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Abstract—The chief challenge facing persistent robotic naviga-
tion using vision sensors is the recognition of previously visited
locations under different lighting and illumination conditions.
The majority of successful approaches to outdoor robot nav-
igation use active sensors such as LIDAR, but the associated
weight and power draw of these systems makes them unsuitable
for widespread deployment on mobile robots. In this paper we
investigate methods to combine representations for visible and
long-wave infrared (LWIR) thermal images with time information
to combat the time-of-day-based limitations of each sensing
modality. We calculate appearance-based match likelihoods using
the state-of-the-art FAB-MAP [1] algorithm to analyse loop
closure detection reliability across different times of day. We
present preliminary results on a dataset of 10 successive traverses
of a combined urban-parkland environment, recorded in 2-hour
intervals from before dawn to after dusk. Improved location
recognition throughout an entire day is demonstrated using the
combined system compared with methods which use visible or
thermal sensing alone.

I. INTRODUCTION

For long-term vision-based robot operation in outdoor en-
vironments, the ability to cope with the extreme illumination
changes due to the day-night cycle of the sun is a crucial
requirement and remains a largely unsolved problem. Current
state-of-the-art systems which function in outdoor environ-
ments typically use scanning LIDARs [2] [3], appearance-
based LIDAR [4], or active illumination [5], but these active
systems have significant power requirements and weight penal-
ties. Despite a significant body of work towards illumination-
invariant image recognition [6] [7], passive vision sensors
operating in the visible spectrum suffer from the fundamental
limitation of cyclic appearance change over a 24-hour period
[8] as well as gradual change over longer timescales [9].

Passive thermal-infrared imagery is not directly affected by
changing lighting conditions, and has demonstrated robustness
to many environmental conditions in the past [10]. However,
thermal-infrared imagery suffers indirectly from cyclic illu-
mination; the contrast between objects with different thermal
properties varies as they are heated by the Sun and cooled by
thermal radiation throughout the day. The phenomenon known
as ‘thermal crossover’ [11] describes the time of day when
objects in a scene exhibit minimal thermal contrast, which
complicates place recognition when using thermal-infrared
images alone.

Fig. 1. Route map with observation log-likelihoods between the 5am and
7am sequences. Red regions represent locations with high log-likelihoods
in the thermal-infrared modality, while blue represents those with high log-
likelihoods in the visible modality (more color indicates higher likelihood).
The superior stability of the thermal-infrared modality under illumination
change is apparent.

In this paper we investigate a combination of visible-
spectrum and thermal-infrared imagery to perform loop clo-
sure detection over the course of a full day. The complemen-
tary nature of visible-spectrum and thermal-infrared has the
potential to improve the performance of existing visible- or
thermal-only systems. We detect loop closures using FAB-
MAP [1] and propose a method for fusing the two modali-



ties in the Chow-Liu tree representation to achieve superior
location-recognition performance. The fused representation is
evaluated on a multiple-modality dataset consisting of 10 suc-
cessive traversals of a combined urban-parkland environment.
The traversals were performed over 20 hours, spanning from
before dawn to after dusk.

II. BACKGROUND

A. Image processing

Current state-of-the-art feature detector and descriptor ex-
traction algorithms provide some level of contrast and il-
lumination invariance designed for visible-spectrum images.
However, as demonstrated in [12] these methods do not naively
extend to thermal-infrared images. Raw thermal-infrared im-
ages are typically stored in 14-bit per pixel format, with the
number of active gray levels varying considerably depending
on the scene. In many images, the span of active gray levels
will be less than 255, and in these cases the image can
easily be converted to 8 bits per pixel making them easier
to interface with conventional computer vision algorithms. In
images with more a span of more than 255, some quantization
may be required. In general, the level of contrast in thermal-
infrared images will be significantly less than visible images.
This can result in low feature counts from local feature
detection algorithms if special care is not taken to adjust
detector sensitivities accordingly. Real-time adaptive contrast
enhancement algorithms such as those presented in [13] and
[14] provide a means for adapting thermal-infrared images to
perform better with normal feature detection and description
algorithms.

