDLI(βB5)) at 5% 

noise are illustrated in Figure 13.d - 13.f. Compared to Figure 13.a – 13.c, the number of false alarms 

are significantly reduced in Figure 13.d – 13.f, if higher modes are used in GDLI calculation process. 

GDLI(βB2) in Figure 13.d has one positive false alarm for element 20 whereas GDLI(βB3) in Figure 

13.e has two negligible positive false alarms for elements 19 and 20. GDLI (βB5) in Figure 13.f detects 
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the correct damage elements (elements 4-9) with no false alarms and hence provides the most accurate 

condition detection result proving the improved accuracy in damage detection with the addition of 

higher modes.  

 

5. Significance and Conclusions 

A detailed study on evaluating the effects of computational techniques on the MSEDI is presented in 

this paper.  For the first time, problems associated with the simple curve fitting techniques are revealed 

indicating increased number of false alarms with increased noise level in the mode shape data. The 

proposed sequential curve fitting technique indicated a significant improvement in damage detection 

results by reducing the probabilities of false alarms. This method is based on three curve fitting 

techniques available in MATLAB software. As MATLAB or MATLAB supported software are widely 

used in most vibration data acquisition systems, the proposed method can be easily adopted into the 

damage detection process.  

This paper also proposed a novel concept of a probability based generalized damage localization index 

(GDLI) which can be easily implemented on any of the continuous health monitoring systems. The 

improvements in damage detection results with respect to the GDLI are presented in this paper. 

Although, this paper was limited to examine improvement in damage detection using the GDLI in 

combination with MSEDI; the concept of the GDLI can be easily incorporated into other vibration 

based damage identification techniques.  

Results in the paper show that the accuracy of the GDLI depends on damage severity, noise level, 

number of samples and modes. Higher noise levels and lower damage severity may indicate increased 

false alarms and hence may reduce the accuracy of the damage detection process. However, improved 

condition detection results can be obtained if the number of samples used in GDLI calculation is 

increased. In a continuous health monitoring system, GDLI can therefore be tracked with 

measurements taken to provide a reliable damage indication. This paper further demonstrates that 
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combination of higher modes in damage detection process using MSEDI provides improved condition 

detection results.  
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Figure 1: Methodology of the present study 

 

Figure 2: Four point bending setup (Perera et al (2008)) 

 

Figure 3: Cross section details of the RC beam (Perera et al (2008)) 

 

Figure 4: Load vs. mid span displacement curves (experiment (Perera et al (2008)) vs. FEM) 
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Figure 5: Loading arrangement used for the case studies 

 

  Smeared crack pattern obtained from ABAQUS simulation at W=90kN 

(DAMAGET=Level of tensile damage) 

 

 
 

 

Figure 6: Variation of MSEDI along the beam without noise in mode shapes (Concentrated load of 

90kN at quarter span) 
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CF01: Polynomial Curve 

Fitting Technique 

CF02: Fourier Series Curve 

Fitting Technique 

CF03: Proposed Sequential 

Curve Fitting Technique 

   
(CF01.a): Noise = 1% (CF02.a): Noise = 1% (CF03.a): Noise = 1% 

   
(CF01.b): Noise = 3% (CF02.b): Noise = 3% (CF03.b): Noise = 3% 

   
(CF01.c): Noise = 5% (CF02.c): Noise = 5% (CF03.c): Noise = 5% 

 

Figure 7: Cumulative Probabilities of damage indication for 20 elements with three noise levels; a. 1% 

noise, b. 3% noise, and c. 5% noise (X-axis: Element number, Y-axis: Probabilities of damage 

indication using βB5) 
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Figure 8.a: Damage detection using 

Probabilities obtained from βB5 

Figure 8.b: Damage detection using GDLI(βB5) 

Figure 8: Comparison of damage detection results: (a)using probability values with βB5 and (b) using 

Generalized Damage Localization Index (GDLI(βB5)) – at W=90kN, 5% Noise 

  
Figure 9.a: Damage detection using 

GDLI(βB5) at 3% noise 

Figure 9.b: Damage detection using 

GDLI(βB5) at 1% noise 

Figure 9: Damage detection results using Generalized Damage Localization Index (GDLI(βB5)) – at 

W=90kN, a. at 3% Noise, b. at 1% Noise 
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  Smeared crack pattern obtained from ABAQUS simulation at W=60kN 

(DAMAGET=Level of tensile damage) 

 

 
 

 

Figure 10: MSEDI variation along the beam with third curve fitting technique; without noise 

(Concentrated load of 60kN at quarter span) 

 

Figure 11: Damage detection using GDLI(βB5) for moderate damage severity using 10 samples with 

5% noise 
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Figure 12: Damage detection using GDLI(βB5) for moderate damage severity using 25 samples with 

5% noise 

   
a. GDLI(βA1) b. GDLI(βA2) c. GDLI(βA3) 

   

d. GDLI(βB2) e. GDLI(βB3) f. GDLI(βB5) 

Figure 13: Damage detection of six GDLIs (a. GDLI(βA1), b. GDLI(βA2), c. GDLI(βA3),  d. GDLI 

(βB2), e. GDLI (βB3), f. GDLI (βB5)) using 30 samples with 5% noise at moderate damage severity (X-

axis: Element number, Y-axis: Value of GDLI(βAa or βBb)) 
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List of Tables 

Table 1: Minimum number of measurement points required for Fourier series curve fitting 

Order of Fourier Series 8 7 6 5 4 3 2 1 

Minimum Measurement Points 17 15 13 11 9 7 5 3 

 