B. Loop Closure Detection

In this paper we use the FAB-MAP algorithm [1] to deter-
mine loop closure events based on the set of features detected
in each image. Each image is converted into the visual bag-
of-words representation described in [15]. It is necessary to
create a database of common features from a set of training
data in a similar environment to the test environment prior to
performing localisation [1]. Every feature extracted from the
image is converted to the closest visual ’word’, reducing each
image to a binary vector of which visual words are present in
the image.

Zk =
{
z1 z2 ... zn

}
(1)

Each unique location Lk is represented by the probability
that the object ei (that creates observation zi) is present in the
scene.{

P (e1 = 1|Lk) P (e2 = 1|Lk) ... P (en = 1|Lk)
}

(2)

The probability of a new image coming from the same
location as a previous image is estimated using recursive
Bayes:

P (Li|Zk) =
P (Zk|Li,Zk−1)P (Li|Zk−1)

P (Zk|Zk−1)
(3)

where Zk−1 is a collection of previous observations up
to time k. The prior probability of matching a location
P (Li|Zk−1) is estimated using a naive motion model. The
observation likelihood P (Zk|Li,Zk−1) is assumed to be in-
dependent from all past observations and is calculated using
a Chow Liu approximation [16]. The Chow Liu tree is con-
structed once as an offline process based on training data.
Observation likelihoods are approximated using the Chow Liu
tree as follows:

P (Zk|Li) ≈ P (zr|Li)

n∏
q=1

P (zq|zpq
, Li) (4)

where r is the root node of the Chow Liu tree and pq is
the parent of node q. The observation likelihood is the crucial
component for determining the match between two individual
images; it incorporates the features present in both images
along with the Chow-Liu environment model to calculate the
likelihood that both images represent the same location.

For FAB-MAP to correctly recognise locations there must
be some overlap in visual words between images. Aside from
special cases where the Chow-Liu tree captures sufficient
feature co-occurrance information to match images containing
no common words, the recall performance of FAB-MAP is
generally enhanced by increasing the number of common
visual words between images.

The remainder of this paper will address how images from
the thermal-infrared modality can be used to increase visual
word repeatability, and therefore improve the observation
likelihood scores between images of the same location at
different times of day.

III. DATASET

Data was collected using a platform consisting of a GPS
receiver, visible-spectrum camera and thermal-infrared cam-
era, as shown in Figure 2. The platform was attached to the
rear tray of a bicycle so that the two cameras faced directly
rearwards, parallel to the ground. GPS positioning information
was unreliable due to the nature of the environment (which
included tall buildings and significant tree cover) so ground
truth positions were manually corrected.

The thermal-infrared camera used for the experiments was
a Thermoteknix Miricle 307K, which consists of a long-wave
uncooled microbolometer detector sensitive in the 7- to 14-
µm range. The camera has a resolution of 640 by 480 pixels
and a horizontal field of view of approximately 60 degrees
and is rated for objects in the temperature range of −20◦ to
150◦ Celsius. The camera has a noise-equivalent differential
temperature (NEDT) of 85 mK. Fourteen-bit monochromatic
images were captured at 15Hz over a USB connection.

A Point Grey Grasshopper2 1394b camera with Bayer filter
was used to collect visible-spectrum images with identical
resolution and approximately identical FOV to the thermal-
infrared images. The visible-spectrum images were temporally
aligned with the thermal-infrared images within route traver-
sals based on time-stamp information, and manually aligned
between route traversals.



Fig. 2. Capture platform, with (from left to right) the GPS receiver, thermal-
infrared camera and visible-spectrum camera.

The route for the data capture was an approximately 1500m
long stretch in and around the QUT Gardens Point campus and
consisted of substantial portions of both urban environment
and parkland, pictured in Figure 1. Ten traversals with two
hours separation between each were undertaken, spanning
from 5.00am to 11.00pm. As shown in Figure 3, this rep-
resented a period lasting from before dawn to after dusk. The
full dataset of images from both modalities was subsampled to
300 frames per route traversal per camera, resulting in a total
of 6000 frames across the full experiment. This corresponds
to image pairs with approximately 5m spacing throughout all
the route traversals. Frames were manually aligned between
datasets to ensure approximately identical viewpoints.

IV. METHODOLOGY

The following section outlines the steps taken to deter-
mine localisation performance across modalities across a full
day. The first step involved determining an appropriate pre-
processing scheme and feature extraction method for each
modality, along with extracting descriptors for each feature.
The second step involved constructing a visual vocabulary for
the bag-of-words representations and Chow-Liu tree to capture
conditional likelihoods for feature co-occurrence, then using
FAB-MAP to perform place recognition.

A. Feature extraction

Raw output from the visible camera was already in an
8-bit per pixel format appropriate for feature detection and
description, and so no pre-processing was required beyond
converting to grayscale for simplification. For the thermal-
infrared images, when the span of raw intensity values was
less than 255, conversion to 8-bit format consisted simply
of shifting the intensities so that the median pixel value was
128. In images where the span of raw intensity values was
greater than 255, the top and bottom 0.1% of intensity values
were thresholded, and all values were then linearly mapped to
the interval [0, 255]. The CLAHE (Contrast Limited Adaptive
Histogram Equalization) [13] algorithm was then used to

enhance the contrast of the thermal-infrared image, with a
normalized clipping limit of 3.8.

For both modalities the OpenCV1 implementation of the
SURF [7] feature detector and descriptor was used to extract
local feature descriptors from the images. The detector was
implemented in its dynamically adapted mode, meaning that
upper and lower bounds for feature counts could be specified.
Limits of 500 and 1000 features were chosen for the visible
modality, with a maximum feature radius of 80 pixels, while
for the thermal modality limits of 600 and 800 were selected
and a larger radius of up to 100 was permitted. These param-
eters were found to achieve the most promising performance
in terms of word overlap in the initial development stage.

B. Place recognition

The visual vocabulary is generated using k-means resulting
in a 5,000 word codebook for each modality from the 1pm
dataset. We then match each descriptor in every image to the
nearest cluster centre in the vocabulary; for each location, we
obtain a pair of visual bag-of-words representations as follows:

Zv =
[
zv0 zv1 ... zvn

]
; Zth =

[
zth0

zth1
... zthn

]
(5)

A Chow-Liu tree [16] was constructed for each of the
two codebooks, to capture the conditional dependencies be-
tween words independently for each modality. To compare
locations we use the FAB-MAP 2.0 implementation in the
openFABMAP2 repository, since the original FAB-MAP bi-
naries do not allow the use of custom codebook or Chow-
Liu tree representations. Additionally, using openFABMAP
we can extract the observation likelihoods of equation 4
directly without requiring the full recursive Bayes estimation
of equation 3.

C. Combining representations

In order to combine the sensor modalities at the bag-of-
visual-words level (rather than attempting fusion of the images
themselves), we concatenate the individual word vectors for
each image as follows:

Zc =
[
zv0 zv1 ... zvn zth0 zth1 ... zthn

]
(6)

Using this combined bag-of-words representation, we train
a Chow-Liu tree between modalities. Crucially, this allows us
to not only take advantage of modelling feature uniqueness
within modalities, but also to capture the distribution of con-
ditional observation likelihoods between visible-spectrum and
thermal-infrared images, allowing us to infer location matches
from the combined visible-thermal representation even in the
absence of direct feature matches from either modality. The
concatenated bag-of-words representation consists of 10,000
visual words.