Table 2: Material model data to simulate inelastic behaviour of concrete under compression 

Stress (N/m2) Inelastic Strain (m/m) Damage (ratio) 

1.60E+07 0.00E+00 0.00E+00 

2.47E+07 3.04E-04 4.43E-03 

2.97E+07 7.07E-04 1.03E-02 

3.16E+07 1.19E-03 1.73E-02 

3.20E+07 1.70E-03 2.48E-02 

2.38E+07 8.54E-03 1.24E-01 

1.90E+07 1.53E-02 2.22E-01 

1.62E+07 2.20E-02 3.20E-01 

1.44E+07 2.86E-02 4.17E-01 

1.31E+07 3.53E-02 5.13E-01 

1.21E+07 4.20E-02 6.10E-01 

1.13E+07 4.86E-02 7.07E-01 

1.06E+07 5.52E-02 8.03E-01 
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Table 3: Material model data to simulate concrete behaviour under tension 

Stress (N/m2) Inelastic Strain (m/m) Damage (ratio) 

0 0   

5880300 0 0 

5145262 6.58E-05 0.05 

4557232 0.000221 0.175 

4542532 0.000267 0.2 

4527831 0.000306 0.24 

4498429 0.000462 0.375 

4410225 0.000812 0.55 

4351422 0.001433 0.7 

4292619 0.002982 0.9 

 

Table 4: Frequency value comparison between experiment and FEM results 

Structural 

Arrangement 

Frequency –Mode 1                 

Hz  (% change) 

Frequency –Mode 2                      

Hz ( % change) 

 Experiment  FEM  Experiment FEM (% Change) 

1 25.32 24.715 (2.39%) 74.76 73.725 (1.38%) 

2 22.03 22.208 (0.81%) 68.35 66.642 (2.50%) 

3 20.50 21.024 (2.56%) 64.14 63.123 (1.59%) 

4 25.32 24.715 (2.39%) 74.70 73.723 (1.31%) 

5 24.47 24.708 (0.97%) 74.21 73.717 (0.66%) 

6 22.94 22.493 (1.95%) 71.10 71.318 (0.31%) 
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Table 5: Variation of parameters A-D for three curve fitting techniques under three noise levels 

Parameter 

A B C D Curve Fitting 

Technique 
Noise Level 

CF01 

1% 0.825  0.738  0.175  0.262  

3% 0.658  0.525  0.342  0.475  

5% 0.700     0.475  0.300  0.525  

CF02 

1% 0.833  0.688  0.167  0.312  

3% 0.608  0.488  0.392  0.512  

5% 0.617  0.525  0.383  0.475  

CF03 

1% 0.958  0.862  0.042    0.138  

3% 0.942  0.888  0.058    0.112  

5% 0.867  0.850  0.133  0.150  
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Table 6: False alarms recorded at different number of samples at moderate damage severity with 5% 

noise 

Total Number of Samples 

Used to Calculate Damage 

Index 

Element Numbers with 

Positive False Alarms  

Element Numbers with 

Negative False Alarms 

5 1, 16, 17 - 

10 1, 2 4 

15 1, 2 4 

20 - 4 

25 - - 

30 - - 

 

Table 7: Minimum number of samples required at two damage severities with all three noise levels 

Damage Severity 

Minimum Number of Samples 

Noise = 1% Noise = 3% Noise =5% 

Moderate (at W=60kN) 15 20 25 

Severe (at W=90kN) 5 10 15 
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Appendix: Notations 

MSEDI = Modal Strain Energy based Damage Index 

GDLI = Generalized Damage Localization Index 

VBDIT = Vibration Based Damage Identification Techniques 

E = Elastic Modulus  

I = Second Moment of Area 

i = mode number  

j = node number  

Ui = Modal Strain Energy of the beam for mode i 

Uij = Modal Strain Energy of the element j for mode i 

φi  = Mode shape values for mode i 

L = Length of the beam 

Fij = Fractional Strain Energy of the element j for mode i 

d (subscript) = Damaged state 

h (subscript) = Helthy / Undamaged state 

(βij)1 = Modal strain energy based damage index proposed by Stubbs et al (1992) 

(βAa)ij = Modal strain energy based damage index derived using mode a 

(βAb)j = Modal strain energy based damage index derived using first b modes 

MFi = Modification function for mode i (proposed by Wahalathantri et al (2010)) 

[MSC]ij = Mode shape curvature value at centre of the element j for mode i 

│[MSC]ij│max = Absolute maximum value of the mode shape curvature for mode i 
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MSVi = Modal sensitivity value for mode i 

λid = Eigen value of the mode i at damaged state 

λih = Eigen value of the mode i at undamaged state 

CF01 = First curve fitting technique (Spline technique in MATLAB) 

CF02 = Second curve fitting technique (Fourier series) 

CF03 = Proposed sequential curve fitting technique 

GDLI(βCd) = Generalized damage localization index derived using MSEDI, βCd 

αj = Probability of detecting jth element as damaged 

αm = Mean of αj  

αsd = Standard deviation of αj  

(MS)jp = Polluted mode shape value for node j 

(MS)j = Mode shape value for node j obtained from ABAQUS simulation 

Noise = percentage of noise 

Pdj = Probability for damaged indication for element j 

Puj = Probability for undamaged indication for element j 

Puuj = Probability of correct condition detection for an undamaged element j 

Pddj = Probability of correct condition detection for a damaged element j 

Pudj = Probability of false alarm for detecting damaged element j as undamaged 

Pduj = Probability of false alarm for detecting undamaged element j as damaged 

∑ = sum 