1http://opencv.willowgarage.com/wiki/
2http://code.google.com/p/openfabmap/



(a) 5.00am - visible (b) 5.00am - thermal (k) 3.00pm - visible (l) 3.00pm - thermal

(c) 7.00am - visible (d) 7.00am - thermal (m) 5.00pm - visible (n) 5.00pm - thermal

(e) 9.00am - visible (f) 9.00am - thermal (o) 7.00pm - visible (p) 7.00pm - thermal

(g) 11.00am - visible (h) 11.00am - thermal (q) 9.00pm - visible (r) 9.00pm - thermal

(i) 1.00pm - visible (j) 1.00pm - thermal (s) 11.00pm - visible (t) 11.00pm - thermal

Fig. 3. Dataset snapshots captured from the same location across a 20 hour period. The extreme change in appearance in the visible spectrum is clearly
apparent across the whole day. The thermal-infrared modality exhibits lower contrast but remains more consistent over time.



 

 

5am 11am 5pm 11pm

5am

11am

5pm

11pm
0

20

40

60

80

100

120

140

160

(a) visible

 

 

5am 11am 5pm 11pm

5am

11am

5pm

11pm
0

20

40

60

80

100

120

140

160

(b) thermal

Fig. 4. Average word overlap between different times of day.

V. RESULTS

Figure 4 shows the average quantity of words per frame
which re-occur between matching frames for all possible pairs
of times. Poor word overlap occurs between dark times (before
dawn or after dusk) in the visible modality, and between dark
times and well-lit times. In some cases this is due to a low
absolute number of detected features (as low as 20 in some
images), but primarily The thermal-infrared modality does not
experience the same sharp drop-off outside of daylight hours,
but instead exhibits a gradual decrease in word overlap as
the time difference between datasets increased. However, the
total number of overlapping words for the visual modality
exceeds the word overlap for the thermal-infrared modality
during daylight hours. Promisingly, superior word overlap is
achieved in thermal-infrared for pairs of times in which the
visible modality is weak.

Figure 5 shows the average normalised log observation
likelihood across all locations between different times of
day for the visible, thermal-infrared and combined FAB-
MAP implementations. A similar pattern to the word overlap
appears between the visible and thermal-infrared modalities;
the visible modality provides good performance during day-
light hours but poor performance during night-time, whereas
the thermal-infrared modality provides consistent performance
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Fig. 5. Average observation log-likelihood between different times of day.

which gracefully degrades with increasing difference in time
between route traversals. The effects of training the Chow-Liu
tree on the data collected at 1pm is manifested by the slight
increase in observation likelihood matches to the 1pm route
traversal (since the Chow-Liu tree provides the most accurate
model of the data used to generate it).

The combined representation provides the best overall
observation likelihood results; the thermal-infrared modality
provides robustness to extreme changes in time between route



traversals, and the visible modality provides superior recall to
locations revisited during daylight hours.

The route map shown in Figure 1 has been colored to
reflect the observation likelihood of each modality in recog-
nizing each location between the 5am and 7am dataset. Large
stretches of the route were poorly lit at 5am, such as much
of the parkland, and were poorly recognized by the visual
modality. However, the thermal-infrared modality provides
consistently high observation likelihood across the full length
of the dataset.

VI. CONCLUSION

The results for word overlap indicate that the thermal-
infrared images are more temporally robust under the day-
night cycle for the purpose of loop closure. The visible-
spectrum images share very few visual words before 7am and
after 5pm, corresponding to night-time illumination, whereas
the thermal-infrared images demonstrate word overlap from
the full period from 5am to 9pm.

The average observation log-likelihoods demonstrate the
increased reliability of the thermal-infrared modality for the
purpose of loop closure detection across a full day. While
the visible modality provides higher match likelihoods during
daylight hours, the thermal-infrared modality is capable of
consistently matching locations between extreme changes in
ambient lighting, such as between the 5am and 7am route
traversals.

By combining the visual words from both modalities and
building a Chow-Liu tree to caputre inter- and intra- modality
dependencies, the observation likelihood performance is fur-
ther increased, demonstrating how the complementary nature
of these modalities can be exploited to boost loop closure
performance across a full day.
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